luau/Analysis/src/BuiltinTypeFunctions.cpp
Varun Saini 0ce993fe6c
Sync to upstream/release/683 (#1921)
Another week, another release!

## Analysis
- Hide errors in all solver modes (not just strict mode) if the only
error is that type inference failed to complete.
- Make various analysis components solver-agnostic (`setType`, `visit`,
`Scope` methods).
- Fix an issue where type inference may fail to complete when assigning
a table's member to the table itself.
- Fix a bug when accessing a table member on a local after the local is
assigned to in an if-else block, loop, or other similar language
construct.
  - Fixes #1914.
- Fix type-checking of if-then-else expressions.
  - Fixes #1815.

---

Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2025-07-18 13:46:08 -07:00

2827 lines
106 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/BuiltinTypeFunctions.h"
#include "Luau/Common.h"
#include "Luau/ConstraintSolver.h"
#include "Luau/Instantiation.h"
#include "Luau/OverloadResolution.h"
#include "Luau/Scope.h"
#include "Luau/Simplify.h"
#include "Luau/Subtyping.h"
#include "Luau/Type.h"
#include "Luau/TypeArena.h"
#include "Luau/TypeFunctionRuntimeBuilder.h"
#include "Luau/TypeUtils.h"
#include "Luau/Unifier2.h"
#include "Luau/UserDefinedTypeFunction.h"
#include "Luau/VisitType.h"
LUAU_FASTFLAG(LuauNotAllBinaryTypeFunsHaveDefaults)
LUAU_FASTFLAG(LuauEmptyStringInKeyOf)
LUAU_FASTFLAG(LuauRemoveTypeCallsForReadWriteProps)
LUAU_FASTFLAG(LuauUpdateGetMetatableTypeSignature)
LUAU_FASTFLAG(LuauRefineTablesWithReadType)
LUAU_FASTFLAG(LuauAvoidExcessiveTypeCopying)
LUAU_FASTFLAG(LuauOccursCheckForRefinement)
LUAU_FASTFLAG(LuauEagerGeneralization4)
LUAU_FASTFLAG(DebugLuauEqSatSimplification)
LUAU_FASTFLAG(LuauStuckTypeFunctionsStillDispatch)
LUAU_DYNAMIC_FASTINT(LuauTypeFamilyApplicationCartesianProductLimit)
LUAU_FASTFLAGVARIABLE(LuauRefineNoRefineAlways)
namespace Luau
{
namespace
{
template<typename F, typename... Args>
std::optional<TypeFunctionReductionResult<TypeId>> tryDistributeTypeFunctionApp(
F f,
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx,
Args&&... args
)
{
// op (a | b) (c | d) ~ (op a (c | d)) | (op b (c | d)) ~ (op a c) | (op a d) | (op b c) | (op b d)
Reduction reductionStatus = Reduction::MaybeOk;
std::vector<TypeId> blockedTypes;
std::vector<TypeId> results;
size_t cartesianProductSize = 1;
const UnionType* firstUnion = nullptr;
size_t unionIndex = 0;
std::vector<TypeId> arguments = typeParams;
for (size_t i = 0; i < arguments.size(); ++i)
{
const UnionType* ut = get<UnionType>(follow(arguments[i]));
if (!ut)
continue;
// We want to find the first union type in the set of arguments to distribute that one and only that one union.
// The function `f` we have is recursive, so `arguments[unionIndex]` will be updated in-place for each option in
// the union we've found in this context, so that index will no longer be a union type. Any other arguments at
// index + 1 or after will instead be distributed, if those are a union, which will be subjected to the same rules.
if (!firstUnion && ut)
{
firstUnion = ut;
unionIndex = i;
}
cartesianProductSize *= std::distance(begin(ut), end(ut));
// TODO: We'd like to report that the type function application is too complex here.
if (size_t(DFInt::LuauTypeFamilyApplicationCartesianProductLimit) <= cartesianProductSize)
return {{std::nullopt, Reduction::Erroneous, {}, {}}};
}
if (!firstUnion)
{
// If we couldn't find any union type argument, we're not distributing.
return std::nullopt;
}
for (TypeId option : firstUnion)
{
arguments[unionIndex] = option;
TypeFunctionReductionResult<TypeId> result = f(instance, arguments, packParams, ctx, args...); // NOLINT
blockedTypes.insert(blockedTypes.end(), result.blockedTypes.begin(), result.blockedTypes.end());
if (result.reductionStatus != Reduction::MaybeOk)
reductionStatus = result.reductionStatus;
if (reductionStatus != Reduction::MaybeOk || !result.result)
break;
else
results.push_back(*result.result);
}
if (reductionStatus != Reduction::MaybeOk || !blockedTypes.empty())
return {{std::nullopt, reductionStatus, std::move(blockedTypes), {}}};
if (!results.empty())
{
if (results.size() == 1)
return {{results[0], Reduction::MaybeOk, {}, {}}};
TypeId resultTy = ctx->arena->addType(TypeFunctionInstanceType{
NotNull{&builtinTypeFunctions().unionFunc},
std::move(results),
{},
});
if (ctx->solver)
ctx->pushConstraint(ReduceConstraint{resultTy});
return {{resultTy, Reduction::MaybeOk, {}, {}}};
}
return std::nullopt;
}
}
TypeFunctionReductionResult<TypeId> notTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("not type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId ty = follow(typeParams.at(0));
if (ty == instance)
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
if (isPending(ty, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {ty}, {}};
if (auto result = tryDistributeTypeFunctionApp(notTypeFunction, instance, typeParams, packParams, ctx))
return *result;
// `not` operates on anything and returns a `boolean` always.
return {ctx->builtins->booleanType, Reduction::MaybeOk, {}, {}};
}
TypeFunctionReductionResult<TypeId> lenTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("len type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId operandTy = follow(typeParams.at(0));
if (operandTy == instance)
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
// check to see if the operand type is resolved enough, and wait to reduce if not
// the use of `typeFromNormal` later necessitates blocking on local types.
if (isPending(operandTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {operandTy}, {}};
std::shared_ptr<const NormalizedType> normTy = ctx->normalizer->normalize(operandTy);
NormalizationResult inhabited = ctx->normalizer->isInhabited(normTy.get());
// if the type failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normTy || inhabited == NormalizationResult::HitLimits)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
// if the operand type is error suppressing, we can immediately reduce to `number`.
if (normTy->shouldSuppressErrors())
return {ctx->builtins->numberType, Reduction::MaybeOk, {}, {}};
// # always returns a number, even if its operand is never.
// if we're checking the length of a string, that works!
if (inhabited == NormalizationResult::False || normTy->isSubtypeOfString())
return {ctx->builtins->numberType, Reduction::MaybeOk, {}, {}};
// we use the normalized operand here in case there was an intersection or union.
TypeId normalizedOperand = follow(ctx->normalizer->typeFromNormal(*normTy));
if (normTy->hasTopTable() || get<TableType>(normalizedOperand))
return {ctx->builtins->numberType, Reduction::MaybeOk, {}, {}};
if (auto result = tryDistributeTypeFunctionApp(lenTypeFunction, instance, typeParams, packParams, ctx))
return *result;
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, operandTy, "__len", Location{});
if (!mmType)
{
// If we have a metatable type with no __len, this means we still have a table with default length function
if (get<MetatableType>(normalizedOperand))
return {ctx->builtins->numberType, Reduction::MaybeOk, {}, {}};
return {std::nullopt, Reduction::Erroneous, {}, {}};
}
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {*mmType}, {}};
const FunctionType* mmFtv = get<FunctionType>(*mmType);
if (!mmFtv)
return {std::nullopt, Reduction::Erroneous, {}, {}};
std::optional<TypeId> instantiatedMmType = instantiate(ctx->builtins, ctx->arena, ctx->limits, ctx->scope, *mmType);
if (!instantiatedMmType)
return {std::nullopt, Reduction::Erroneous, {}, {}};
const FunctionType* instantiatedMmFtv = get<FunctionType>(*instantiatedMmType);
if (!instantiatedMmFtv)
return {ctx->builtins->errorType, Reduction::MaybeOk, {}, {}};
TypePackId inferredArgPack = ctx->arena->addTypePack({operandTy});
Unifier2 u2{ctx->arena, ctx->builtins, ctx->scope, ctx->ice};
if (!u2.unify(inferredArgPack, instantiatedMmFtv->argTypes))
return {std::nullopt, Reduction::Erroneous, {}, {}}; // occurs check failed
Subtyping subtyping{ctx->builtins, ctx->arena, ctx->simplifier, ctx->normalizer, ctx->typeFunctionRuntime, ctx->ice};
if (!subtyping.isSubtype(inferredArgPack, instantiatedMmFtv->argTypes, ctx->scope).isSubtype) // TODO: is this the right variance?
return {std::nullopt, Reduction::Erroneous, {}, {}};
// `len` must return a `number`.
return {ctx->builtins->numberType, Reduction::MaybeOk, {}, {}};
}
TypeFunctionReductionResult<TypeId> unmTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("unm type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId operandTy = follow(typeParams.at(0));
if (operandTy == instance)
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
// check to see if the operand type is resolved enough, and wait to reduce if not
if (isPending(operandTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {operandTy}, {}};
if (FFlag::LuauEagerGeneralization4)
operandTy = follow(operandTy);
std::shared_ptr<const NormalizedType> normTy = ctx->normalizer->normalize(operandTy);
// if the operand failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normTy)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
// if the operand is error suppressing, we can just go ahead and reduce.
if (normTy->shouldSuppressErrors())
return {operandTy, Reduction::MaybeOk, {}, {}};
// if we have a `never`, we can never observe that the operation didn't work.
if (is<NeverType>(operandTy))
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
// If the type is exactly `number`, we can reduce now.
if (normTy->isExactlyNumber())
return {ctx->builtins->numberType, Reduction::MaybeOk, {}, {}};
if (auto result = tryDistributeTypeFunctionApp(unmTypeFunction, instance, typeParams, packParams, ctx))
return *result;
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, operandTy, "__unm", Location{});
if (!mmType)
return {std::nullopt, Reduction::Erroneous, {}, {}};
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {*mmType}, {}};
const FunctionType* mmFtv = get<FunctionType>(*mmType);
if (!mmFtv)
return {std::nullopt, Reduction::Erroneous, {}, {}};
std::optional<TypeId> instantiatedMmType = instantiate(ctx->builtins, ctx->arena, ctx->limits, ctx->scope, *mmType);
if (!instantiatedMmType)
return {std::nullopt, Reduction::Erroneous, {}, {}};
const FunctionType* instantiatedMmFtv = get<FunctionType>(*instantiatedMmType);
if (!instantiatedMmFtv)
return {ctx->builtins->errorType, Reduction::MaybeOk, {}, {}};
TypePackId inferredArgPack = ctx->arena->addTypePack({operandTy});
Unifier2 u2{ctx->arena, ctx->builtins, ctx->scope, ctx->ice};
if (!u2.unify(inferredArgPack, instantiatedMmFtv->argTypes))
return {std::nullopt, Reduction::Erroneous, {}, {}}; // occurs check failed
Subtyping subtyping{ctx->builtins, ctx->arena, ctx->simplifier, ctx->normalizer, ctx->typeFunctionRuntime, ctx->ice};
if (!subtyping.isSubtype(inferredArgPack, instantiatedMmFtv->argTypes, ctx->scope).isSubtype) // TODO: is this the right variance?
return {std::nullopt, Reduction::Erroneous, {}, {}};
if (std::optional<TypeId> ret = first(instantiatedMmFtv->retTypes))
return {ret, Reduction::MaybeOk, {}, {}};
else
return {std::nullopt, Reduction::Erroneous, {}, {}};
}
TypeFunctionContext::TypeFunctionContext(NotNull<ConstraintSolver> cs, NotNull<Scope> scope, NotNull<const Constraint> constraint)
: arena(cs->arena)
, builtins(cs->builtinTypes)
, scope(scope)
, simplifier(cs->simplifier)
, normalizer(cs->normalizer)
, typeFunctionRuntime(cs->typeFunctionRuntime)
, ice(NotNull{&cs->iceReporter})
, limits(NotNull{&cs->limits})
, solver(cs.get())
, constraint(constraint.get())
{
}
NotNull<Constraint> TypeFunctionContext::pushConstraint(ConstraintV&& c) const
{
LUAU_ASSERT(solver);
NotNull<Constraint> newConstraint = solver->pushConstraint(scope, constraint ? constraint->location : Location{}, std::move(c));
// Every constraint that is blocked on the current constraint must also be
// blocked on this new one.
if (constraint)
solver->inheritBlocks(NotNull{constraint}, newConstraint);
return newConstraint;
}
TypeFunctionReductionResult<TypeId> numericBinopTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx,
const std::string metamethod
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
// isPending of `lhsTy` or `rhsTy` would return true, even if it cycles. We want a different answer for that.
if (lhsTy == instance || rhsTy == instance)
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
// if we have a `never`, we can never observe that the math operator is unreachable.
if (is<NeverType>(lhsTy) || is<NeverType>(rhsTy))
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
const Location location = ctx->constraint ? ctx->constraint->location : Location{};
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {rhsTy}, {}};
// TODO: Normalization needs to remove cyclic type functions from a `NormalizedType`.
std::shared_ptr<const NormalizedType> normLhsTy = ctx->normalizer->normalize(lhsTy);
std::shared_ptr<const NormalizedType> normRhsTy = ctx->normalizer->normalize(rhsTy);
// if either failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normLhsTy || !normRhsTy)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
// if one of the types is error suppressing, we can reduce to `any` since we should suppress errors in the result of the usage.
if (normLhsTy->shouldSuppressErrors() || normRhsTy->shouldSuppressErrors())
return {ctx->builtins->anyType, Reduction::MaybeOk, {}, {}};
// if we're adding two `number` types, the result is `number`.
if (normLhsTy->isExactlyNumber() && normRhsTy->isExactlyNumber())
return {ctx->builtins->numberType, Reduction::MaybeOk, {}, {}};
if (auto result = tryDistributeTypeFunctionApp(numericBinopTypeFunction, instance, typeParams, packParams, ctx, metamethod))
return *result;
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, lhsTy, metamethod, location);
bool reversed = false;
if (!mmType)
{
mmType = findMetatableEntry(ctx->builtins, dummy, rhsTy, metamethod, location);
reversed = true;
}
if (!mmType)
return {std::nullopt, Reduction::Erroneous, {}, {}};
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {*mmType}, {}};
TypePackId argPack = ctx->arena->addTypePack({lhsTy, rhsTy});
SolveResult solveResult;
if (!reversed)
solveResult = solveFunctionCall(
ctx->arena,
ctx->builtins,
ctx->simplifier,
ctx->normalizer,
ctx->typeFunctionRuntime,
ctx->ice,
ctx->limits,
ctx->scope,
location,
*mmType,
argPack
);
else
{
TypePack* p = getMutable<TypePack>(argPack);
std::swap(p->head.front(), p->head.back());
solveResult = solveFunctionCall(
ctx->arena,
ctx->builtins,
ctx->simplifier,
ctx->normalizer,
ctx->typeFunctionRuntime,
ctx->ice,
ctx->limits,
ctx->scope,
location,
*mmType,
argPack
);
}
if (!solveResult.typePackId.has_value())
return {std::nullopt, Reduction::Erroneous, {}, {}};
TypePack extracted = extendTypePack(*ctx->arena, ctx->builtins, *solveResult.typePackId, 1);
if (extracted.head.empty())
return {std::nullopt, Reduction::Erroneous, {}, {}};
return {extracted.head.front(), Reduction::MaybeOk, {}, {}};
}
TypeFunctionReductionResult<TypeId> addTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("add type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopTypeFunction(instance, typeParams, packParams, ctx, "__add");
}
TypeFunctionReductionResult<TypeId> subTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("sub type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopTypeFunction(instance, typeParams, packParams, ctx, "__sub");
}
TypeFunctionReductionResult<TypeId> mulTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("mul type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopTypeFunction(instance, typeParams, packParams, ctx, "__mul");
}
TypeFunctionReductionResult<TypeId> divTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("div type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopTypeFunction(instance, typeParams, packParams, ctx, "__div");
}
TypeFunctionReductionResult<TypeId> idivTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("integer div type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopTypeFunction(instance, typeParams, packParams, ctx, "__idiv");
}
TypeFunctionReductionResult<TypeId> powTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("pow type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopTypeFunction(instance, typeParams, packParams, ctx, "__pow");
}
TypeFunctionReductionResult<TypeId> modTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("modulo type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopTypeFunction(instance, typeParams, packParams, ctx, "__mod");
}
TypeFunctionReductionResult<TypeId> concatTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("concat type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
// isPending of `lhsTy` or `rhsTy` would return true, even if it cycles. We want a different answer for that.
if (lhsTy == instance || rhsTy == instance)
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {rhsTy}, {}};
std::shared_ptr<const NormalizedType> normLhsTy = ctx->normalizer->normalize(lhsTy);
std::shared_ptr<const NormalizedType> normRhsTy = ctx->normalizer->normalize(rhsTy);
// if either failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normLhsTy || !normRhsTy)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
// if one of the types is error suppressing, we can reduce to `any` since we should suppress errors in the result of the usage.
if (normLhsTy->shouldSuppressErrors() || normRhsTy->shouldSuppressErrors())
return {ctx->builtins->anyType, Reduction::MaybeOk, {}, {}};
// if we have a `never`, we can never observe that the operator didn't work.
if (is<NeverType>(lhsTy) || is<NeverType>(rhsTy))
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
// if we're concatenating two elements that are either strings or numbers, the result is `string`.
if ((normLhsTy->isSubtypeOfString() || normLhsTy->isExactlyNumber()) && (normRhsTy->isSubtypeOfString() || normRhsTy->isExactlyNumber()))
return {ctx->builtins->stringType, Reduction::MaybeOk, {}, {}};
if (auto result = tryDistributeTypeFunctionApp(concatTypeFunction, instance, typeParams, packParams, ctx))
return *result;
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, lhsTy, "__concat", Location{});
bool reversed = false;
if (!mmType)
{
mmType = findMetatableEntry(ctx->builtins, dummy, rhsTy, "__concat", Location{});
reversed = true;
}
if (!mmType)
return {std::nullopt, Reduction::Erroneous, {}, {}};
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {*mmType}, {}};
const FunctionType* mmFtv = get<FunctionType>(*mmType);
if (!mmFtv)
return {std::nullopt, Reduction::Erroneous, {}, {}};
std::optional<TypeId> instantiatedMmType = instantiate(ctx->builtins, ctx->arena, ctx->limits, ctx->scope, *mmType);
if (!instantiatedMmType)
return {std::nullopt, Reduction::Erroneous, {}, {}};
const FunctionType* instantiatedMmFtv = get<FunctionType>(*instantiatedMmType);
if (!instantiatedMmFtv)
return {ctx->builtins->errorType, Reduction::MaybeOk, {}, {}};
std::vector<TypeId> inferredArgs;
if (!reversed)
inferredArgs = {lhsTy, rhsTy};
else
inferredArgs = {rhsTy, lhsTy};
TypePackId inferredArgPack = ctx->arena->addTypePack(std::move(inferredArgs));
Unifier2 u2{ctx->arena, ctx->builtins, ctx->scope, ctx->ice};
if (!u2.unify(inferredArgPack, instantiatedMmFtv->argTypes))
return {std::nullopt, Reduction::Erroneous, {}, {}}; // occurs check failed
Subtyping subtyping{ctx->builtins, ctx->arena, ctx->simplifier, ctx->normalizer, ctx->typeFunctionRuntime, ctx->ice};
if (!subtyping.isSubtype(inferredArgPack, instantiatedMmFtv->argTypes, ctx->scope).isSubtype) // TODO: is this the right variance?
return {std::nullopt, Reduction::Erroneous, {}, {}};
return {ctx->builtins->stringType, Reduction::MaybeOk, {}, {}};
}
TypeFunctionReductionResult<TypeId> andTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("and type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
// t1 = and<lhs, t1> ~> lhs
if (follow(rhsTy) == instance && lhsTy != rhsTy)
return {lhsTy, Reduction::MaybeOk, {}, {}};
// t1 = and<t1, rhs> ~> rhs
if (follow(lhsTy) == instance && lhsTy != rhsTy)
return {rhsTy, Reduction::MaybeOk, {}, {}};
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {rhsTy}, {}};
// And evalutes to a boolean if the LHS is falsey, and the RHS type if LHS is truthy.
SimplifyResult filteredLhs = simplifyIntersection(ctx->builtins, ctx->arena, lhsTy, ctx->builtins->falsyType);
SimplifyResult overallResult = simplifyUnion(ctx->builtins, ctx->arena, rhsTy, filteredLhs.result);
std::vector<TypeId> blockedTypes{};
for (auto ty : filteredLhs.blockedTypes)
blockedTypes.push_back(ty);
for (auto ty : overallResult.blockedTypes)
blockedTypes.push_back(ty);
return {overallResult.result, Reduction::MaybeOk, std::move(blockedTypes), {}};
}
TypeFunctionReductionResult<TypeId> orTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("or type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
// t1 = or<lhs, t1> ~> lhs
if (follow(rhsTy) == instance && lhsTy != rhsTy)
return {lhsTy, Reduction::MaybeOk, {}, {}};
// t1 = or<t1, rhs> ~> rhs
if (follow(lhsTy) == instance && lhsTy != rhsTy)
return {rhsTy, Reduction::MaybeOk, {}, {}};
// check to see if both operand types are resolved enough, and wait to reduce if not
if (FFlag::LuauEagerGeneralization4)
{
if (is<BlockedType, PendingExpansionType, TypeFunctionInstanceType>(lhsTy))
return {std::nullopt, Reduction::MaybeOk, {lhsTy}, {}};
else if (is<BlockedType, PendingExpansionType, TypeFunctionInstanceType>(rhsTy))
return {std::nullopt, Reduction::MaybeOk, {rhsTy}, {}};
}
else
{
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {rhsTy}, {}};
}
// Or evalutes to the LHS type if the LHS is truthy, and the RHS type if LHS is falsy.
SimplifyResult filteredLhs = simplifyIntersection(ctx->builtins, ctx->arena, lhsTy, ctx->builtins->truthyType);
SimplifyResult overallResult = simplifyUnion(ctx->builtins, ctx->arena, rhsTy, filteredLhs.result);
std::vector<TypeId> blockedTypes{};
for (auto ty : filteredLhs.blockedTypes)
blockedTypes.push_back(ty);
for (auto ty : overallResult.blockedTypes)
blockedTypes.push_back(ty);
return {overallResult.result, Reduction::MaybeOk, std::move(blockedTypes), {}};
}
static TypeFunctionReductionResult<TypeId> comparisonTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx,
const std::string metamethod
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
if (lhsTy == instance || rhsTy == instance)
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
if (FFlag::LuauEagerGeneralization4)
{
if (is<BlockedType, PendingExpansionType, TypeFunctionInstanceType>(lhsTy))
return {std::nullopt, Reduction::MaybeOk, {lhsTy}, {}};
else if (is<BlockedType, PendingExpansionType, TypeFunctionInstanceType>(rhsTy))
return {std::nullopt, Reduction::MaybeOk, {rhsTy}, {}};
}
else
{
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {rhsTy}, {}};
}
// Algebra Reduction Rules for comparison type functions
// Note that comparing to never tells you nothing about the other operand
// lt< 'a , never> -> continue
// lt< never, 'a> -> continue
// lt< 'a, t> -> 'a is t - we'll solve the constraint, return and solve lt<t, t> -> bool
// lt< t, 'a> -> same as above
bool canSubmitConstraint = ctx->solver && ctx->constraint;
bool lhsFree = get<FreeType>(lhsTy) != nullptr;
bool rhsFree = get<FreeType>(rhsTy) != nullptr;
if (canSubmitConstraint)
{
// Implement injective type functions for comparison type functions
// lt <number, t> implies t is number
// lt <t, number> implies t is number
if (lhsFree && isNumber(rhsTy))
emplaceType<BoundType>(asMutable(lhsTy), ctx->builtins->numberType);
else if (rhsFree && isNumber(lhsTy))
emplaceType<BoundType>(asMutable(rhsTy), ctx->builtins->numberType);
}
// The above might have caused the operand types to be rebound, we need to follow them again
lhsTy = follow(lhsTy);
rhsTy = follow(rhsTy);
// check to see if both operand types are resolved enough, and wait to reduce if not
std::shared_ptr<const NormalizedType> normLhsTy = ctx->normalizer->normalize(lhsTy);
std::shared_ptr<const NormalizedType> normRhsTy = ctx->normalizer->normalize(rhsTy);
NormalizationResult lhsInhabited = ctx->normalizer->isInhabited(normLhsTy.get());
NormalizationResult rhsInhabited = ctx->normalizer->isInhabited(normRhsTy.get());
// if either failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normLhsTy || !normRhsTy || lhsInhabited == NormalizationResult::HitLimits || rhsInhabited == NormalizationResult::HitLimits)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
// if one of the types is error suppressing, we can just go ahead and reduce.
if (normLhsTy->shouldSuppressErrors() || normRhsTy->shouldSuppressErrors())
return {ctx->builtins->booleanType, Reduction::MaybeOk, {}, {}};
// if we have an uninhabited type (e.g. `never`), we can never observe that the comparison didn't work.
if (lhsInhabited == NormalizationResult::False || rhsInhabited == NormalizationResult::False)
return {ctx->builtins->booleanType, Reduction::MaybeOk, {}, {}};
// If both types are some strict subset of `string`, we can reduce now.
if (normLhsTy->isSubtypeOfString() && normRhsTy->isSubtypeOfString())
return {ctx->builtins->booleanType, Reduction::MaybeOk, {}, {}};
// If both types are exactly `number`, we can reduce now.
if (normLhsTy->isExactlyNumber() && normRhsTy->isExactlyNumber())
return {ctx->builtins->booleanType, Reduction::MaybeOk, {}, {}};
if (auto result = tryDistributeTypeFunctionApp(comparisonTypeFunction, instance, typeParams, packParams, ctx, metamethod))
return *result;
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, lhsTy, metamethod, Location{});
if (!mmType)
mmType = findMetatableEntry(ctx->builtins, dummy, rhsTy, metamethod, Location{});
if (!mmType)
return {std::nullopt, Reduction::Erroneous, {}, {}};
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {*mmType}, {}};
const FunctionType* mmFtv = get<FunctionType>(*mmType);
if (!mmFtv)
return {std::nullopt, Reduction::Erroneous, {}, {}};
std::optional<TypeId> instantiatedMmType = instantiate(ctx->builtins, ctx->arena, ctx->limits, ctx->scope, *mmType);
if (!instantiatedMmType)
return {std::nullopt, Reduction::Erroneous, {}, {}};
const FunctionType* instantiatedMmFtv = get<FunctionType>(*instantiatedMmType);
if (!instantiatedMmFtv)
return {ctx->builtins->errorType, Reduction::MaybeOk, {}, {}};
TypePackId inferredArgPack = ctx->arena->addTypePack({lhsTy, rhsTy});
Unifier2 u2{ctx->arena, ctx->builtins, ctx->scope, ctx->ice};
if (!u2.unify(inferredArgPack, instantiatedMmFtv->argTypes))
return {std::nullopt, Reduction::Erroneous, {}, {}}; // occurs check failed
Subtyping subtyping{ctx->builtins, ctx->arena, ctx->simplifier, ctx->normalizer, ctx->typeFunctionRuntime, ctx->ice};
if (!subtyping.isSubtype(inferredArgPack, instantiatedMmFtv->argTypes, ctx->scope).isSubtype) // TODO: is this the right variance?
return {std::nullopt, Reduction::Erroneous, {}, {}};
return {ctx->builtins->booleanType, Reduction::MaybeOk, {}, {}};
}
TypeFunctionReductionResult<TypeId> ltTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("lt type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return comparisonTypeFunction(instance, typeParams, packParams, ctx, "__lt");
}
TypeFunctionReductionResult<TypeId> leTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("le type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return comparisonTypeFunction(instance, typeParams, packParams, ctx, "__le");
}
TypeFunctionReductionResult<TypeId> eqTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("eq type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {rhsTy}, {}};
std::shared_ptr<const NormalizedType> normLhsTy = ctx->normalizer->normalize(lhsTy);
std::shared_ptr<const NormalizedType> normRhsTy = ctx->normalizer->normalize(rhsTy);
NormalizationResult lhsInhabited = ctx->normalizer->isInhabited(normLhsTy.get());
NormalizationResult rhsInhabited = ctx->normalizer->isInhabited(normRhsTy.get());
// if either failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normLhsTy || !normRhsTy || lhsInhabited == NormalizationResult::HitLimits || rhsInhabited == NormalizationResult::HitLimits)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
// if one of the types is error suppressing, we can just go ahead and reduce.
if (normLhsTy->shouldSuppressErrors() || normRhsTy->shouldSuppressErrors())
return {ctx->builtins->booleanType, Reduction::MaybeOk, {}, {}};
// if we have a `never`, we can never observe that the comparison didn't work.
if (lhsInhabited == NormalizationResult::False || rhsInhabited == NormalizationResult::False)
return {ctx->builtins->booleanType, Reduction::MaybeOk, {}, {}};
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, lhsTy, "__eq", Location{});
if (!mmType)
mmType = findMetatableEntry(ctx->builtins, dummy, rhsTy, "__eq", Location{});
// if neither type has a metatable entry for `__eq`, then we'll check for inhabitance of the intersection!
NormalizationResult intersectInhabited = ctx->normalizer->isIntersectionInhabited(lhsTy, rhsTy);
if (!mmType)
{
if (intersectInhabited == NormalizationResult::True)
return {ctx->builtins->booleanType, Reduction::MaybeOk, {}, {}}; // if it's inhabited, everything is okay!
// we might be in a case where we still want to accept the comparison...
if (intersectInhabited == NormalizationResult::False)
{
// if they're both subtypes of `string` but have no common intersection, the comparison is allowed but always `false`.
if (normLhsTy->isSubtypeOfString() && normRhsTy->isSubtypeOfString())
return {ctx->builtins->falseType, Reduction::MaybeOk, {}, {}};
// if they're both subtypes of `boolean` but have no common intersection, the comparison is allowed but always `false`.
if (normLhsTy->isSubtypeOfBooleans() && normRhsTy->isSubtypeOfBooleans())
return {ctx->builtins->falseType, Reduction::MaybeOk, {}, {}};
}
return {std::nullopt, Reduction::Erroneous, {}, {}}; // if it's not, then this type function is irreducible!
}
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {*mmType}, {}};
const FunctionType* mmFtv = get<FunctionType>(*mmType);
if (!mmFtv)
return {std::nullopt, Reduction::Erroneous, {}, {}};
std::optional<TypeId> instantiatedMmType = instantiate(ctx->builtins, ctx->arena, ctx->limits, ctx->scope, *mmType);
if (!instantiatedMmType)
return {std::nullopt, Reduction::Erroneous, {}, {}};
const FunctionType* instantiatedMmFtv = get<FunctionType>(*instantiatedMmType);
if (!instantiatedMmFtv)
return {ctx->builtins->errorType, Reduction::MaybeOk, {}, {}};
TypePackId inferredArgPack = ctx->arena->addTypePack({lhsTy, rhsTy});
Unifier2 u2{ctx->arena, ctx->builtins, ctx->scope, ctx->ice};
if (!u2.unify(inferredArgPack, instantiatedMmFtv->argTypes))
return {std::nullopt, Reduction::Erroneous, {}, {}}; // occurs check failed
Subtyping subtyping{ctx->builtins, ctx->arena, ctx->simplifier, ctx->normalizer, ctx->typeFunctionRuntime, ctx->ice};
if (!subtyping.isSubtype(inferredArgPack, instantiatedMmFtv->argTypes, ctx->scope).isSubtype) // TODO: is this the right variance?
return {std::nullopt, Reduction::Erroneous, {}, {}};
return {ctx->builtins->booleanType, Reduction::MaybeOk, {}, {}};
}
// Collect types that prevent us from reducing a particular refinement.
struct FindRefinementBlockers : TypeOnceVisitor
{
DenseHashSet<TypeId> found{nullptr};
bool visit(TypeId ty, const BlockedType&) override
{
found.insert(ty);
return false;
}
bool visit(TypeId ty, const PendingExpansionType&) override
{
found.insert(ty);
return false;
}
bool visit(TypeId ty, const ExternType&) override
{
return false;
}
};
struct ContainsRefinableType : TypeOnceVisitor
{
bool found = false;
ContainsRefinableType()
: TypeOnceVisitor(/* skipBoundTypes */ true)
{
}
bool visit(TypeId ty) override
{
// Default case: if we find *some* type that's worth refining against,
// then we can claim that this type contains a refineable type.
found = true;
return false;
}
bool visit(TypeId Ty, const NoRefineType&) override
{
// No refine types aren't interesting
return false;
}
bool visit(TypeId ty, const TableType&) override
{
return !found;
}
bool visit(TypeId ty, const MetatableType&) override
{
return !found;
}
bool visit(TypeId ty, const FunctionType&) override
{
return !found;
}
bool visit(TypeId ty, const UnionType&) override
{
return !found;
}
bool visit(TypeId ty, const IntersectionType&) override
{
return !found;
}
bool visit(TypeId ty, const NegationType&) override
{
return !found;
}
};
namespace
{
bool isTruthyOrFalsyType(TypeId ty)
{
ty = follow(ty);
return isApproximatelyTruthyType(ty) || isApproximatelyFalsyType(ty);
}
struct RefineTypeScrubber : public Substitution
{
NotNull<TypeFunctionContext> ctx;
TypeId needle;
explicit RefineTypeScrubber(NotNull<TypeFunctionContext> ctx, TypeId needle)
: Substitution(ctx->arena)
, ctx{ctx}
, needle{needle}
{
}
bool isDirty(TypePackId tp) override
{
return false;
}
bool ignoreChildren(TypePackId tp) override
{
return false;
}
TypePackId clean(TypePackId tp) override
{
return tp;
}
bool isDirty(TypeId ty) override
{
if (auto ut = get<UnionType>(ty))
{
for (auto option : ut)
{
if (option == needle)
return true;
}
}
else if (auto it = get<IntersectionType>(ty))
{
for (auto part : it)
{
if (part == needle)
return true;
}
}
return false;
}
bool ignoreChildren(TypeId ty) override
{
return !is<UnionType, IntersectionType>(ty);
}
TypeId clean(TypeId ty) override
{
// NOTE: this feels pretty similar to other places where we try to
// filter over a set type, may be worth combining those in the future.
if (auto ut = get<UnionType>(ty))
{
TypeIds newOptions;
for (auto option : ut)
{
if (option != needle && !is<NeverType>(option))
newOptions.insert(option);
}
if (newOptions.empty())
return ctx->builtins->neverType;
else if (newOptions.size() == 1)
return *newOptions.begin();
else
return ctx->arena->addType(UnionType{newOptions.take()});
}
else if (auto it = get<IntersectionType>(ty))
{
TypeIds newParts;
for (auto part : it)
{
if (part != needle && !is<UnknownType>(part))
newParts.insert(part);
}
if (newParts.empty())
return ctx->builtins->unknownType;
else if (newParts.size() == 1)
return *newParts.begin();
else
return ctx->arena->addType(IntersectionType{newParts.take()});
}
return ty;
}
};
bool occurs(TypeId haystack, TypeId needle, DenseHashSet<TypeId>& seen)
{
if (needle == haystack)
return true;
if (seen.contains(haystack))
return false;
seen.insert(haystack);
if (auto ut = get<UnionType>(haystack))
{
for (auto option : ut)
if (occurs(option, needle, seen))
return true;
}
if (auto it = get<UnionType>(haystack))
{
for (auto part : it)
if (occurs(part, needle, seen))
return true;
}
return false;
}
bool occurs(TypeId haystack, TypeId needle)
{
DenseHashSet<TypeId> seen{nullptr};
return occurs(haystack, needle, seen);
}
} // namespace
TypeFunctionReductionResult<TypeId> refineTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() < 2 || !packParams.empty())
{
ctx->ice->ice("refine type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId targetTy = follow(typeParams.at(0));
if (FFlag::LuauOccursCheckForRefinement)
{
// If we end up minting a refine type like:
//
// t1 where t1 = refine<T | t1, Y>
//
// This can create a degenerate set type such as:
//
// t1 where t1 = (T | t1) & Y
//
// Instead, we can clip the recursive part:
//
// t1 where t1 = refine<T | t1, Y> => refine<T, Y>
if (!FFlag::LuauAvoidExcessiveTypeCopying || occurs(targetTy, instance))
{
RefineTypeScrubber rts{ctx, instance};
if (auto result = rts.substitute(targetTy))
targetTy = *result;
}
}
std::vector<TypeId> discriminantTypes;
for (size_t i = 1; i < typeParams.size(); i++)
discriminantTypes.push_back(follow(typeParams.at(i)));
if (FFlag::LuauRefineNoRefineAlways)
{
bool hasAnyRealRefinements = false;
for (auto discriminant : discriminantTypes)
{
// If the discriminant type is only:
// - The `*no-refine*` type or,
// - tables, metatables, unions, intersections, functions, or negations _containing_ `*no-refine*`.
// There's no point in refining against it.
ContainsRefinableType crt;
crt.traverse(discriminant);
hasAnyRealRefinements = hasAnyRealRefinements || crt.found;
}
// if we don't have any real refinements, i.e. they're all `*no-refine*`, then we can reduce immediately.
if (!hasAnyRealRefinements)
return {targetTy, {}};
}
const bool targetIsPending = FFlag::LuauEagerGeneralization4 ? is<BlockedType, PendingExpansionType, TypeFunctionInstanceType>(targetTy)
: isPending(targetTy, ctx->solver);
// check to see if both operand types are resolved enough, and wait to reduce if not
if (targetIsPending)
return {std::nullopt, Reduction::MaybeOk, {targetTy}, {}};
else
{
for (auto t : discriminantTypes)
{
if (isPending(t, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {t}, {}};
}
}
// If we have a blocked type in the target, we *could* potentially
// refine it, but more likely we end up with some type explosion in
// normalization.
FindRefinementBlockers frb;
frb.traverse(targetTy);
if (!frb.found.empty())
return {std::nullopt, Reduction::MaybeOk, {frb.found.begin(), frb.found.end()}, {}};
// Refine a target type and a discriminant one at a time.
// Returns result : TypeId, toBlockOn : vector<TypeId>
auto stepRefine = [&ctx](TypeId target, TypeId discriminant) -> std::pair<TypeId, std::vector<TypeId>>
{
std::vector<TypeId> toBlock;
// we need a more complex check for blocking on the discriminant in particular
FindRefinementBlockers frb;
frb.traverse(discriminant);
if (!frb.found.empty())
return {nullptr, {frb.found.begin(), frb.found.end()}};
if (FFlag::DebugLuauEqSatSimplification)
{
auto simplifyResult = eqSatSimplify(ctx->simplifier, ctx->arena->addType(IntersectionType{{target, discriminant}}));
if (simplifyResult)
{
if (ctx->solver)
{
for (TypeId newTf : simplifyResult->newTypeFunctions)
ctx->pushConstraint(ReduceConstraint{newTf});
}
return {simplifyResult->result, {}};
}
else
return {nullptr, {}};
}
else
{
// FFlag::LuauRefineNoRefineAlways moves this check upwards so that it runs even if the thing being refined is pending.
if (!FFlag::LuauRefineNoRefineAlways)
{
// If the discriminant type is only:
// - The `*no-refine*` type or,
// - tables, metatables, unions, intersections, functions, or negations _containing_ `*no-refine*`.
// There's no point in refining against it.
ContainsRefinableType crt;
crt.traverse(discriminant);
if (!crt.found)
return {target, {}};
}
if (FFlag::LuauRefineTablesWithReadType)
{
if (auto ty = intersectWithSimpleDiscriminant(ctx->builtins, ctx->arena, target, discriminant))
return {*ty, {}};
}
// NOTE: This block causes us to refine too early in some cases.
if (auto negation = get<NegationType>(discriminant))
{
if (auto primitive = get<PrimitiveType>(follow(negation->ty)); primitive && primitive->type == PrimitiveType::NilType)
{
SimplifyResult result = simplifyIntersection(ctx->builtins, ctx->arena, target, discriminant);
return {result.result, {}};
}
}
// If the target type is a table, then simplification already implements the logic to deal with refinements properly since the
// type of the discriminant is guaranteed to only ever be an (arbitrarily-nested) table of a single property type.
// We also fire for simple discriminants such as false? and ~(false?): the falsy and truthy types respectively.
if (is<TableType>(target) || isTruthyOrFalsyType(discriminant))
{
SimplifyResult result = simplifyIntersection(ctx->builtins, ctx->arena, target, discriminant);
if (FFlag::LuauEagerGeneralization4)
{
// Simplification considers free and generic types to be
// 'blocking', but that's not suitable for refine<>.
//
// If we are only blocked on those types, we consider
// the simplification a success and reduce.
if (std::all_of(
begin(result.blockedTypes),
end(result.blockedTypes),
[](auto&& v)
{
return is<FreeType, GenericType>(follow(v));
}
))
{
return {result.result, {}};
}
else
return {nullptr, {result.blockedTypes.begin(), result.blockedTypes.end()}};
}
else
{
if (!result.blockedTypes.empty())
return {nullptr, {result.blockedTypes.begin(), result.blockedTypes.end()}};
}
return {result.result, {}};
}
// In the general case, we'll still use normalization though.
TypeId intersection = ctx->arena->addType(IntersectionType{{target, discriminant}});
std::shared_ptr<const NormalizedType> normIntersection = ctx->normalizer->normalize(intersection);
std::shared_ptr<const NormalizedType> normType = ctx->normalizer->normalize(target);
// if the intersection failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normIntersection || !normType)
return {nullptr, {}};
TypeId resultTy = ctx->normalizer->typeFromNormal(*normIntersection);
// include the error type if the target type is error-suppressing and the intersection we computed is not
if (normType->shouldSuppressErrors() && !normIntersection->shouldSuppressErrors())
resultTy = ctx->arena->addType(UnionType{{resultTy, ctx->builtins->errorType}});
return {resultTy, {}};
}
};
// refine target with each discriminant type in sequence (reverse of insertion order)
// If we cannot proceed, block. If all discriminant types refine successfully, return
// the result
TypeId target = targetTy;
while (!discriminantTypes.empty())
{
TypeId discriminant = discriminantTypes.back();
auto [refined, blocked] = stepRefine(target, discriminant);
if (blocked.empty() && refined == nullptr)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
if (!blocked.empty())
return {std::nullopt, Reduction::MaybeOk, blocked, {}};
target = refined;
discriminantTypes.pop_back();
}
return {target, Reduction::MaybeOk, {}, {}};
}
TypeFunctionReductionResult<TypeId> singletonTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("singleton type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId type = follow(typeParams.at(0));
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(type, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {type}, {}};
TypeId followed = type;
// we want to follow through a negation here as well.
if (auto negation = get<NegationType>(followed))
followed = follow(negation->ty);
// if we have a singleton type or `nil`, which is its own singleton type...
if (get<SingletonType>(followed) || isNil(followed))
return {type, Reduction::MaybeOk, {}, {}};
// otherwise, we'll return the top type, `unknown`.
return {ctx->builtins->unknownType, Reduction::MaybeOk, {}, {}};
}
struct CollectUnionTypeOptions : TypeOnceVisitor
{
NotNull<TypeFunctionContext> ctx;
DenseHashSet<TypeId> options{nullptr};
DenseHashSet<TypeId> blockingTypes{nullptr};
explicit CollectUnionTypeOptions(NotNull<TypeFunctionContext> ctx)
: TypeOnceVisitor(/* skipBoundTypes */ true)
, ctx(ctx)
{
}
bool visit(TypeId ty) override
{
options.insert(ty);
if (isPending(ty, ctx->solver))
blockingTypes.insert(ty);
return false;
}
bool visit(TypePackId tp) override
{
return false;
}
bool visit(TypeId ty, const UnionType& ut) override
{
// If we have something like:
//
// union<A | B, C | D>
//
// We probably just want to consider this to be the same as
//
// union<A, B, C, D>
return true;
}
bool visit(TypeId ty, const TypeFunctionInstanceType& tfit) override
{
if (tfit.function->name != builtinTypeFunctions().unionFunc.name)
{
options.insert(ty);
blockingTypes.insert(ty);
return false;
}
return true;
}
};
TypeFunctionReductionResult<TypeId> unionTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (!packParams.empty())
{
ctx->ice->ice("union type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
// if we only have one parameter, there's nothing to do.
if (typeParams.size() == 1)
return {follow(typeParams[0]), Reduction::MaybeOk, {}, {}};
CollectUnionTypeOptions collector{ctx};
collector.traverse(instance);
if (!collector.blockingTypes.empty())
{
std::vector<TypeId> blockingTypes{collector.blockingTypes.begin(), collector.blockingTypes.end()};
return {std::nullopt, Reduction::MaybeOk, std::move(blockingTypes), {}};
}
TypeId resultTy = ctx->builtins->neverType;
for (auto ty : collector.options)
{
SimplifyResult result = simplifyUnion(ctx->builtins, ctx->arena, resultTy, ty);
// This condition might fire if one of the arguments to this type
// function is a free type somewhere deep in a nested union or
// intersection type, even though we ran a pass above to capture
// some blocked types.
if (!result.blockedTypes.empty())
return {std::nullopt, Reduction::MaybeOk, {result.blockedTypes.begin(), result.blockedTypes.end()}, {}};
resultTy = result.result;
}
return {resultTy, Reduction::MaybeOk, {}, {}};
}
TypeFunctionReductionResult<TypeId> intersectTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (!packParams.empty())
{
ctx->ice->ice("intersect type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
// if we only have one parameter, there's nothing to do.
if (typeParams.size() == 1)
return {follow(typeParams[0]), Reduction::MaybeOk, {}, {}};
// we need to follow all of the type parameters.
std::vector<TypeId> types;
types.reserve(typeParams.size());
for (auto ty : typeParams)
types.emplace_back(follow(ty));
// if we only have two parameters and one is `*no-refine*`, we're all done.
if (types.size() == 2 && get<NoRefineType>(types[1]))
return {types[0], Reduction::MaybeOk, {}, {}};
else if (types.size() == 2 && get<NoRefineType>(types[0]))
return {types[1], Reduction::MaybeOk, {}, {}};
// check to see if the operand types are resolved enough, and wait to reduce if not
// if any of them are `never`, the intersection will always be `never`, so we can reduce directly.
for (auto ty : types)
{
if (isPending(ty, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {ty}, {}};
else if (get<NeverType>(ty))
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
}
// fold over the types with `simplifyIntersection`
TypeId resultTy = ctx->builtins->unknownType;
// collect types which caused intersection to return never
DenseHashSet<TypeId> unintersectableTypes{nullptr};
for (auto ty : types)
{
// skip any `*no-refine*` types.
if (get<NoRefineType>(ty))
continue;
if (FFlag::LuauRefineTablesWithReadType)
{
if (auto simpleResult = intersectWithSimpleDiscriminant(ctx->builtins, ctx->arena, resultTy, ty))
{
if (get<NeverType>(*simpleResult))
unintersectableTypes.insert(follow(ty));
else
resultTy = *simpleResult;
continue;
}
}
SimplifyResult result = simplifyIntersection(ctx->builtins, ctx->arena, resultTy, ty);
// If simplifying the intersection returned never, note the type we tried to intersect it with, and continue trying to intersect with the
// rest
if (get<NeverType>(result.result))
{
unintersectableTypes.insert(follow(ty));
continue;
}
for (TypeId blockedType : result.blockedTypes)
{
if (!get<GenericType>(blockedType))
return {std::nullopt, Reduction::MaybeOk, {result.blockedTypes.begin(), result.blockedTypes.end()}, {}};
}
resultTy = result.result;
}
if (!unintersectableTypes.empty())
{
unintersectableTypes.insert(resultTy);
if (unintersectableTypes.size() > 1)
{
TypeId intersection =
ctx->arena->addType(IntersectionType{std::vector<TypeId>(unintersectableTypes.begin(), unintersectableTypes.end())});
return {intersection, Reduction::MaybeOk, {}, {}};
}
else
{
return {*unintersectableTypes.begin(), Reduction::MaybeOk, {}, {}};
}
}
// if the intersection simplifies to `never`, this gives us bad autocomplete.
// we'll just produce the intersection plainly instead, but this might be revisitable
// if we ever give `never` some kind of "explanation" trail.
if (get<NeverType>(resultTy))
{
TypeId intersection = ctx->arena->addType(IntersectionType{typeParams});
return {intersection, Reduction::MaybeOk, {}, {}};
}
return {resultTy, Reduction::MaybeOk, {}, {}};
}
// computes the keys of `ty` into `result`
// `isRaw` parameter indicates whether or not we should follow __index metamethods
// returns `false` if `result` should be ignored because the answer is "all strings"
bool computeKeysOf_DEPRECATED(TypeId ty, Set<std::string>& result, DenseHashSet<TypeId>& seen, bool isRaw, NotNull<TypeFunctionContext> ctx)
{
// if the type is the top table type, the answer is just "all strings"
if (get<PrimitiveType>(ty))
return false;
// if we've already seen this type, we can do nothing
if (seen.contains(ty))
return true;
seen.insert(ty);
// if we have a particular table type, we can insert the keys
if (auto tableTy = get<TableType>(ty))
{
if (tableTy->indexer)
{
// if we have a string indexer, the answer is, again, "all strings"
if (isString(tableTy->indexer->indexType))
return false;
}
for (auto [key, _] : tableTy->props)
result.insert(key);
return true;
}
// otherwise, we have a metatable to deal with
if (auto metatableTy = get<MetatableType>(ty))
{
bool res = true;
if (!isRaw)
{
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, ty, "__index", Location{});
if (mmType)
res = res && computeKeysOf_DEPRECATED(*mmType, result, seen, isRaw, ctx);
}
res = res && computeKeysOf_DEPRECATED(metatableTy->table, result, seen, isRaw, ctx);
return res;
}
if (auto classTy = get<ExternType>(ty))
{
for (auto [key, _] : classTy->props) // NOLINT(performance-for-range-copy)
result.insert(key);
bool res = true;
if (classTy->metatable && !isRaw)
{
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, ty, "__index", Location{});
if (mmType)
res = res && computeKeysOf_DEPRECATED(*mmType, result, seen, isRaw, ctx);
}
if (classTy->parent)
res = res && computeKeysOf_DEPRECATED(follow(*classTy->parent), result, seen, isRaw, ctx);
return res;
}
// this should not be reachable since the type should be a valid tables or extern types part from normalization.
LUAU_ASSERT(false);
return false;
}
namespace {
/**
* Computes the keys of `ty` into `result`
* `isRaw` parameter indicates whether or not we should follow __index metamethods
* returns `false` if `result` should be ignored because the answer is "all strings"
*/
bool computeKeysOf(TypeId ty, Set<std::optional<std::string>>& result, DenseHashSet<TypeId>& seen, bool isRaw, NotNull<TypeFunctionContext> ctx)
{
// if the type is the top table type, the answer is just "all strings"
if (get<PrimitiveType>(ty))
return false;
// if we've already seen this type, we can do nothing
if (seen.contains(ty))
return true;
seen.insert(ty);
// if we have a particular table type, we can insert the keys
if (auto tableTy = get<TableType>(ty))
{
if (tableTy->indexer)
{
// if we have a string indexer, the answer is, again, "all strings"
if (isString(tableTy->indexer->indexType))
return false;
}
for (const auto& [key, _] : tableTy->props)
result.insert(key);
return true;
}
// otherwise, we have a metatable to deal with
if (auto metatableTy = get<MetatableType>(ty))
{
bool res = true;
if (!isRaw)
{
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, ty, "__index", Location{});
if (mmType)
res = res && computeKeysOf(*mmType, result, seen, isRaw, ctx);
}
res = res && computeKeysOf(metatableTy->table, result, seen, isRaw, ctx);
return res;
}
if (auto classTy = get<ExternType>(ty))
{
for (const auto& [key, _] : classTy->props)
result.insert(key);
bool res = true;
if (classTy->metatable && !isRaw)
{
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, ty, "__index", Location{});
if (mmType)
res = res && computeKeysOf(*mmType, result, seen, isRaw, ctx);
}
if (classTy->parent)
res = res && computeKeysOf(follow(*classTy->parent), result, seen, isRaw, ctx);
return res;
}
// this should not be reachable since the type should be a valid tables or extern types part from normalization.
LUAU_ASSERT(false);
return false;
}
}
TypeFunctionReductionResult<TypeId> keyofFunctionImpl(
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx,
bool isRaw
)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("keyof type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId operandTy = follow(typeParams.at(0));
std::shared_ptr<const NormalizedType> normTy = ctx->normalizer->normalize(operandTy);
// if the operand failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normTy)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
// if we don't have either just tables or just extern types, we've got nothing to get keys of (at least until a future version perhaps adds extern
// types as well)
if (normTy->hasTables() == normTy->hasExternTypes())
return {std::nullopt, Reduction::Erroneous, {}, {}};
// this is sort of atrocious, but we're trying to reject any type that has not normalized to a table or a union of tables.
if (normTy->hasTops() || normTy->hasBooleans() || normTy->hasErrors() || normTy->hasNils() || normTy->hasNumbers() || normTy->hasStrings() ||
normTy->hasThreads() || normTy->hasBuffers() || normTy->hasFunctions() || normTy->hasTyvars())
return {std::nullopt, Reduction::Erroneous, {}, {}};
if (FFlag::LuauEmptyStringInKeyOf)
{
// We're going to collect the keys in here, and we use optional strings
// so that we can differentiate between the empty string and _no_ string.
Set<std::optional<std::string>> keys{std::nullopt};
// computing the keys for extern types
if (normTy->hasExternTypes())
{
LUAU_ASSERT(!normTy->hasTables());
// seen set for key computation for extern types
DenseHashSet<TypeId> seen{{}};
auto externTypeIter = normTy->externTypes.ordering.begin();
auto externTypeIterEnd = normTy->externTypes.ordering.end();
LUAU_ASSERT(externTypeIter != externTypeIterEnd); // should be guaranteed by the `hasExternTypes` check earlier
// collect all the properties from the first class type
if (!computeKeysOf(*externTypeIter, keys, seen, isRaw, ctx))
return {ctx->builtins->stringType, Reduction::MaybeOk, {}, {}}; // if it failed, we have a top type!
// we need to look at each class to remove any keys that are not common amongst them all
while (++externTypeIter != externTypeIterEnd)
{
seen.clear(); // we'll reuse the same seen set
Set<std::optional<std::string>> localKeys{std::nullopt};
// we can skip to the next class if this one is a top type
if (!computeKeysOf(*externTypeIter, localKeys, seen, isRaw, ctx))
continue;
for (auto& key : keys)
{
// remove any keys that are not present in each class
if (!localKeys.contains(key))
keys.erase(key);
}
}
}
// computing the keys for tables
if (normTy->hasTables())
{
LUAU_ASSERT(!normTy->hasExternTypes());
// seen set for key computation for tables
DenseHashSet<TypeId> seen{{}};
auto tablesIter = normTy->tables.begin();
LUAU_ASSERT(tablesIter != normTy->tables.end()); // should be guaranteed by the `hasTables` check earlier
// collect all the properties from the first table type
if (!computeKeysOf(*tablesIter, keys, seen, isRaw, ctx))
return {ctx->builtins->stringType, Reduction::MaybeOk, {}, {}}; // if it failed, we have the top table type!
// we need to look at each tables to remove any keys that are not common amongst them all
while (++tablesIter != normTy->tables.end())
{
seen.clear(); // we'll reuse the same seen set
Set<std::optional<std::string>> localKeys{std::nullopt};
// we can skip to the next table if this one is the top table type
if (!computeKeysOf(*tablesIter, localKeys, seen, isRaw, ctx))
continue;
for (auto& key : keys)
{
// remove any keys that are not present in each table
if (!localKeys.contains(key))
keys.erase(key);
}
}
}
// if the set of keys is empty, `keyof<T>` is `never`
if (keys.empty())
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
// everything is validated, we need only construct our big union of singletons now!
std::vector<TypeId> singletons;
singletons.reserve(keys.size());
for (const auto& key : keys)
{
if (key)
singletons.push_back(ctx->arena->addType(SingletonType{StringSingleton{*key}}));
}
// If there's only one entry, we don't need a UnionType.
// We can take straight take it from the first entry
// because it was added into the type arena already.
if (singletons.size() == 1)
return {singletons.front(), Reduction::MaybeOk, {}, {}};
return {ctx->arena->addType(UnionType{std::move(singletons)}), Reduction::MaybeOk, {}, {}};
}
else
{
// we're going to collect the keys in here
Set<std::string> keys{{}};
// computing the keys for extern types
if (normTy->hasExternTypes())
{
LUAU_ASSERT(!normTy->hasTables());
// seen set for key computation for extern types
DenseHashSet<TypeId> seen{{}};
auto externTypeIter = normTy->externTypes.ordering.begin();
auto externTypeIterEnd = normTy->externTypes.ordering.end();
LUAU_ASSERT(externTypeIter != externTypeIterEnd); // should be guaranteed by the `hasExternTypes` check earlier
// collect all the properties from the first class type
if (!computeKeysOf_DEPRECATED(*externTypeIter, keys, seen, isRaw, ctx))
return {ctx->builtins->stringType, Reduction::MaybeOk, {}, {}}; // if it failed, we have a top type!
// we need to look at each class to remove any keys that are not common amongst them all
while (++externTypeIter != externTypeIterEnd)
{
seen.clear(); // we'll reuse the same seen set
Set<std::string> localKeys{{}};
// we can skip to the next class if this one is a top type
if (!computeKeysOf_DEPRECATED(*externTypeIter, localKeys, seen, isRaw, ctx))
continue;
for (auto& key : keys)
{
// remove any keys that are not present in each class
if (!localKeys.contains(key))
keys.erase(key);
}
}
}
// computing the keys for tables
if (normTy->hasTables())
{
LUAU_ASSERT(!normTy->hasExternTypes());
// seen set for key computation for tables
DenseHashSet<TypeId> seen{{}};
auto tablesIter = normTy->tables.begin();
LUAU_ASSERT(tablesIter != normTy->tables.end()); // should be guaranteed by the `hasTables` check earlier
// collect all the properties from the first table type
if (!computeKeysOf_DEPRECATED(*tablesIter, keys, seen, isRaw, ctx))
return {ctx->builtins->stringType, Reduction::MaybeOk, {}, {}}; // if it failed, we have the top table type!
// we need to look at each tables to remove any keys that are not common amongst them all
while (++tablesIter != normTy->tables.end())
{
seen.clear(); // we'll reuse the same seen set
Set<std::string> localKeys{{}};
// we can skip to the next table if this one is the top table type
if (!computeKeysOf_DEPRECATED(*tablesIter, localKeys, seen, isRaw, ctx))
continue;
for (auto& key : keys)
{
// remove any keys that are not present in each table
if (!localKeys.contains(key))
keys.erase(key);
}
}
}
// if the set of keys is empty, `keyof<T>` is `never`
if (keys.empty())
return {ctx->builtins->neverType, Reduction::MaybeOk, {}, {}};
// everything is validated, we need only construct our big union of singletons now!
std::vector<TypeId> singletons;
singletons.reserve(keys.size());
for (const std::string& key : keys)
singletons.push_back(ctx->arena->addType(SingletonType{StringSingleton{key}}));
// If there's only one entry, we don't need a UnionType.
// We can take straight take it from the first entry
// because it was added into the type arena already.
if (singletons.size() == 1)
return {singletons.front(), Reduction::MaybeOk, {}, {}};
return {ctx->arena->addType(UnionType{std::move(singletons)}), Reduction::MaybeOk, {}, {}};
}
}
TypeFunctionReductionResult<TypeId> keyofTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("keyof type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return keyofFunctionImpl(typeParams, packParams, ctx, /* isRaw */ false);
}
TypeFunctionReductionResult<TypeId> rawkeyofTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("rawkeyof type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return keyofFunctionImpl(typeParams, packParams, ctx, /* isRaw */ true);
}
/* Searches through table's or class's props/indexer to find the property of `ty`
If found, appends that property to `result` and returns true
Else, returns false */
bool searchPropsAndIndexer(
TypeId ty,
TableType::Props tblProps,
std::optional<TableIndexer> tblIndexer,
DenseHashSet<TypeId>& result,
NotNull<TypeFunctionContext> ctx
)
{
ty = follow(ty);
// index into tbl's properties
if (auto stringSingleton = get<StringSingleton>(get<SingletonType>(ty)))
{
if (tblProps.find(stringSingleton->value) != tblProps.end())
{
TypeId propTy;
if (FFlag::LuauRemoveTypeCallsForReadWriteProps)
{
Property& prop = tblProps.at(stringSingleton->value);
if (prop.readTy)
propTy = follow(*prop.readTy);
else if (prop.writeTy)
propTy = follow(*prop.writeTy);
else // found the property, but there was no type associated with it
return false;
}
else
propTy = follow(tblProps.at(stringSingleton->value).type_DEPRECATED());
// property is a union type -> we need to extend our reduction type
if (auto propUnionTy = get<UnionType>(propTy))
{
for (TypeId option : propUnionTy->options)
{
result.insert(follow(option));
}
}
else // property is a singular type or intersection type -> we can simply append
result.insert(propTy);
return true;
}
}
// index into tbl's indexer
if (tblIndexer)
{
TypeId indexType = follow(tblIndexer->indexType);
if (auto tfit = get<TypeFunctionInstanceType>(indexType))
{
// if we have an index function here, it means we're in a cycle, so let's see if it's well-founded if we tie the knot
if (tfit->function.get() == &builtinTypeFunctions().indexFunc)
indexType = follow(tblIndexer->indexResultType);
}
if (isSubtype(ty, indexType, ctx->scope, ctx->builtins, ctx->simplifier, *ctx->ice, SolverMode::New))
{
TypeId idxResultTy = follow(tblIndexer->indexResultType);
// indexResultType is a union type -> we need to extend our reduction type
if (auto idxResUnionTy = get<UnionType>(idxResultTy))
{
for (TypeId option : idxResUnionTy->options)
{
result.insert(follow(option));
}
}
else // indexResultType is a singular type or intersection type -> we can simply append
result.insert(idxResultTy);
return true;
}
}
return false;
}
bool tblIndexInto(
TypeId indexer,
TypeId indexee,
DenseHashSet<TypeId>& result,
DenseHashSet<TypeId>& seenSet,
NotNull<TypeFunctionContext> ctx,
bool isRaw
)
{
indexer = follow(indexer);
indexee = follow(indexee);
if (seenSet.contains(indexee))
return false;
seenSet.insert(indexee);
if (auto unionTy = get<UnionType>(indexee))
{
bool res = true;
for (auto component : unionTy)
{
// if the component is in the seen set and isn't the indexee itself,
// we can skip it cause it means we encountered it in an earlier component in the union.
if (seenSet.contains(component) && component != indexee)
continue;
res = res && tblIndexInto(indexer, component, result, seenSet, ctx, isRaw);
}
return res;
}
if (get<FunctionType>(indexee))
{
TypePackId argPack = ctx->arena->addTypePack({indexer});
SolveResult solveResult = solveFunctionCall(
ctx->arena,
ctx->builtins,
ctx->simplifier,
ctx->normalizer,
ctx->typeFunctionRuntime,
ctx->ice,
ctx->limits,
ctx->scope,
ctx->scope->location,
indexee,
argPack
);
if (!solveResult.typePackId.has_value())
return false;
TypePack extracted = extendTypePack(*ctx->arena, ctx->builtins, *solveResult.typePackId, 1);
if (extracted.head.empty())
return false;
result.insert(follow(extracted.head.front()));
return true;
}
// we have a table type to try indexing
if (auto tableTy = get<TableType>(indexee))
{
return searchPropsAndIndexer(indexer, tableTy->props, tableTy->indexer, result, ctx);
}
// we have a metatable type to try indexing
if (auto metatableTy = get<MetatableType>(indexee))
{
if (auto tableTy = get<TableType>(follow(metatableTy->table)))
{
// try finding all properties within the current scope of the table
if (searchPropsAndIndexer(indexer, tableTy->props, tableTy->indexer, result, ctx))
return true;
}
// if the code reached here, it means we weren't able to find all properties -> look into __index metamethod
if (!isRaw)
{
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, indexee, "__index", Location{});
if (mmType)
return tblIndexInto(indexer, *mmType, result, seenSet, ctx, isRaw);
}
}
return false;
}
bool tblIndexInto(TypeId indexer, TypeId indexee, DenseHashSet<TypeId>& result, NotNull<TypeFunctionContext> ctx, bool isRaw)
{
DenseHashSet<TypeId> seenSet{{}};
return tblIndexInto(indexer, indexee, result, seenSet, ctx, isRaw);
}
/* Vocabulary note: indexee refers to the type that contains the properties,
indexer refers to the type that is used to access indexee
Example: index<Person, "name"> => `Person` is the indexee and `"name"` is the indexer */
TypeFunctionReductionResult<TypeId> indexFunctionImpl(
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx,
bool isRaw
)
{
TypeId indexeeTy = follow(typeParams.at(0));
if (isPending(indexeeTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {indexeeTy}, {}};
std::shared_ptr<const NormalizedType> indexeeNormTy = ctx->normalizer->normalize(indexeeTy);
// if the indexee failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!indexeeNormTy)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
// if the indexee is `any`, then indexing also gives us `any`.
if (indexeeNormTy->shouldSuppressErrors())
return {ctx->builtins->anyType, Reduction::MaybeOk, {}, {}};
// if we don't have either just tables or just extern types, we've got nothing to index into
if (indexeeNormTy->hasTables() == indexeeNormTy->hasExternTypes())
return {std::nullopt, Reduction::Erroneous, {}, {}};
// we're trying to reject any type that has not normalized to a table or extern type or a union of tables or extern types.
if (indexeeNormTy->hasTops() || indexeeNormTy->hasBooleans() || indexeeNormTy->hasErrors() || indexeeNormTy->hasNils() ||
indexeeNormTy->hasNumbers() || indexeeNormTy->hasStrings() || indexeeNormTy->hasThreads() || indexeeNormTy->hasBuffers() ||
indexeeNormTy->hasFunctions() || indexeeNormTy->hasTyvars())
return {std::nullopt, Reduction::Erroneous, {}, {}};
TypeId indexerTy = follow(typeParams.at(1));
if (isPending(indexerTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {indexerTy}, {}};
std::shared_ptr<const NormalizedType> indexerNormTy = ctx->normalizer->normalize(indexerTy);
// if the indexer failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!indexerNormTy)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
// we're trying to reject any type that is not a string singleton or primitive (string, number, boolean, thread, nil, function, table, or buffer)
if (indexerNormTy->hasTops() || indexerNormTy->hasErrors())
return {std::nullopt, Reduction::Erroneous, {}, {}};
// indexer can be a union —> break them down into a vector
const std::vector<TypeId>* typesToFind = nullptr;
const std::vector<TypeId> singleType{indexerTy};
if (auto unionTy = get<UnionType>(indexerTy))
typesToFind = &unionTy->options;
else
typesToFind = &singleType;
DenseHashSet<TypeId> properties{{}}; // vector of types that will be returned
if (indexeeNormTy->hasExternTypes())
{
LUAU_ASSERT(!indexeeNormTy->hasTables());
if (isRaw) // rawget should never reduce for extern types (to match the behavior of the rawget global function)
return {std::nullopt, Reduction::Erroneous, {}, {}};
// at least one class is guaranteed to be in the iterator by .hasExternTypes()
for (auto externTypeIter = indexeeNormTy->externTypes.ordering.begin(); externTypeIter != indexeeNormTy->externTypes.ordering.end();
++externTypeIter)
{
auto externTy = get<ExternType>(*externTypeIter);
if (!externTy)
{
LUAU_ASSERT(false); // this should not be possible according to normalization's spec
return {std::nullopt, Reduction::Erroneous, {}, {}};
}
for (TypeId ty : *typesToFind)
{
// Search for all instances of indexer in class->props and class->indexer
if (searchPropsAndIndexer(ty, externTy->props, externTy->indexer, properties, ctx))
continue; // Indexer was found in this class, so we can move on to the next
auto parent = externTy->parent;
bool foundInParent = false;
while (parent && !foundInParent)
{
auto parentExternType = get<ExternType>(follow(*parent));
foundInParent = searchPropsAndIndexer(ty, parentExternType->props, parentExternType->indexer, properties, ctx);
parent = parentExternType->parent;
}
// we move on to the next type if any of the parents we went through had the property.
if (foundInParent)
continue;
// If code reaches here,that means the property not found -> check in the metatable's __index
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, *externTypeIter, "__index", Location{});
if (!mmType) // if a metatable does not exist, there is no where else to look
return {std::nullopt, Reduction::Erroneous, {}, {}};
if (!tblIndexInto(ty, *mmType, properties, ctx, isRaw)) // if indexer is not in the metatable, we fail to reduce
return {std::nullopt, Reduction::Erroneous, {}, {}};
}
}
}
if (indexeeNormTy->hasTables())
{
LUAU_ASSERT(!indexeeNormTy->hasExternTypes());
// at least one table is guaranteed to be in the iterator by .hasTables()
for (auto tablesIter = indexeeNormTy->tables.begin(); tablesIter != indexeeNormTy->tables.end(); ++tablesIter)
{
for (TypeId ty : *typesToFind)
if (!tblIndexInto(ty, *tablesIter, properties, ctx, isRaw))
return {std::nullopt, Reduction::Erroneous, {}, {}};
}
}
// If the type being reduced to is a single type, no need to union
if (properties.size() == 1)
return {*properties.begin(), Reduction::MaybeOk, {}, {}};
return {ctx->arena->addType(UnionType{std::vector<TypeId>(properties.begin(), properties.end())}), Reduction::MaybeOk, {}, {}};
}
TypeFunctionReductionResult<TypeId> indexTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("index type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return indexFunctionImpl(typeParams, packParams, ctx, /* isRaw */ false);
}
TypeFunctionReductionResult<TypeId> rawgetTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("rawget type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
return indexFunctionImpl(typeParams, packParams, ctx, /* isRaw */ true);
}
TypeFunctionReductionResult<TypeId> setmetatableTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("setmetatable type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
const Location location = ctx->constraint ? ctx->constraint->location : Location{};
TypeId targetTy = follow(typeParams.at(0));
TypeId metatableTy = follow(typeParams.at(1));
std::shared_ptr<const NormalizedType> targetNorm = ctx->normalizer->normalize(targetTy);
// if the operand failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!targetNorm)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
// cannot setmetatable on something without table parts.
if (!targetNorm->hasTables())
return {std::nullopt, Reduction::Erroneous, {}, {}};
// we're trying to reject any type that has not normalized to a table or a union/intersection of tables.
if (targetNorm->hasTops() || targetNorm->hasBooleans() || targetNorm->hasErrors() || targetNorm->hasNils() || targetNorm->hasNumbers() ||
targetNorm->hasStrings() || targetNorm->hasThreads() || targetNorm->hasBuffers() || targetNorm->hasFunctions() || targetNorm->hasTyvars() ||
targetNorm->hasExternTypes())
return {std::nullopt, Reduction::Erroneous, {}, {}};
// if the supposed metatable is not a table, we will fail to reduce.
if (!get<TableType>(metatableTy) && !get<MetatableType>(metatableTy))
return {std::nullopt, Reduction::Erroneous, {}, {}};
if (targetNorm->tables.size() == 1)
{
TypeId table = *targetNorm->tables.begin();
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> metatableMetamethod = findMetatableEntry(ctx->builtins, dummy, table, "__metatable", location);
// if the `__metatable` metamethod is present, then the table is locked and we cannot `setmetatable` on it.
if (metatableMetamethod)
return {std::nullopt, Reduction::Erroneous, {}, {}};
TypeId withMetatable = ctx->arena->addType(MetatableType{table, metatableTy});
return {withMetatable, Reduction::MaybeOk, {}, {}};
}
TypeId result = ctx->builtins->neverType;
for (auto componentTy : targetNorm->tables)
{
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> metatableMetamethod = findMetatableEntry(ctx->builtins, dummy, componentTy, "__metatable", location);
// if the `__metatable` metamethod is present, then the table is locked and we cannot `setmetatable` on it.
if (metatableMetamethod)
return {std::nullopt, Reduction::Erroneous, {}, {}};
TypeId withMetatable = ctx->arena->addType(MetatableType{componentTy, metatableTy});
SimplifyResult simplified = simplifyUnion(ctx->builtins, ctx->arena, result, withMetatable);
if (!simplified.blockedTypes.empty())
{
std::vector<TypeId> blockedTypes{};
blockedTypes.reserve(simplified.blockedTypes.size());
for (auto ty : simplified.blockedTypes)
blockedTypes.push_back(ty);
return {std::nullopt, Reduction::MaybeOk, std::move(blockedTypes), {}};
}
result = simplified.result;
}
return {result, Reduction::MaybeOk, {}, {}};
}
static TypeFunctionReductionResult<TypeId> getmetatableHelper(TypeId targetTy, const Location& location, NotNull<TypeFunctionContext> ctx)
{
targetTy = follow(targetTy);
std::optional<TypeId> result = std::nullopt;
bool erroneous = true;
if (auto table = get<TableType>(targetTy))
erroneous = false;
if (auto mt = get<MetatableType>(targetTy))
{
result = mt->metatable;
erroneous = false;
}
if (auto clazz = get<ExternType>(targetTy))
{
result = clazz->metatable;
erroneous = false;
}
if (auto primitive = get<PrimitiveType>(targetTy))
{
result = primitive->metatable;
erroneous = false;
}
if (auto singleton = get<SingletonType>(targetTy))
{
if (get<StringSingleton>(singleton))
{
auto primitiveString = get<PrimitiveType>(ctx->builtins->stringType);
result = primitiveString->metatable;
}
erroneous = false;
}
if (FFlag::LuauUpdateGetMetatableTypeSignature && get<AnyType>(targetTy))
{
// getmetatable<any> ~ any
result = targetTy;
erroneous = false;
}
if (erroneous)
return {std::nullopt, Reduction::Erroneous, {}, {}};
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> metatableMetamethod = findMetatableEntry(ctx->builtins, dummy, targetTy, "__metatable", location);
if (metatableMetamethod)
return {metatableMetamethod, Reduction::MaybeOk, {}, {}};
if (result)
return {result, Reduction::MaybeOk, {}, {}};
return {ctx->builtins->nilType, Reduction::MaybeOk, {}, {}};
}
TypeFunctionReductionResult<TypeId> getmetatableTypeFunction(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("getmetatable type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
const Location location = ctx->constraint ? ctx->constraint->location : Location{};
TypeId targetTy = follow(typeParams.at(0));
if (isPending(targetTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {targetTy}, {}};
if (auto ut = get<UnionType>(targetTy))
{
std::vector<TypeId> options{};
options.reserve(ut->options.size());
for (auto option : ut->options)
{
TypeFunctionReductionResult<TypeId> result = getmetatableHelper(option, location, ctx);
if (!result.result)
return result;
options.push_back(*result.result);
}
return {ctx->arena->addType(UnionType{std::move(options)}), Reduction::MaybeOk, {}, {}};
}
if (auto it = get<IntersectionType>(targetTy))
{
std::vector<TypeId> parts{};
parts.reserve(it->parts.size());
bool erroredWithUnknown = false;
for (auto part : it->parts)
{
TypeFunctionReductionResult<TypeId> result = getmetatableHelper(part, location, ctx);
if (!result.result)
{
// Don't immediately error if part is unknown
if (FFlag::LuauUpdateGetMetatableTypeSignature && get<UnknownType>(follow(part)))
{
erroredWithUnknown = true;
continue;
}
else
return result;
}
parts.push_back(*result.result);
}
// If all parts are unknown, return erroneous reduction
if (FFlag::LuauUpdateGetMetatableTypeSignature && erroredWithUnknown && parts.empty())
return {std::nullopt, Reduction::Erroneous, {}, {}};
if (FFlag::LuauUpdateGetMetatableTypeSignature && parts.size() == 1)
return {parts.front(), Reduction::MaybeOk, {}, {}};
return {ctx->arena->addType(IntersectionType{std::move(parts)}), Reduction::MaybeOk, {}, {}};
}
return getmetatableHelper(targetTy, location, ctx);
}
TypeFunctionReductionResult<TypeId> weakoptionalTypeFunc(
TypeId instance,
const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams,
NotNull<TypeFunctionContext> ctx
)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("weakoptional type function: encountered a type function instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId targetTy = follow(typeParams.at(0));
if (isPending(targetTy, ctx->solver))
return {std::nullopt, Reduction::MaybeOk, {targetTy}, {}};
if (is<NeverType>(instance))
return {ctx->builtins->nilType, Reduction::MaybeOk, {}, {}};
std::shared_ptr<const NormalizedType> targetNorm = ctx->normalizer->normalize(targetTy);
if (!targetNorm)
return {std::nullopt, Reduction::MaybeOk, {}, {}};
auto result = ctx->normalizer->isInhabited(targetNorm.get());
if (result == NormalizationResult::False)
return {ctx->builtins->nilType, Reduction::MaybeOk, {}, {}};
return {targetTy, Reduction::MaybeOk, {}, {}};
}
BuiltinTypeFunctions::BuiltinTypeFunctions()
: userFunc{"user", userDefinedTypeFunction}
, notFunc{"not", notTypeFunction}
, lenFunc{"len", lenTypeFunction}
, unmFunc{"unm", unmTypeFunction}
, addFunc{"add", addTypeFunction}
, subFunc{"sub", subTypeFunction}
, mulFunc{"mul", mulTypeFunction}
, divFunc{"div", divTypeFunction}
, idivFunc{"idiv", idivTypeFunction}
, powFunc{"pow", powTypeFunction}
, modFunc{"mod", modTypeFunction}
, concatFunc{"concat", concatTypeFunction}
, andFunc{"and", andTypeFunction, /*canReduceGenerics*/ true}
, orFunc{"or", orTypeFunction, /*canReduceGenerics*/ true}
, ltFunc{"lt", ltTypeFunction}
, leFunc{"le", leTypeFunction}
, eqFunc{"eq", eqTypeFunction}
, refineFunc{"refine", refineTypeFunction, /*canReduceGenerics*/ FFlag::LuauEagerGeneralization4}
, singletonFunc{"singleton", singletonTypeFunction}
, unionFunc{"union", unionTypeFunction}
, intersectFunc{"intersect", intersectTypeFunction}
, keyofFunc{"keyof", keyofTypeFunction}
, rawkeyofFunc{"rawkeyof", rawkeyofTypeFunction}
, indexFunc{"index", indexTypeFunction}
, rawgetFunc{"rawget", rawgetTypeFunction}
, setmetatableFunc{"setmetatable", setmetatableTypeFunction}
, getmetatableFunc{"getmetatable", getmetatableTypeFunction}
, weakoptionalFunc{"weakoptional", weakoptionalTypeFunc}
{
}
void BuiltinTypeFunctions::addToScope(NotNull<TypeArena> arena, NotNull<Scope> scope) const
{
// make a type function for a one-argument type function
auto mkUnaryTypeFunction = [&](const TypeFunction* tf)
{
TypeId t = arena->addType(GenericType{"T", Polarity::Negative});
GenericTypeDefinition genericT{t};
return TypeFun{{genericT}, arena->addType(TypeFunctionInstanceType{NotNull{tf}, {t}, {}})};
};
// make a type function for a two-argument type function with a default argument for the second type being the first
auto mkBinaryTypeFunctionWithDefault = [&](const TypeFunction* tf)
{
TypeId t = arena->addType(GenericType{"T", Polarity::Negative});
TypeId u = arena->addType(GenericType{"U", Polarity::Negative});
GenericTypeDefinition genericT{t};
GenericTypeDefinition genericU{u, {t}};
return TypeFun{{genericT, genericU}, arena->addType(TypeFunctionInstanceType{NotNull{tf}, {t, u}, {}})};
};
// make a two-argument type function without the default arguments
auto mkBinaryTypeFunction = [&](const TypeFunction* tf)
{
TypeId t = arena->addType(GenericType{"T", Polarity::Negative});
TypeId u = arena->addType(GenericType{"U", Polarity::Negative});
GenericTypeDefinition genericT{t};
GenericTypeDefinition genericU{u};
return TypeFun{{genericT, genericU}, arena->addType(TypeFunctionInstanceType{NotNull{tf}, {t, u}, {}})};
};
scope->exportedTypeBindings[lenFunc.name] = mkUnaryTypeFunction(&lenFunc);
scope->exportedTypeBindings[unmFunc.name] = mkUnaryTypeFunction(&unmFunc);
scope->exportedTypeBindings[addFunc.name] = mkBinaryTypeFunctionWithDefault(&addFunc);
scope->exportedTypeBindings[subFunc.name] = mkBinaryTypeFunctionWithDefault(&subFunc);
scope->exportedTypeBindings[mulFunc.name] = mkBinaryTypeFunctionWithDefault(&mulFunc);
scope->exportedTypeBindings[divFunc.name] = mkBinaryTypeFunctionWithDefault(&divFunc);
scope->exportedTypeBindings[idivFunc.name] = mkBinaryTypeFunctionWithDefault(&idivFunc);
scope->exportedTypeBindings[powFunc.name] = mkBinaryTypeFunctionWithDefault(&powFunc);
scope->exportedTypeBindings[modFunc.name] = mkBinaryTypeFunctionWithDefault(&modFunc);
scope->exportedTypeBindings[concatFunc.name] = mkBinaryTypeFunctionWithDefault(&concatFunc);
scope->exportedTypeBindings[ltFunc.name] = mkBinaryTypeFunctionWithDefault(&ltFunc);
scope->exportedTypeBindings[leFunc.name] = mkBinaryTypeFunctionWithDefault(&leFunc);
scope->exportedTypeBindings[eqFunc.name] = mkBinaryTypeFunctionWithDefault(&eqFunc);
scope->exportedTypeBindings[keyofFunc.name] = mkUnaryTypeFunction(&keyofFunc);
scope->exportedTypeBindings[rawkeyofFunc.name] = mkUnaryTypeFunction(&rawkeyofFunc);
if (FFlag::LuauNotAllBinaryTypeFunsHaveDefaults)
{
scope->exportedTypeBindings[indexFunc.name] = mkBinaryTypeFunction(&indexFunc);
scope->exportedTypeBindings[rawgetFunc.name] = mkBinaryTypeFunction(&rawgetFunc);
}
else
{
scope->exportedTypeBindings[indexFunc.name] = mkBinaryTypeFunctionWithDefault(&indexFunc);
scope->exportedTypeBindings[rawgetFunc.name] = mkBinaryTypeFunctionWithDefault(&rawgetFunc);
}
if (FFlag::LuauNotAllBinaryTypeFunsHaveDefaults)
scope->exportedTypeBindings[setmetatableFunc.name] = mkBinaryTypeFunction(&setmetatableFunc);
else
scope->exportedTypeBindings[setmetatableFunc.name] = mkBinaryTypeFunctionWithDefault(&setmetatableFunc);
scope->exportedTypeBindings[getmetatableFunc.name] = mkUnaryTypeFunction(&getmetatableFunc);
}
const BuiltinTypeFunctions& builtinTypeFunctions()
{
static std::unique_ptr<const BuiltinTypeFunctions> result = std::make_unique<BuiltinTypeFunctions>();
return *result;
}
}