mirror of
https://github.com/luau-lang/luau.git
synced 2025-01-08 12:29:09 +00:00
140e5a1495
* Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
262 lines
9 KiB
C++
262 lines
9 KiB
C++
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
|
|
#pragma once
|
|
|
|
#include "Luau/AssemblyBuilderX64.h"
|
|
|
|
#include "EmitCommon.h"
|
|
|
|
#include "lobject.h"
|
|
#include "ltm.h"
|
|
|
|
// MS x64 ABI reminder:
|
|
// Arguments: rcx, rdx, r8, r9 ('overlapped' with xmm0-xmm3)
|
|
// Return: rax, xmm0
|
|
// Nonvolatile: r12-r15, rdi, rsi, rbx, rbp
|
|
// SIMD: only xmm6-xmm15 are non-volatile, all ymm upper parts are volatile
|
|
|
|
// AMD64 ABI reminder:
|
|
// Arguments: rdi, rsi, rdx, rcx, r8, r9 (xmm0-xmm7)
|
|
// Return: rax, rdx, xmm0, xmm1
|
|
// Nonvolatile: r12-r15, rbx, rbp
|
|
// SIMD: all volatile
|
|
|
|
namespace Luau
|
|
{
|
|
namespace CodeGen
|
|
{
|
|
|
|
enum class IrCondition : uint8_t;
|
|
struct NativeState;
|
|
|
|
namespace X64
|
|
{
|
|
|
|
// Data that is very common to access is placed in non-volatile registers
|
|
constexpr RegisterX64 rState = r15; // lua_State* L
|
|
constexpr RegisterX64 rBase = r14; // StkId base
|
|
constexpr RegisterX64 rNativeContext = r13; // NativeContext* context
|
|
constexpr RegisterX64 rConstants = r12; // TValue* k
|
|
|
|
// Native code is as stackless as the interpreter, so we can place some data on the stack once and have it accessible at any point
|
|
// See CodeGenX64.cpp for layout
|
|
constexpr unsigned kStackSize = 32 + 16; // 4 home locations for registers, 16 bytes for additional function call arguments
|
|
constexpr unsigned kLocalsSize = 24; // 3 extra slots for our custom locals (also aligns the stack to 16 byte boundary)
|
|
|
|
constexpr OperandX64 sClosure = qword[rsp + kStackSize + 0]; // Closure* cl
|
|
constexpr OperandX64 sCode = qword[rsp + kStackSize + 8]; // Instruction* code
|
|
constexpr OperandX64 sTemporarySlot = addr[rsp + kStackSize + 16];
|
|
|
|
// TODO: These should be replaced with a portable call function that checks the ABI at runtime and reorders moves accordingly to avoid conflicts
|
|
#if defined(_WIN32)
|
|
|
|
constexpr RegisterX64 rArg1 = rcx;
|
|
constexpr RegisterX64 rArg2 = rdx;
|
|
constexpr RegisterX64 rArg3 = r8;
|
|
constexpr RegisterX64 rArg4 = r9;
|
|
constexpr RegisterX64 rArg5 = noreg;
|
|
constexpr RegisterX64 rArg6 = noreg;
|
|
constexpr OperandX64 sArg5 = qword[rsp + 32];
|
|
constexpr OperandX64 sArg6 = qword[rsp + 40];
|
|
|
|
#else
|
|
|
|
constexpr RegisterX64 rArg1 = rdi;
|
|
constexpr RegisterX64 rArg2 = rsi;
|
|
constexpr RegisterX64 rArg3 = rdx;
|
|
constexpr RegisterX64 rArg4 = rcx;
|
|
constexpr RegisterX64 rArg5 = r8;
|
|
constexpr RegisterX64 rArg6 = r9;
|
|
constexpr OperandX64 sArg5 = noreg;
|
|
constexpr OperandX64 sArg6 = noreg;
|
|
|
|
#endif
|
|
|
|
inline OperandX64 luauReg(int ri)
|
|
{
|
|
return xmmword[rBase + ri * sizeof(TValue)];
|
|
}
|
|
|
|
inline OperandX64 luauRegAddress(int ri)
|
|
{
|
|
return addr[rBase + ri * sizeof(TValue)];
|
|
}
|
|
|
|
inline OperandX64 luauRegValue(int ri)
|
|
{
|
|
return qword[rBase + ri * sizeof(TValue) + offsetof(TValue, value)];
|
|
}
|
|
|
|
inline OperandX64 luauRegTag(int ri)
|
|
{
|
|
return dword[rBase + ri * sizeof(TValue) + offsetof(TValue, tt)];
|
|
}
|
|
|
|
inline OperandX64 luauRegValueInt(int ri)
|
|
{
|
|
return dword[rBase + ri * sizeof(TValue) + offsetof(TValue, value)];
|
|
}
|
|
|
|
inline OperandX64 luauConstant(int ki)
|
|
{
|
|
return xmmword[rConstants + ki * sizeof(TValue)];
|
|
}
|
|
|
|
inline OperandX64 luauConstantAddress(int ki)
|
|
{
|
|
return addr[rConstants + ki * sizeof(TValue)];
|
|
}
|
|
|
|
inline OperandX64 luauConstantTag(int ki)
|
|
{
|
|
return dword[rConstants + ki * sizeof(TValue) + offsetof(TValue, tt)];
|
|
}
|
|
|
|
inline OperandX64 luauConstantValue(int ki)
|
|
{
|
|
return qword[rConstants + ki * sizeof(TValue) + offsetof(TValue, value)];
|
|
}
|
|
|
|
inline OperandX64 luauNodeKeyValue(RegisterX64 node)
|
|
{
|
|
return qword[node + offsetof(LuaNode, key) + offsetof(TKey, value)];
|
|
}
|
|
|
|
// Note: tag has dirty upper bits
|
|
inline OperandX64 luauNodeKeyTag(RegisterX64 node)
|
|
{
|
|
return dword[node + offsetof(LuaNode, key) + kOffsetOfLuaNodeTag];
|
|
}
|
|
|
|
inline OperandX64 luauNodeValue(RegisterX64 node)
|
|
{
|
|
return xmmword[node + offsetof(LuaNode, val)];
|
|
}
|
|
|
|
inline void setLuauReg(AssemblyBuilderX64& build, RegisterX64 tmp, int ri, OperandX64 op)
|
|
{
|
|
LUAU_ASSERT(op.cat == CategoryX64::mem);
|
|
|
|
build.vmovups(tmp, op);
|
|
build.vmovups(luauReg(ri), tmp);
|
|
}
|
|
|
|
inline void jumpIfTagIs(AssemblyBuilderX64& build, int ri, lua_Type tag, Label& label)
|
|
{
|
|
build.cmp(luauRegTag(ri), tag);
|
|
build.jcc(ConditionX64::Equal, label);
|
|
}
|
|
|
|
inline void jumpIfTagIsNot(AssemblyBuilderX64& build, int ri, lua_Type tag, Label& label)
|
|
{
|
|
build.cmp(luauRegTag(ri), tag);
|
|
build.jcc(ConditionX64::NotEqual, label);
|
|
}
|
|
|
|
inline void jumpIfTagIsNot(AssemblyBuilderX64& build, RegisterX64 reg, lua_Type tag, Label& label)
|
|
{
|
|
build.cmp(dword[reg + offsetof(TValue, tt)], tag);
|
|
build.jcc(ConditionX64::NotEqual, label);
|
|
}
|
|
|
|
// Note: fallthrough label should be placed after this condition
|
|
inline void jumpIfFalsy(AssemblyBuilderX64& build, int ri, Label& target, Label& fallthrough)
|
|
{
|
|
jumpIfTagIs(build, ri, LUA_TNIL, target); // false if nil
|
|
jumpIfTagIsNot(build, ri, LUA_TBOOLEAN, fallthrough); // true if not nil or boolean
|
|
|
|
build.cmp(luauRegValueInt(ri), 0);
|
|
build.jcc(ConditionX64::Equal, target); // true if boolean value is 'true'
|
|
}
|
|
|
|
// Note: fallthrough label should be placed after this condition
|
|
inline void jumpIfTruthy(AssemblyBuilderX64& build, int ri, Label& target, Label& fallthrough)
|
|
{
|
|
jumpIfTagIs(build, ri, LUA_TNIL, fallthrough); // false if nil
|
|
jumpIfTagIsNot(build, ri, LUA_TBOOLEAN, target); // true if not nil or boolean
|
|
|
|
build.cmp(luauRegValueInt(ri), 0);
|
|
build.jcc(ConditionX64::NotEqual, target); // true if boolean value is 'true'
|
|
}
|
|
|
|
inline void jumpIfMetatablePresent(AssemblyBuilderX64& build, RegisterX64 table, Label& target)
|
|
{
|
|
build.cmp(qword[table + offsetof(Table, metatable)], 0);
|
|
build.jcc(ConditionX64::NotEqual, target);
|
|
}
|
|
|
|
inline void jumpIfUnsafeEnv(AssemblyBuilderX64& build, RegisterX64 tmp, Label& label)
|
|
{
|
|
build.mov(tmp, sClosure);
|
|
build.mov(tmp, qword[tmp + offsetof(Closure, env)]);
|
|
build.test(byte[tmp + offsetof(Table, safeenv)], 1);
|
|
build.jcc(ConditionX64::Zero, label); // Not a safe environment
|
|
}
|
|
|
|
inline void jumpIfTableIsReadOnly(AssemblyBuilderX64& build, RegisterX64 table, Label& label)
|
|
{
|
|
build.cmp(byte[table + offsetof(Table, readonly)], 0);
|
|
build.jcc(ConditionX64::NotEqual, label);
|
|
}
|
|
|
|
inline void jumpIfNodeKeyTagIsNot(AssemblyBuilderX64& build, RegisterX64 tmp, RegisterX64 node, lua_Type tag, Label& label)
|
|
{
|
|
tmp.size = SizeX64::dword;
|
|
|
|
build.mov(tmp, luauNodeKeyTag(node));
|
|
build.and_(tmp, kLuaNodeTagMask);
|
|
build.cmp(tmp, tag);
|
|
build.jcc(ConditionX64::NotEqual, label);
|
|
}
|
|
|
|
inline void jumpIfNodeValueTagIs(AssemblyBuilderX64& build, RegisterX64 node, lua_Type tag, Label& label)
|
|
{
|
|
build.cmp(dword[node + offsetof(LuaNode, val) + offsetof(TValue, tt)], tag);
|
|
build.jcc(ConditionX64::Equal, label);
|
|
}
|
|
|
|
inline void jumpIfNodeHasNext(AssemblyBuilderX64& build, RegisterX64 node, Label& label)
|
|
{
|
|
build.mov(ecx, dword[node + offsetof(LuaNode, key) + kOffsetOfLuaNodeNext]);
|
|
build.shr(ecx, kNextBitOffset);
|
|
build.jcc(ConditionX64::NotZero, label);
|
|
}
|
|
|
|
inline void jumpIfNodeKeyNotInExpectedSlot(AssemblyBuilderX64& build, RegisterX64 tmp, RegisterX64 node, OperandX64 expectedKey, Label& label)
|
|
{
|
|
jumpIfNodeKeyTagIsNot(build, tmp, node, LUA_TSTRING, label);
|
|
|
|
build.mov(tmp, expectedKey);
|
|
build.cmp(tmp, luauNodeKeyValue(node));
|
|
build.jcc(ConditionX64::NotEqual, label);
|
|
|
|
jumpIfNodeValueTagIs(build, node, LUA_TNIL, label);
|
|
}
|
|
|
|
void jumpOnNumberCmp(AssemblyBuilderX64& build, RegisterX64 tmp, OperandX64 lhs, OperandX64 rhs, IrCondition cond, Label& label);
|
|
void jumpOnAnyCmpFallback(AssemblyBuilderX64& build, int ra, int rb, IrCondition cond, Label& label);
|
|
|
|
void getTableNodeAtCachedSlot(AssemblyBuilderX64& build, RegisterX64 tmp, RegisterX64 node, RegisterX64 table, int pcpos);
|
|
void convertNumberToIndexOrJump(AssemblyBuilderX64& build, RegisterX64 tmp, RegisterX64 numd, RegisterX64 numi, Label& label);
|
|
|
|
void callArithHelper(AssemblyBuilderX64& build, int ra, int rb, OperandX64 c, TMS tm);
|
|
void callLengthHelper(AssemblyBuilderX64& build, int ra, int rb);
|
|
void callPrepareForN(AssemblyBuilderX64& build, int limit, int step, int init);
|
|
void callGetTable(AssemblyBuilderX64& build, int rb, OperandX64 c, int ra);
|
|
void callSetTable(AssemblyBuilderX64& build, int rb, OperandX64 c, int ra);
|
|
void callBarrierTable(AssemblyBuilderX64& build, RegisterX64 tmp, RegisterX64 table, int ra, Label& skip);
|
|
void callBarrierObject(AssemblyBuilderX64& build, RegisterX64 tmp, RegisterX64 object, int ra, Label& skip);
|
|
void callBarrierTableFast(AssemblyBuilderX64& build, RegisterX64 table, Label& skip);
|
|
void callCheckGc(AssemblyBuilderX64& build, int pcpos, bool savepc, Label& skip);
|
|
void callGetFastTmOrFallback(AssemblyBuilderX64& build, RegisterX64 table, TMS tm, Label& fallback);
|
|
|
|
void emitExit(AssemblyBuilderX64& build, bool continueInVm);
|
|
void emitUpdateBase(AssemblyBuilderX64& build);
|
|
void emitSetSavedPc(AssemblyBuilderX64& build, int pcpos); // Note: only uses rax/rdx, the caller may use other registers
|
|
void emitInterrupt(AssemblyBuilderX64& build, int pcpos);
|
|
void emitFallback(AssemblyBuilderX64& build, NativeState& data, int op, int pcpos);
|
|
|
|
void emitContinueCallInVm(AssemblyBuilderX64& build);
|
|
|
|
} // namespace X64
|
|
} // namespace CodeGen
|
|
} // namespace Luau
|