* Fixed `Frontend::markDirty` not working on modules that were not
typechecked yet
* Fixed generic variadic function unification succeeding when it should
have reported an error
New Type Solver:
* Implemented semantic subtyping check for function types
Native Code Generation:
* Improved performance of numerical loops with a constant step
* Simplified IR for `bit32.extract` calls extracting first/last bits
* Improved performance of NaN checks
- Updated Roblox copyright to 2023
- Floor division operator `//` (implements #832)
- Autocomplete now shows `end` within `do` blocks
- Restore BraceType when using `Lexer::lookahead` (fixes#1019)
# New typechecker
- Subtyping tests between metatables and tables
- Subtyping tests between string singletons and tables
- Subtyping tests for class types
# Native codegen
- Fixed macOS test failure (wrong spill restore offset)
- Fixed clobbering of non-volatile xmm registers on Windows
- Fixed wrong storage location of SSA reg spills
- Implemented A64 support for add/sub extended
- Eliminated zextReg from A64 lowering
- Remove identical table slot lookups
- Propagate values from predecessor into the linear block
- Disabled reuse slot optimization
- Keep `LuaNode::val` check for nil when optimizing `CHECK_SLOT_MATCH`
- Implemented IR translation of `table.insert` builtin
- Fixed mmap error handling on macOS/Linux
# Tooling
- Used `|` as a column separator instead of `+` in `bench.py`
- Added a `table.sort` micro-benchmark
- Switched `libprotobuf-mutator` to a less problematic version
* Progress toward a diffing algorithm for types. We hope that this will
be useful for writing clearer error messages.
* Add a missing recursion limiter in `Unifier::tryUnifyTables`. This was
causing a crash in certain situations.
* Luau heap graph enumeration improvements:
* Weak references are not reported
* Added tag as a fallback name of non-string table links
* Included top Luau function information in thread name to understand
where thread might be suspended
* Constant folding for `math.pi` and `math.huge` at -O2
* Optimize `string.format` and `%*`
* This change makes string interpolation 1.5x-2x faster depending on the
number and type of formatted components, assuming a few are using
primitive types, and reduces associated GC pressure.
New type checker:
* Initial work toward tracking the upper and lower bounds of types
accurately.
Native code generation (JIT):
* Add IrCmd::CHECK_TRUTHY for improved assert fast-calls
* Do not compute type map for modules without types
* Capture metatable+readonly state for NEW_TABLE IR instructions
* Replace JUMP_CMP_ANY with CMP_ANY and existing JUMP_EQ_INT
* Add support for exits to VM with reentry lock in VmExit
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
* Added support for async typechecking cancellation using a token passed
through frontend options
* Added luaC_enumheap for building debug tools that need a graph of Luau
heap
In our new typechecker:
* Errors or now suppressed when checking property lookup of
error-suppressing unions
In our native code generation (jit):
* Fixed unhandled value type in NOT_ANY lowering
* Fast-call tag checks will exit to VM on failure, instead of relying on
a native fallback
* Added vector type to the type information
* Eliminated redundant direct jumps across dead blocks
* Debugger APIs are now disabled for call frames executing natively
* Implemented support for unwind registration on macOS 14
* Fixed indexing table intersections using `x["prop"]` syntax:
https://github.com/Roblox/luau/pull/971
* Add console output codepage for Windows:
https://github.com/Roblox/luau/pull/967
* Added `Frontend::parse` for a fast source graph preparation
* luau_load should check GC
* Work toward a type-diff system for nicer error messages
New Solver
* Correctly suppress errors in more cases
* Further improvements to typechecking of function calls and return
statements
* Crash fixes
* Propagate refinements drawn from the condition of a while loop into
the loop body
JIT
* Fix accidental bailout for math.frexp/modf/sign in A64
* Work toward bringing type annotation info in
* Do not propagate Luau IR constants of wrong type into load
instructions
* CHECK_SAFEENV exits to VM on failure
* Implement error handling in A64 reg allocator
* Inline the string.len builtin
* Do not enter native code of a function if arguments don’t match
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
* Optimized operations like instantiation and module export for very
large types
In our new typechecker:
* Typechecking of function calls was rewritten to handle more cases
correctly
* Fixed a crash that can happen after self-referential type is exported
from a module
* Fixed a false positive error in string comparison
* Added handling of `for...in` variable type annotations and fixed
issues with the iterator call inside
* Self-referential 'hasProp' and 'setProp' constraints are now handled
correctly
In our native code generation (jit):
* Added '--target' argument to luau-compile to test multiple
architectures different from host architecture
* GC barrier tag check is skipped if type is already known to be
GC-collectable
* Added GET_TYPE/GET_TYPEOF instructions for type/typeof fast-calls
* Improved code size of interrupt handlers on X64
* `Luau.Analyze.CLI` now has experimental support for concurrent type
checking. Use the option `-jN` where `N` is the number of threads to
spawn.
* Improve typechecking performance by ~17% by making the function
`Luau::follow` much more efficient.
* Tighten up the type of `os.date`
* Removed `ParseOptions::allowTypeAnnotations` and
`ParseOptions::supportContinueStatement`
New solver
* Improve the reliability of function overload resolution
* More work toward supporting parallel type checking
* Fix a bug in inference of `==` and `~=` which would erroneously infer
that the operands were `boolean`
* Better error reporting when `for...in` loops are used incorrectly.
CodeGen
* Fix unwind registration when libunwind is used on Linux
* Fixed replaced IR instruction use count
* Convert X64 unwind info generation to standard prologue
* Implement A64 unwind info support for Dwarf2
* Live in/out data for linear blocks is now created
* Add side-exit VM register requirements to the IR dump
* Reuse ConstPropState between block chains
* Remove redundant base update
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
* Added a limit on how many instructions the Compiler can safely produce
(reported by @TheGreatSageEqualToHeaven)
C++ API Changes:
* With work started on read-only and write-only properties,
`Property::type` member variable has been replaced with `TypeId type()`
and `setType(TypeId)` functions.
* New `LazyType` unwrap callback now has a `void` return type, all
that's required from the callback is to write into `unwrapped` field.
In our work on the new type solver, the following issues were fixed:
* Work has started to support https://github.com/Roblox/luau/pull/77 and
https://github.com/Roblox/luau/pull/79
* Refinements are no longer applied on l-values, removing some
false-positive errors
* Improved overload resolution against expected result type
* `Frontend::prepareModuleScope` now works in the new solver
* Cofinite strings are now comparable
And these are the changes in native code generation (JIT):
* Fixed MIN_NUM and MAX_NUM constant fold when one of the arguments is
NaN
* Added constant folding for number conversions and bit operations
* Value spilling and rematerialization is now supported on arm64
* Improved FASTCALL2K IR generation to support second argument constant
* Added value numbering and load/store propagation optimizations
* Added STORE_VECTOR on arm64, completing the IR lowering on this target
* Work toward affording parallel type checking
* The interface to `LazyType` has changed:
* `LazyType` now takes a second callback that is passed the `LazyType&`
itself. This new callback is responsible for populating the field
`TypeId LazyType::unwrapped`. Multithreaded implementations should
acquire a lock in this callback.
* Modules now retain their `humanReadableNames`. This reduces the number
of cases where type checking has to call back to a `ModuleResolver`.
* https://github.com/Roblox/luau/pull/902
* Add timing info to the Luau REPL compilation output
We've also fixed some bugs and crashes in the new solver as we march
toward readiness.
* Thread ICEs (Internal Compiler Errors) back to the Frontend properly
* Refinements are no longer applied to lvalues
* More miscellaneous stability improvements
Lots of activity in the new JIT engine:
* Implement register spilling/restore for A64
* Correct Luau IR value restore location tracking
* Fixed use-after-free in x86 register allocator spill restore
* Use btz for bit tests
* Finish branch assembly support for A64
* Codesize and performance improvements for A64
* The bit32 library has been implemented for arm and x64
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
* Fixed exported types not being suggested in autocomplete
* `T...` is now convertible to `...any` (Fixes
https://github.com/Roblox/luau/issues/767)
* Fixed issue with `T?` not being convertible to `T | T` or `T?`
(sometimes when internal pointer identity is different)
* Fixed potential crash in missing table key error suggestion to use a
similar existing key
* `lua_topointer` now returns a pointer for strings
C++ API Changes:
* `prepareModuleScope` callback has moved from TypeChecker to Frontend
* For LSPs, AstQuery functions (and `isWithinComment`) can be used
without full Frontend data
A lot of changes in our two experimental components as well.
In our work on the new type-solver, the following issues were fixed:
* Fixed table union and intersection indexing
* Correct custom type environments are now used
* Fixed issue with values of `free & number` type not accepted in
numeric operations
And these are the changes in native code generation (JIT):
* arm64 lowering is almost complete with support for 99% of IR commands
and all fastcalls
* Fixed x64 assembly encoding for extended byte registers
* More external x64 calls are aware of register allocator
* `math.min`/`math.max` with more than 2 arguments are now lowered to IR
as well
* Fixed correctness issues with `math` library calls with multiple
results in variadic context and with x64 register conflicts
* x64 register allocator learnt to restore values from VM memory instead
of always using stack spills
* x64 exception unwind information now supports multiple functions and
fixes function start offset in Dwarf2 info
* `table.sort` was improved further. It now guarentees N*log(N) time
complexity in the worst case.
* Fix https://github.com/Roblox/luau/issues/880
We are also working on fixing final bugs and crashes in the new type
solver.
On the CodeGen front we have a few things going on:
* We have a smarter register allocator for the x86 JIT
* We lower more instructions on arm64
* The vector constructor builtin is now translated to IR
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
Once again, all of our changes this week are for new type solver and the
JIT.
In the new type solver, we fixed cyclic type alias handling and multiple
stability issues.
In the JIT, our main progress was for arm64, where, after lowering 36%
of instructions, we start seeing first Luau functions executing
natively.
For x64, we performed code cleanup and refactoring to allow for future
optimizations.
All of our changes this week have been focused on the new type solver
and the JIT.
As we march toward feature parity with the old solver, we've tightened
up a bunch of lingering issues with overload resolution, unsealed
tables, and type normalization. We've also fixed a bunch of crashes and
assertion failures in the new solver.
On the JIT front, we've started work on an A64 backend, improved the IR
analysis in a bunch of cases, and implemented assembly generation for
the builtin functions `type()` and `typeof()`.
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
* A small subset of control-flow refinements have been added to
recognize type options that are unreachable after a
conditional/unconditional code block. (Fixes
https://github.com/Roblox/luau/issues/356).
Some examples:
```lua
local function f(x: string?)
if not x then return end
-- x is 'string' here
end
```
Throwing calls like `error` or `assert(false)` instead of 'return' are
also recognized.
Existing complex refinements like type/typeof and tagged union checks
are expected to work, among others.
To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to
be removed from `ExperimentalFlags.h`.
If will become enabled unconditionally in the near future.
* Linter has been integrated into the typechecker analysis so that
type-aware lint warnings can work in any mode
`Frontend::lint` methods were deprecated, `Frontend::check` has to be
used instead with `runLintChecks` option set.
Resulting lint warning are located inside `CheckResult`.
* Fixed large performance drop and increased memory consumption when
array is filled at an offset (Fixes
https://github.com/Roblox/luau/issues/590)
* Part of [Type error suppression
RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md)
was implemented making subtyping checks with `any` type transitive.
---
In our work on the new type-solver:
* `--!nocheck` mode no longer reports type errors
* New solver will not be used for `--!nonstrict` modules until all
issues with strict mode typechecking are fixed
* Added control-flow aware type refinements mentioned earlier
In native code generation:
* `LOP_NAMECALL` has been translated to IR
* `type` and `typeof` builtin fastcalls have been translated to
IR/assembly
* Additional steps were taken towards arm64 support
* Fixed incorrect lexeme generated for string parts in the middle of an
interpolated string (Fixes https://github.com/Roblox/luau/issues/744)
* DeprecatedApi lint can report some issues without type inference
information
* Fixed performance of autocomplete requests when suggestions have large
intersection types (Solves
https://github.com/Roblox/luau/discussions/847)
* Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC:
Deprecate
table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md))
* With -O2 optimization level, we now optimize builtin calls based on
known argument/return count.
Note that this change can be observable if `getfenv/setfenv` is used to
substitute a builtin, especially if arity is different.
Fastcall heavy tests show a 1-2% improvement.
* Luau can now be built with clang-cl (Fixes
https://github.com/Roblox/luau/issues/736)
We also made many improvements to our experimental components.
For our new type solver:
* Overhauled data flow analysis system, fixed issues with 'repeat'
loops, global variables and type annotations
* Type refinements now work on generic table indexing with a string
literal
* Type refinements will properly track potentially 'nil' values (like
t[x] for a missing key) and their further refinements
* Internal top table type is now isomorphic to `{}` which fixes issues
when `typeof(v) == 'table'` type refinement is handled
* References to non-existent types in type annotations no longer resolve
to 'error' type like in old solver
* Improved handling of class unions in property access expressions
* Fixed default type packs
* Unsealed tables can now have metatables
* Restored expected types for function arguments
And for native code generation:
* Added min and max IR instructions mapping to vminsd/vmaxsd on x64
* We now speculatively extract direct execution fast-paths based on
expected types of expressions which provides better optimization
opportunities inside a single basic block
* Translated existing math fastcalls to IR form to improve tag guard
removal and constant propagation
We've made a few small changes to reduce the amount of stack we use when
typechecking nested method calls (eg `foo:bar():baz():quux()`).
We've also fixed a small bytecode compiler issue that caused us to emit
redundant jump instructions in code that conditionally uses `break` or
`continue`.
On the new solver, we've switched to a new, better way to handle
augmentations to unsealed tables. We've also made some substantial
improvements to type inference and error reporting on function calls.
These things should both be on par with the old solver now.
The main improvements to the native code generator have been elimination
of some redundant type tag checks. Also, we are starting to inline
particular fastcalls directly to IR.
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>