luau/VM/src/lmem.cpp
Arseny Kapoulkine 105f54b233
fix build & test conformance issues on mingw32/gcc and mingw64/clang (#1034)
CLI/Reduce.cpp:
Never worked under MinGW as-is. Add check for MinGW as they're defined.

VM/src/lmem.cpp:
MinGW layout follows more closely MSVC. Checks before were only correct
for 32-bit gcc / clang in non-Windows.

NOTES:
__MINGW32__ is defined on both 32-bit and 64-bit, __MINGW64__ is 64-bit
only. 32-bit MinGW compilers (both Clang & GCC) have a floating point
test error on math.noise, specifically math.lua:258. All other test
cases / unit tests pass modulo stack size issues (so requires optimized build).

---------

Co-authored-by: jdp_ <42700985+jdpatdiscord@users.noreply.github.com>
2023-09-05 10:22:35 -07:00

648 lines
22 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
// This code is based on Lua 5.x implementation licensed under MIT License; see lua_LICENSE.txt for details
#include "lmem.h"
#include "lstate.h"
#include "ldo.h"
#include "ldebug.h"
#include <string.h>
/*
* Luau heap uses a size-segregated page structure, with individual pages and large allocations
* allocated using system heap (via frealloc callback).
*
* frealloc callback serves as a general, if slow, allocation callback that can allocate, free or
* resize allocations:
*
* void* frealloc(void* ud, void* ptr, size_t oldsize, size_t newsize);
*
* frealloc(ud, NULL, 0, x) creates a new block of size x
* frealloc(ud, p, x, 0) frees the block p (must return NULL)
* frealloc(ud, NULL, 0, 0) does nothing, equivalent to free(NULL)
*
* frealloc returns NULL if it cannot create or reallocate the area
* (any reallocation to an equal or smaller size cannot fail!)
*
* On top of this, Luau implements heap storage which is split into two types of allocations:
*
* - GCO, short for "garbage collected objects"
* - other objects (for example, arrays stored inside table objects)
*
* The heap layout for these two allocation types is a bit different.
*
* All GCO are allocated in pages, which is a block of memory of ~16K in size that has a page header
* (lua_Page). Each page contains 1..N blocks of the same size, where N is selected to fill the page
* completely. This amortizes the allocation cost and increases locality. Each GCO block starts with
* the GC header (GCheader) which contains the object type, mark bits and other GC metadata. If the
* GCO block is free (not used), then it must have the type set to TNIL; in this case the block can
* be part of the per-page free list, the link for that list is stored after the header (freegcolink).
*
* Importantly, the GCO block doesn't have any back references to the page it's allocated in, so it's
* impossible to free it in isolation - GCO blocks are freed by sweeping the pages they belong to,
* using luaM_freegco which must specify the page; this is called by page sweeper that traverses the
* entire page's worth of objects. For this reason it's also important that freed GCO blocks keep the
* GC header intact and accessible (with type = NIL) so that the sweeper can access it.
*
* Some GCOs are too large to fit in a 16K page without excessive fragmentation (the size threshold is
* currently 512 bytes); in this case, we allocate a dedicated small page with just a single block's worth
* storage space, but that requires allocating an extra page header. In effect large GCOs are a little bit
* less memory efficient, but this allows us to uniformly sweep small and large GCOs using page lists.
*
* All GCO pages are linked in a large intrusive linked list (global_State::allgcopages). Additionally,
* for each block size there's a page free list that contains pages that have at least one free block
* (global_State::freegcopages). This free list is used to make sure object allocation is O(1).
*
* Compared to GCOs, regular allocations have two important differences: they can be freed in isolation,
* and they don't start with a GC header. Because of this, each allocation is prefixed with block metadata,
* which contains the pointer to the page for allocated blocks, and the pointer to the next free block
* inside the page for freed blocks.
* For regular allocations that are too large to fit in a page (using the same threshold of 512 bytes),
* we don't allocate a separate page, instead simply using frealloc to allocate a vanilla block of memory.
*
* Just like GCO pages, we store a page free list (global_State::freepages) that allows O(1) allocation;
* there is no global list for non-GCO pages since we never need to traverse them directly.
*
* In both cases, we pick the page by computing the size class from the block size which rounds the block
* size up to reduce the chance that we'll allocate pages that have very few allocated blocks. The size
* class strategy is determined by SizeClassConfig constructor.
*
* Note that when the last block in a page is freed, we immediately free the page with frealloc - the
* memory manager doesn't currently attempt to keep unused memory around. This can result in excessive
* allocation traffic and can be mitigated by adding a page cache in the future.
*
* For both GCO and non-GCO pages, the per-page block allocation combines bump pointer style allocation
* (lua_Page::freeNext) and per-page free list (lua_Page::freeList). We use the bump allocator to allocate
* the contents of the page, and the free list for further reuse; this allows shorter page setup times
* which results in less variance between allocation cost, as well as tighter sweep bounds for newly
* allocated pages.
*/
#ifndef __has_feature
#define __has_feature(x) 0
#endif
#if __has_feature(address_sanitizer) || defined(LUAU_ENABLE_ASAN)
#include <sanitizer/asan_interface.h>
#define ASAN_POISON_MEMORY_REGION(addr, size) __asan_poison_memory_region((addr), (size))
#define ASAN_UNPOISON_MEMORY_REGION(addr, size) __asan_unpoison_memory_region((addr), (size))
#else
#define ASAN_POISON_MEMORY_REGION(addr, size) (void)0
#define ASAN_UNPOISON_MEMORY_REGION(addr, size) (void)0
#endif
/*
* The sizes of Luau objects aren't crucial for code correctness, but they are crucial for memory efficiency
* To prevent some of them accidentally growing and us losing memory without realizing it, we're going to lock
* the sizes of all critical structures down.
*/
#if defined(__APPLE__)
#define ABISWITCH(x64, ms32, gcc32) (sizeof(void*) == 8 ? x64 : gcc32)
#elif defined(__i386__) && defined(__MINGW32__) && !defined(__MINGW64__)
#define ABISWITCH(x64, ms32, gcc32) (ms32)
#elif defined(__i386__) && !defined(_MSC_VER)
#define ABISWITCH(x64, ms32, gcc32) (gcc32)
#else
// Android somehow uses a similar ABI to MSVC, *not* to iOS...
#define ABISWITCH(x64, ms32, gcc32) (sizeof(void*) == 8 ? x64 : ms32)
#endif
#if LUA_VECTOR_SIZE == 4
static_assert(sizeof(TValue) == ABISWITCH(24, 24, 24), "size mismatch for value");
static_assert(sizeof(LuaNode) == ABISWITCH(48, 48, 48), "size mismatch for table entry");
#else
static_assert(sizeof(TValue) == ABISWITCH(16, 16, 16), "size mismatch for value");
static_assert(sizeof(LuaNode) == ABISWITCH(32, 32, 32), "size mismatch for table entry");
#endif
static_assert(offsetof(TString, data) == ABISWITCH(24, 20, 20), "size mismatch for string header");
static_assert(offsetof(Udata, data) == ABISWITCH(16, 16, 12), "size mismatch for userdata header");
static_assert(sizeof(Table) == ABISWITCH(48, 32, 32), "size mismatch for table header");
const size_t kSizeClasses = LUA_SIZECLASSES;
const size_t kMaxSmallSize = 512;
const size_t kPageSize = 16 * 1024 - 24; // slightly under 16KB since that results in less fragmentation due to heap metadata
const size_t kBlockHeader = sizeof(double) > sizeof(void*) ? sizeof(double) : sizeof(void*); // suitable for aligning double & void* on all platforms
const size_t kGCOLinkOffset = (sizeof(GCheader) + sizeof(void*) - 1) & ~(sizeof(void*) - 1); // GCO pages contain freelist links after the GC header
struct SizeClassConfig
{
int sizeOfClass[kSizeClasses];
int8_t classForSize[kMaxSmallSize + 1];
int classCount = 0;
SizeClassConfig()
{
memset(sizeOfClass, 0, sizeof(sizeOfClass));
memset(classForSize, -1, sizeof(classForSize));
// we use a progressive size class scheme:
// - all size classes are aligned by 8b to satisfy pointer alignment requirements
// - we first allocate sizes classes in multiples of 8
// - after the first cutoff we allocate size classes in multiples of 16
// - after the second cutoff we allocate size classes in multiples of 32
// this balances internal fragmentation vs external fragmentation
for (int size = 8; size < 64; size += 8)
sizeOfClass[classCount++] = size;
for (int size = 64; size < 256; size += 16)
sizeOfClass[classCount++] = size;
for (int size = 256; size <= 512; size += 32)
sizeOfClass[classCount++] = size;
LUAU_ASSERT(size_t(classCount) <= kSizeClasses);
// fill the lookup table for all classes
for (int klass = 0; klass < classCount; ++klass)
classForSize[sizeOfClass[klass]] = int8_t(klass);
// fill the gaps in lookup table
for (int size = kMaxSmallSize - 1; size >= 0; --size)
if (classForSize[size] < 0)
classForSize[size] = classForSize[size + 1];
}
};
const SizeClassConfig kSizeClassConfig;
// size class for a block of size sz; returns -1 for size=0 because empty allocations take no space
#define sizeclass(sz) (size_t((sz)-1) < kMaxSmallSize ? kSizeClassConfig.classForSize[sz] : -1)
// metadata for a block is stored in the first pointer of the block
#define metadata(block) (*(void**)(block))
#define freegcolink(block) (*(void**)((char*)block + kGCOLinkOffset))
struct lua_Page
{
// list of pages with free blocks
lua_Page* prev;
lua_Page* next;
// list of all gco pages
lua_Page* gcolistprev;
lua_Page* gcolistnext;
int pageSize; // page size in bytes, including page header
int blockSize; // block size in bytes, including block header (for non-GCO)
void* freeList; // next free block in this page; linked with metadata()/freegcolink()
int freeNext; // next free block offset in this page, in bytes; when negative, freeList is used instead
int busyBlocks; // number of blocks allocated out of this page
union
{
char data[1];
double align1;
void* align2;
};
};
l_noret luaM_toobig(lua_State* L)
{
luaG_runerror(L, "memory allocation error: block too big");
}
static lua_Page* newpage(lua_State* L, lua_Page** gcopageset, int pageSize, int blockSize, int blockCount)
{
global_State* g = L->global;
LUAU_ASSERT(pageSize - int(offsetof(lua_Page, data)) >= blockSize * blockCount);
lua_Page* page = (lua_Page*)(*g->frealloc)(g->ud, NULL, 0, pageSize);
if (!page)
luaD_throw(L, LUA_ERRMEM);
ASAN_POISON_MEMORY_REGION(page->data, blockSize * blockCount);
// setup page header
page->prev = NULL;
page->next = NULL;
page->gcolistprev = NULL;
page->gcolistnext = NULL;
page->pageSize = pageSize;
page->blockSize = blockSize;
// note: we start with the last block in the page and move downward
// either order would work, but that way we don't need to store the block count in the page
// additionally, GC stores objects in singly linked lists, and this way the GC lists end up in increasing pointer order
page->freeList = NULL;
page->freeNext = (blockCount - 1) * blockSize;
page->busyBlocks = 0;
if (gcopageset)
{
page->gcolistnext = *gcopageset;
if (page->gcolistnext)
page->gcolistnext->gcolistprev = page;
*gcopageset = page;
}
return page;
}
static lua_Page* newclasspage(lua_State* L, lua_Page** freepageset, lua_Page** gcopageset, uint8_t sizeClass, bool storeMetadata)
{
int blockSize = kSizeClassConfig.sizeOfClass[sizeClass] + (storeMetadata ? kBlockHeader : 0);
int blockCount = (kPageSize - offsetof(lua_Page, data)) / blockSize;
lua_Page* page = newpage(L, gcopageset, kPageSize, blockSize, blockCount);
// prepend a page to page freelist (which is empty because we only ever allocate a new page when it is!)
LUAU_ASSERT(!freepageset[sizeClass]);
freepageset[sizeClass] = page;
return page;
}
static void freepage(lua_State* L, lua_Page** gcopageset, lua_Page* page)
{
global_State* g = L->global;
if (gcopageset)
{
// remove page from alllist
if (page->gcolistnext)
page->gcolistnext->gcolistprev = page->gcolistprev;
if (page->gcolistprev)
page->gcolistprev->gcolistnext = page->gcolistnext;
else if (*gcopageset == page)
*gcopageset = page->gcolistnext;
}
// so long
(*g->frealloc)(g->ud, page, page->pageSize, 0);
}
static void freeclasspage(lua_State* L, lua_Page** freepageset, lua_Page** gcopageset, lua_Page* page, uint8_t sizeClass)
{
// remove page from freelist
if (page->next)
page->next->prev = page->prev;
if (page->prev)
page->prev->next = page->next;
else if (freepageset[sizeClass] == page)
freepageset[sizeClass] = page->next;
freepage(L, gcopageset, page);
}
static void* newblock(lua_State* L, int sizeClass)
{
global_State* g = L->global;
lua_Page* page = g->freepages[sizeClass];
// slow path: no page in the freelist, allocate a new one
if (!page)
page = newclasspage(L, g->freepages, NULL, sizeClass, true);
LUAU_ASSERT(!page->prev);
LUAU_ASSERT(page->freeList || page->freeNext >= 0);
LUAU_ASSERT(size_t(page->blockSize) == kSizeClassConfig.sizeOfClass[sizeClass] + kBlockHeader);
void* block;
if (page->freeNext >= 0)
{
block = &page->data + page->freeNext;
ASAN_UNPOISON_MEMORY_REGION(block, page->blockSize);
page->freeNext -= page->blockSize;
page->busyBlocks++;
}
else
{
block = page->freeList;
ASAN_UNPOISON_MEMORY_REGION(block, page->blockSize);
page->freeList = metadata(block);
page->busyBlocks++;
}
// the first word in a block point back to the page
metadata(block) = page;
// if we allocate the last block out of a page, we need to remove it from free list
if (!page->freeList && page->freeNext < 0)
{
g->freepages[sizeClass] = page->next;
if (page->next)
page->next->prev = NULL;
page->next = NULL;
}
// the user data is right after the metadata
return (char*)block + kBlockHeader;
}
static void* newgcoblock(lua_State* L, int sizeClass)
{
global_State* g = L->global;
lua_Page* page = g->freegcopages[sizeClass];
// slow path: no page in the freelist, allocate a new one
if (!page)
page = newclasspage(L, g->freegcopages, &g->allgcopages, sizeClass, false);
LUAU_ASSERT(!page->prev);
LUAU_ASSERT(page->freeList || page->freeNext >= 0);
LUAU_ASSERT(page->blockSize == kSizeClassConfig.sizeOfClass[sizeClass]);
void* block;
if (page->freeNext >= 0)
{
block = &page->data + page->freeNext;
ASAN_UNPOISON_MEMORY_REGION(block, page->blockSize);
page->freeNext -= page->blockSize;
page->busyBlocks++;
}
else
{
block = page->freeList;
ASAN_UNPOISON_MEMORY_REGION((char*)block + sizeof(GCheader), page->blockSize - sizeof(GCheader));
// when separate block metadata is not used, free list link is stored inside the block data itself
page->freeList = freegcolink(block);
page->busyBlocks++;
}
// if we allocate the last block out of a page, we need to remove it from free list
if (!page->freeList && page->freeNext < 0)
{
g->freegcopages[sizeClass] = page->next;
if (page->next)
page->next->prev = NULL;
page->next = NULL;
}
return block;
}
static void freeblock(lua_State* L, int sizeClass, void* block)
{
global_State* g = L->global;
// the user data is right after the metadata
LUAU_ASSERT(block);
block = (char*)block - kBlockHeader;
lua_Page* page = (lua_Page*)metadata(block);
LUAU_ASSERT(page && page->busyBlocks > 0);
LUAU_ASSERT(size_t(page->blockSize) == kSizeClassConfig.sizeOfClass[sizeClass] + kBlockHeader);
LUAU_ASSERT(block >= page->data && block < (char*)page + page->pageSize);
// if the page wasn't in the page free list, it should be now since it got a block!
if (!page->freeList && page->freeNext < 0)
{
LUAU_ASSERT(!page->prev);
LUAU_ASSERT(!page->next);
page->next = g->freepages[sizeClass];
if (page->next)
page->next->prev = page;
g->freepages[sizeClass] = page;
}
// add the block to the free list inside the page
metadata(block) = page->freeList;
page->freeList = block;
ASAN_POISON_MEMORY_REGION(block, page->blockSize);
page->busyBlocks--;
// if it's the last block in the page, we don't need the page
if (page->busyBlocks == 0)
freeclasspage(L, g->freepages, NULL, page, sizeClass);
}
static void freegcoblock(lua_State* L, int sizeClass, void* block, lua_Page* page)
{
LUAU_ASSERT(page && page->busyBlocks > 0);
LUAU_ASSERT(page->blockSize == kSizeClassConfig.sizeOfClass[sizeClass]);
LUAU_ASSERT(block >= page->data && block < (char*)page + page->pageSize);
global_State* g = L->global;
// if the page wasn't in the page free list, it should be now since it got a block!
if (!page->freeList && page->freeNext < 0)
{
LUAU_ASSERT(!page->prev);
LUAU_ASSERT(!page->next);
page->next = g->freegcopages[sizeClass];
if (page->next)
page->next->prev = page;
g->freegcopages[sizeClass] = page;
}
// when separate block metadata is not used, free list link is stored inside the block data itself
freegcolink(block) = page->freeList;
page->freeList = block;
ASAN_POISON_MEMORY_REGION((char*)block + sizeof(GCheader), page->blockSize - sizeof(GCheader));
page->busyBlocks--;
// if it's the last block in the page, we don't need the page
if (page->busyBlocks == 0)
freeclasspage(L, g->freegcopages, &g->allgcopages, page, sizeClass);
}
void* luaM_new_(lua_State* L, size_t nsize, uint8_t memcat)
{
global_State* g = L->global;
int nclass = sizeclass(nsize);
void* block = nclass >= 0 ? newblock(L, nclass) : (*g->frealloc)(g->ud, NULL, 0, nsize);
if (block == NULL && nsize > 0)
luaD_throw(L, LUA_ERRMEM);
g->totalbytes += nsize;
g->memcatbytes[memcat] += nsize;
return block;
}
GCObject* luaM_newgco_(lua_State* L, size_t nsize, uint8_t memcat)
{
// we need to accommodate space for link for free blocks (freegcolink)
LUAU_ASSERT(nsize >= kGCOLinkOffset + sizeof(void*));
global_State* g = L->global;
int nclass = sizeclass(nsize);
void* block = NULL;
if (nclass >= 0)
{
block = newgcoblock(L, nclass);
}
else
{
lua_Page* page = newpage(L, &g->allgcopages, offsetof(lua_Page, data) + int(nsize), int(nsize), 1);
block = &page->data;
ASAN_UNPOISON_MEMORY_REGION(block, page->blockSize);
page->freeNext -= page->blockSize;
page->busyBlocks++;
}
if (block == NULL && nsize > 0)
luaD_throw(L, LUA_ERRMEM);
g->totalbytes += nsize;
g->memcatbytes[memcat] += nsize;
return (GCObject*)block;
}
void luaM_free_(lua_State* L, void* block, size_t osize, uint8_t memcat)
{
global_State* g = L->global;
LUAU_ASSERT((osize == 0) == (block == NULL));
int oclass = sizeclass(osize);
if (oclass >= 0)
freeblock(L, oclass, block);
else
(*g->frealloc)(g->ud, block, osize, 0);
g->totalbytes -= osize;
g->memcatbytes[memcat] -= osize;
}
void luaM_freegco_(lua_State* L, GCObject* block, size_t osize, uint8_t memcat, lua_Page* page)
{
global_State* g = L->global;
LUAU_ASSERT((osize == 0) == (block == NULL));
int oclass = sizeclass(osize);
if (oclass >= 0)
{
block->gch.tt = LUA_TNIL;
freegcoblock(L, oclass, block, page);
}
else
{
LUAU_ASSERT(page->busyBlocks == 1);
LUAU_ASSERT(size_t(page->blockSize) == osize);
LUAU_ASSERT((void*)block == page->data);
freepage(L, &g->allgcopages, page);
}
g->totalbytes -= osize;
g->memcatbytes[memcat] -= osize;
}
void* luaM_realloc_(lua_State* L, void* block, size_t osize, size_t nsize, uint8_t memcat)
{
global_State* g = L->global;
LUAU_ASSERT((osize == 0) == (block == NULL));
int nclass = sizeclass(nsize);
int oclass = sizeclass(osize);
void* result;
// if either block needs to be allocated using a block allocator, we can't use realloc directly
if (nclass >= 0 || oclass >= 0)
{
result = nclass >= 0 ? newblock(L, nclass) : (*g->frealloc)(g->ud, NULL, 0, nsize);
if (result == NULL && nsize > 0)
luaD_throw(L, LUA_ERRMEM);
if (osize > 0 && nsize > 0)
memcpy(result, block, osize < nsize ? osize : nsize);
if (oclass >= 0)
freeblock(L, oclass, block);
else
(*g->frealloc)(g->ud, block, osize, 0);
}
else
{
result = (*g->frealloc)(g->ud, block, osize, nsize);
if (result == NULL && nsize > 0)
luaD_throw(L, LUA_ERRMEM);
}
LUAU_ASSERT((nsize == 0) == (result == NULL));
g->totalbytes = (g->totalbytes - osize) + nsize;
g->memcatbytes[memcat] += nsize - osize;
return result;
}
void luaM_getpagewalkinfo(lua_Page* page, char** start, char** end, int* busyBlocks, int* blockSize)
{
int blockCount = (page->pageSize - offsetof(lua_Page, data)) / page->blockSize;
LUAU_ASSERT(page->freeNext >= -page->blockSize && page->freeNext <= (blockCount - 1) * page->blockSize);
char* data = page->data; // silences ubsan when indexing page->data
*start = data + page->freeNext + page->blockSize;
*end = data + blockCount * page->blockSize;
*busyBlocks = page->busyBlocks;
*blockSize = page->blockSize;
}
lua_Page* luaM_getnextgcopage(lua_Page* page)
{
return page->gcolistnext;
}
void luaM_visitpage(lua_Page* page, void* context, bool (*visitor)(void* context, lua_Page* page, GCObject* gco))
{
char* start;
char* end;
int busyBlocks;
int blockSize;
luaM_getpagewalkinfo(page, &start, &end, &busyBlocks, &blockSize);
for (char* pos = start; pos != end; pos += blockSize)
{
GCObject* gco = (GCObject*)pos;
// skip memory blocks that are already freed
if (gco->gch.tt == LUA_TNIL)
continue;
// when true is returned it means that the element was deleted
if (visitor(context, page, gco))
{
LUAU_ASSERT(busyBlocks > 0);
// if the last block was removed, page would be removed as well
if (--busyBlocks == 0)
break;
}
}
}
void luaM_visitgco(lua_State* L, void* context, bool (*visitor)(void* context, lua_Page* page, GCObject* gco))
{
global_State* g = L->global;
for (lua_Page* curr = g->allgcopages; curr;)
{
lua_Page* next = curr->gcolistnext; // block visit might destroy the page
luaM_visitpage(curr, context, visitor);
curr = next;
}
}