luau/EqSat/include/Luau/EGraph.h
ayoungbloodrbx c13b5b7440
Some checks failed
benchmark / callgrind (map[branch:main name:luau-lang/benchmark-data], ubuntu-22.04) (push) Has been cancelled
build / macos (push) Has been cancelled
build / macos-arm (push) Has been cancelled
build / ubuntu (push) Has been cancelled
build / windows (Win32) (push) Has been cancelled
build / windows (x64) (push) Has been cancelled
build / coverage (push) Has been cancelled
build / web (push) Has been cancelled
release / macos (push) Has been cancelled
release / ubuntu (push) Has been cancelled
release / windows (push) Has been cancelled
release / web (push) Has been cancelled
Sync to upstream/release/658 (#1625)
## What's Changed

### General
- Allow types of tables to diverge after using `table.clone` (fixes
#1617).
- Allow 2-argument vector.create in Luau.
- Fix a crash when suggesting autocomplete after encountering parsing
errors.
- Add lua_tolstringatom C API which returns the string length (whether
or not the atom exists) and which extends the existing lua_tostringatom
function the same way lua_tolstring/lua_tostring do.
- Luau now retains the DFGs of typechecked modules.

### Magic Functions Migration Note
We've made a change to the API used to define magic functions.

Previously, we had a set of function pointers on each `FunctionType`
that would be invoked by the type inference engine at the correct point.

The problem we'd run into is that they were all `std::function`s, we'd
grown quite a few of them, and Luau allocates tens of thousands of types
as it performs type inference. This adds up to a large amount of memory
for data that isn't used by 99% of types.

To slim things down a bit, we've replaced all of those `std::function`s
with a single `shared_ptr` to a new interface called `MagicFunction`.
This slims down the memory footprint of each type by about 50 bytes.

The virtual methods of `MagicFunction` have roughly 1:1 correspondence
with the old interface, so updating things should not be too difficult:

* `FunctionType::magicFunction` is now `MagicFunction::handleOldSolver`
* `FunctionType::dcrMagicFunction` is now `MagicFunction::infer`
* `FunctionType::dcrMagicRefinement` is now `MagicFunction::refine`
* `FunctionType::dcrMagicTypeCheck` is now `MagicFunction::typeCheck`

**Full Changelog**:
https://github.com/luau-lang/luau/compare/0.657...0.658

---

Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Ariel Weiss <aaronweiss@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Talha Pathan <tpathan@roblox.com>
Co-authored-by: Varun Saini <vsaini@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2025-01-24 12:15:19 -08:00

381 lines
9.4 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Common.h"
#include "Luau/Id.h"
#include "Luau/Language.h"
#include "Luau/UnionFind.h"
#include <optional>
#include <unordered_map>
#include <vector>
namespace Luau::EqSat
{
template<typename L, typename N>
struct EGraph;
template<typename L, typename N>
struct Analysis final
{
N analysis;
using D = typename N::Data;
Analysis() = default;
Analysis(N a)
: analysis(std::move(a))
{
}
template<typename T>
static D fnMake(const N& analysis, const EGraph<L, N>& egraph, const L& enode)
{
return analysis.make(egraph, *enode.template get<T>());
}
template<typename... Ts>
D make(const EGraph<L, N>& egraph, const Language<Ts...>& enode) const
{
using FnMake = D (*)(const N&, const EGraph<L, N>&, const L&);
static constexpr FnMake tableMake[sizeof...(Ts)] = {&fnMake<Ts>...};
return tableMake[enode.index()](analysis, egraph, enode);
}
void join(D& a, const D& b) const
{
return analysis.join(a, b);
}
};
template<typename L>
struct Node
{
L node;
bool boring = false;
struct Hash
{
size_t operator()(const Node& node) const
{
return typename L::Hash{}(node.node);
}
};
};
template <typename L>
struct NodeIterator
{
private:
using iterator = std::vector<Node<L>>;
iterator iter;
public:
L& operator*()
{
return iter->node;
}
const L& operator*() const
{
return iter->node;
}
iterator& operator++()
{
++iter;
return *this;
}
iterator operator++(int)
{
iterator copy = *this;
++*this;
return copy;
}
bool operator==(const iterator& rhs) const
{
return iter == rhs.iter;
}
bool operator!=(const iterator& rhs) const
{
return iter != rhs.iter;
}
};
/// Each e-class is a set of e-nodes representing equivalent terms from a given language,
/// and an e-node is a function symbol paired with a list of children e-classes.
template<typename L, typename D>
struct EClass final
{
Id id;
std::vector<Node<L>> nodes;
D data;
std::vector<std::pair<L, Id>> parents;
};
/// See <https://arxiv.org/pdf/2004.03082>.
template<typename L, typename N>
struct EGraph final
{
using EClassT = EClass<L, typename N::Data>;
EGraph() = default;
explicit EGraph(N analysis)
: analysis(std::move(analysis))
{
}
Id find(Id id) const
{
return unionfind.find(id);
}
std::optional<Id> lookup(const L& enode) const
{
LUAU_ASSERT(isCanonical(enode));
if (auto it = hashcons.find(enode); it != hashcons.end())
return it->second;
return std::nullopt;
}
Id add(L enode)
{
canonicalize(enode);
if (auto id = lookup(enode))
return *id;
Id id = makeEClass(enode);
return id;
}
// Returns true if the two IDs were not previously merged.
bool merge(Id id1, Id id2)
{
id1 = find(id1);
id2 = find(id2);
if (id1 == id2)
return false;
const Id mergedId = unionfind.merge(id1, id2);
// Ensure that id1 is the Id that we keep, and id2 is the id that we drop.
if (mergedId == id2)
std::swap(id1, id2);
EClassT& eclass1 = get(id1);
EClassT eclass2 = std::move(get(id2));
classes.erase(id2);
eclass1.nodes.insert(eclass1.nodes.end(), eclass2.nodes.begin(), eclass2.nodes.end());
eclass1.parents.insert(eclass1.parents.end(), eclass2.parents.begin(), eclass2.parents.end());
std::sort(
eclass1.nodes.begin(),
eclass1.nodes.end(),
[](const Node<L>& left, const Node<L>& right)
{
return left.node.index() < right.node.index();
}
);
worklist.reserve(worklist.size() + eclass1.parents.size());
for (const auto& [eclass, id] : eclass1.parents)
worklist.push_back(id);
analysis.join(eclass1.data, eclass2.data);
return true;
}
void rebuild()
{
std::unordered_set<Id> seen;
while (!worklist.empty())
{
Id id = worklist.back();
worklist.pop_back();
const bool isFresh = seen.insert(id).second;
if (!isFresh)
continue;
repair(find(id));
}
}
size_t size() const
{
return classes.size();
}
EClassT& operator[](Id id)
{
return get(find(id));
}
const EClassT& operator[](Id id) const
{
return const_cast<EGraph*>(this)->get(find(id));
}
const std::unordered_map<Id, EClassT>& getAllClasses() const
{
return classes;
}
void markBoring(Id id, size_t index)
{
get(id).nodes[index].boring = true;
}
private:
Analysis<L, N> analysis;
/// A union-find data structure 𝑈 stores an equivalence relation over e-class ids.
UnionFind unionfind;
/// The e-class map 𝑀 maps e-class ids to e-classes. All equivalent e-class ids map to the same
/// e-class, i.e., 𝑎 ≡id 𝑏 iff 𝑀[𝑎] is the same set as 𝑀[𝑏]. An e-class id 𝑎 is said to refer to the
/// e-class 𝑀[find(𝑎)].
std::unordered_map<Id, EClassT> classes;
/// The hashcons 𝐻 is a map from e-nodes to e-class ids.
std::unordered_map<L, Id, typename L::Hash> hashcons;
std::vector<Id> worklist;
private:
void canonicalize(L& enode)
{
// An e-node 𝑛 is canonical iff 𝑛 = canonicalize(𝑛), where
// canonicalize(𝑓(𝑎1, 𝑎2, ...)) = 𝑓(find(𝑎1), find(𝑎2), ...).
Luau::EqSat::canonicalize(
enode,
[&](Id id)
{
return find(id);
}
);
}
bool isCanonical(const L& enode) const
{
bool canonical = true;
for (Id id : enode.operands())
canonical &= (id == find(id));
return canonical;
}
Id makeEClass(const L& enode)
{
LUAU_ASSERT(isCanonical(enode));
Id id = unionfind.makeSet();
classes.insert_or_assign(
id,
EClassT{
id,
{Node<L>{enode, false}},
analysis.make(*this, enode),
{},
}
);
for (Id operand : enode.operands())
get(operand).parents.push_back({enode, id});
worklist.emplace_back(id);
hashcons.insert_or_assign(enode, id);
return id;
}
// Looks up for an eclass from a given non-canonicalized `id`.
// For a canonicalized eclass, use `get(find(id))` or `egraph[id]`.
EClassT& get(Id id)
{
LUAU_ASSERT(classes.count(id));
return classes.at(id);
}
void repair(Id id)
{
// In the egg paper, the `repair` function makes use of two loops over the `eclass.parents`
// by first erasing the old enode entry, and adding back the canonicalized enode with the canonical id.
// And then in another loop that follows, deduplicate it.
//
// Here, we unify the two loops. I think it's equivalent?
// After canonicalizing the enodes, the eclass may contain multiple enodes that are equivalent.
std::unordered_map<L, Id, typename L::Hash> newParents;
// The eclass can be deallocated if it is merged into another eclass, so
// we take what we need from it and avoid retaining a pointer.
std::vector<std::pair<L, Id>> parents = get(id).parents;
for (auto& pair : parents)
{
L& parentNode = pair.first;
Id parentId = pair.second;
// By removing the old enode from the hashcons map, we will always find our new canonicalized eclass id.
hashcons.erase(parentNode);
canonicalize(parentNode);
hashcons.insert_or_assign(parentNode, find(parentId));
if (auto it = newParents.find(parentNode); it != newParents.end())
merge(parentId, it->second);
newParents.insert_or_assign(parentNode, find(parentId));
}
// We reacquire the pointer because the prior loop potentially merges
// the eclass into another, which might move it around in memory.
EClassT* eclass = &get(find(id));
eclass->parents.clear();
for (const auto& [node, id] : newParents)
eclass->parents.emplace_back(std::move(node), std::move(id));
std::unordered_map<L, bool, typename L::Hash> newNodes;
for (Node<L> node : eclass->nodes)
{
canonicalize(node.node);
bool& b = newNodes[std::move(node.node)];
b = b || node.boring;
}
eclass->nodes.clear();
while (!newNodes.empty())
{
auto n = newNodes.extract(newNodes.begin());
eclass->nodes.push_back(Node<L>{n.key(), n.mapped()});
}
// FIXME: Extract into sortByTag()
std::sort(
eclass->nodes.begin(),
eclass->nodes.end(),
[](const Node<L>& left, const Node<L>& right)
{
return left.node.index() < right.node.index();
}
);
}
};
} // namespace Luau::EqSat