This change adds codegen runs to coverage config and adds O2/codegen
testing to CI.
Note that we don't run O2 combinations in coverage - it's better that we
see gaps in O2 coverage in compiler tests, as these are valuable for
validating codegen intricacies that are difficult to see from
conformance tests passing/failing.
* Reoptimized math.min/max/bit32 builtins assuming at least 2 arguments are used (1-2% lift on some benchmarks)
* Type errors that mention function types no longer have redundant parenthesis around return type
* Luau REPL now supports --compile=remarks which displays the source code with optimization remarks embedded as comments
* Builtin calls are slightly faster when called with 1-2 arguments (~1% improvement in some benchmarks)
- Fix rare type checking bugs with invalid generic types escaping the
module scope
- Fix type checking of variadic type packs in certain cases
- Implement type normalization, which resolves a large set of various
issues with unions/intersections in type checker
- Improve parse errors for trailing commas in function calls and type
lists
- Reduce profiling skew when using --profile with very high frequencies
- Improve performance of `lua_getinfo` (`debug.info`, `debug.traceback`
and profiling overhead are now 20% faster/smaller)
- Improve performance of polymorphic comparisons (1-2% lift on some
benchmarks)
- Improve performance of closure creation (1-2% lift on some benchmarks)
- Improve string comparison performance (4% lift on string sorting)
We don't need to run any cachegrind benchmarks in benchmark-dev, since
benchmark uses our new callgrind setup instead.
Also removes prototyping filters that we no longer need from all builds.
- Type aliases can no longer override primitive types; attempts to do
that will result in a type error
- Fix misleading type error messages for mismatches in expression list
length during assignment
- Fix incorrect type name display in certain cases
- setmetatable/getmetatable are now ~2x faster
- tools/perfstat.py can be used to display statistics about profiles
captured via --profile switch
To my understanding lua_cleartable does not need GC barriers because
it's only removing elements and not modifying the stack. But I'm not a
GC expert so please correct if I'm wrong.
resolves#672
Co-authored-by: Petri Häkkinen <petrih@rmd.remedy.fi>
- Improve type error messages for argument count mismatch in certain
cases
- Fix type checking variadic returns when the type is incompatible which
type checked in certain cases
- Reduce size of upvalue objects by 8 bytes on 64-bit platforms
- Reduce I$ footprint of interpreter by 1.5KB
- Reduce GC pause during atomic stage for programs with a lot of threads
- Remove support for bytecode v2
Luau currently has the following functions in the C API for dealing with
tables without invoking metamethods:
lua_rawgetfield
lua_rawget
lua_rawgeti
lua_rawset
lua_rawseti
This change adds the missing function lua_rawsetfield for consistency
and because it's more efficient to use it in place of plain lua_rawset
which requires pushing the key and value separately.
Co-authored-by: Petri Häkkinen <petrih@rmd.remedy.fi>
Resolves#668
## The problem
Benchmarks jobs run concurrently for the different operating systems.
This means that when it comes time to push the benchmark results to [the
assigned benchmark results
repo](https://github.com/luau-lang/benchmark-data), there can be two
different jobs trying to push changes at the same time. In such a case,
one of the pushes will fail and we end up missing some benchmark results
data from the workflow run.
## The solution
Whenever a push fails, we need to retry the steps leading up to the push
(checking out the benchmark results repo, storing benchmark results,
pushing the results to [a specific
repo](https://github.com/luau-lang/benchmark-data)).
### Note
There are 3 push attempts before submitting to failure.
## TL;DR
This PR retries pushing benchmark results when they fail to get pushed
(often due to pushing from multiple jobs concurrently)
Co-authored-by: Jamie Kuppens <reshurum@gmail.com>
Co-authored-by: Ignacio Falk <flakolefluk@gmail.com>
- Remove type definitions of
`utf8.nfcnormalize`/`nfdnormalize`/`graphemes` that aren't supported by
standalone Luau library
- Add `lua_costatus` to retrieve extended thread status (similar to
`coroutine.status`)
- Improve GC sweeping performance (2-10% improvement on allocation-heavy
benchmarks)
Originally it was titled "Luau Recap: August 2022" but it got renamed to "Luau Recap: July & August 2022" and we just didn't fix the link here too. Also backports the title change to here too for consistency.
- Improve ComparisonPrecedence lint suggestions for three-way comparisons (X < Y < Z)
- Improve type checking stability
- Improve location information for errors when parsing invalid type annotations
- Compiler now generates bytecode version 3 in all configurations
- Improve performance of comparisons against numeric constants on AArch64
We've had this restriction in the original RFC, but decided to remove it afterwards. This change puts the restriction back - we need to work through some implications of future support for string-based DSLs together with interpolated strings which may or may not change the behavior here, for example to allow something like
```
local fragment = xml `
<img src="{self.url}" />
`
```
- Fix DeprecatedGlobal warning text in cases when the global is deprecated without a suggested alternative
- Fix an off-by-one error in type error text for incorrect use of string.format
- Reduce stack consumption further during parsing, hopefully eliminating stack overflows during parsing/compilation for good
- Mark interpolated string support as experimental (requires --fflags=LuauInterpolatedStringBaseSupport to enable)
- Simplify garbage collection treatment of upvalues, reducing cache misses during sweeping stage and reducing the cost of upvalue assignment (SETUPVAL); supersedes #643
- Simplify garbage collection treatment of sleeping threads
- Simplify sweeping of alive threads, reducing cache misses during sweeping stage
- Simplify management of string buffers, removing redundant linked list operations