Add a decision procedure for subtyping to the prototype

This commit is contained in:
ajeffrey@roblox.com 2022-04-07 17:31:21 -05:00
parent dc32a3253e
commit f263440720

View file

@ -75,6 +75,12 @@ language-comp (function-err t) (function-err p) (function-err q) = language-comp
<:-impl-¬≮: : {T U} (T <: U) ¬(T ≮: U)
<:-impl-¬≮: p (witness t q r) = language-comp t r (p t q)
-- if T <: U then ¬Language U ⊆ ¬Language T
<:-impl-⊇ : {T U} (T <: U) t ¬Language U t ¬Language T t
<:-impl-⊇ {T} p t ¬Ut with dec-language T t
<:-impl-⊇ p t ¬Ut | Left ¬Tt = ¬Tt
<:-impl-⊇ p t ¬Ut | Right Tt = CONTRADICTION (language-comp t ¬Ut (p t Tt))
-- reflexivity
≮:-refl : {T} ¬(T ≮: T)
:-refl (witness t p q) = language-comp t q p
@ -133,6 +139,20 @@ function-ok-tgt (right p) = right (function-ok-tgt p)
function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂)
function-ok-tgt any = any
tgt-¬function-ok : {T t} (¬Language (tgt T) t) ¬Language T (function-ok t)
tgt-¬function-ok {T = nil} p = scalar-function-ok nil
tgt-¬function-ok {T = T₁ T₂} p = function-ok p
tgt-¬function-ok {T = none} p = none
tgt-¬function-ok {T = any} (scalar-scalar s () p)
tgt-¬function-ok {T = any} (scalar-function ())
tgt-¬function-ok {T = any} (scalar-function-ok ())
tgt-¬function-ok {T = boolean} p = scalar-function-ok boolean
tgt-¬function-ok {T = number} p = scalar-function-ok number
tgt-¬function-ok {T = string} p = scalar-function-ok string
tgt-¬function-ok {T = T₁ T₂} (p₁ , p₂) = (tgt-¬function-ok p₁ , tgt-¬function-ok p₂)
tgt-¬function-ok {T = T₁ T₂} (left p) = left (tgt-¬function-ok p)
tgt-¬function-ok {T = T₁ T₂} (right p) = right (tgt-¬function-ok p)
skalar-function-ok : {t} (¬Language skalar (function-ok t))
skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean)))
@ -151,6 +171,9 @@ none-tgt-≮: (witness function p (q₁ , scalar-function ()))
none-tgt-≮: (witness (function-ok t) p (q₁ , function-ok q₂)) = witness t (function-ok-tgt p) q₂
none-tgt-≮: (witness (function-err (scalar s)) p (q₁ , function-err (scalar ())))
tgt-≮: : {T U} (tgt T ≮: tgt U) (T ≮: U)
tgt-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (tgt-¬function-ok q)
-- Properties of src
function-err-src : {T t} (¬Language (src T) t) Language T (function-err t)
function-err-src {T = nil} none = scalar-function-err nil
@ -208,6 +231,9 @@ any-src-≮: r (witness (function-ok (scalar s)) p (function-ok (scalar-scalar s
any-src-≮: r (witness (function-ok (function-ok _)) p (function-ok (scalar-function-ok ())))
any-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p)
src-≮: : {T U} (src T ≮: src U) (U ≮: T)
src-≮: (witness t p q) = witness (function-err t) (function-err-src q) (¬function-err-src p)
-- Properties of any and none
any-≮: : {T U} (T ≮: U) (any ≮: U)
any-≮: (witness t p q) = witness t any q
@ -221,6 +247,56 @@ any-≮:-none = witness (scalar nil) any none
function-≮:-none : {T U} ((T U) ≮: none)
function-≮:-none = witness function function none
-- Subtyping is decidable
-- Honest, this terminates (because src T and tgt T decrease the depth of the type)
{-# TERMINATING #-}
dec-subtyping : T U Either (T ≮: U) (T <: U)
dec-subtyping T U = result where
P : Tree Set
P t = Either (¬Language T t) (Language U t)
Q : Tree Set
Q t = Either (T ≮: U) (P t)
decQ : t Q t
decQ t with dec-language T t | dec-language U t
decQ t | Left ¬Tt | _ = Right (Left ¬Tt)
decQ t | Right Tt | Left ¬Ut = Left (witness t Tt ¬Ut)
decQ t | Right _ | Right Ut = Right (Right Ut)
lemma : P(scalar number) P(scalar boolean) P(scalar nil) P(scalar string) P(function) (src U <: src T) (tgt T <: tgt U) (T <: U)
lemma (Left ¬Tt) boolP nilP stringP funP srcy tgty (scalar number) Tt = CONTRADICTION (language-comp (scalar number) ¬Tt Tt)
lemma (Right Ut) boolP nilP stringP funP srcy tgty (scalar number) Tt = Ut
lemma numP (Left ¬Tt) nilP stringP funP srcy tgty (scalar boolean) Tt = CONTRADICTION (language-comp (scalar boolean) ¬Tt Tt)
lemma numP (Right Ut) nilP stringP funP srcy tgty (scalar boolean) Tt = Ut
lemma numP boolP (Left ¬Tt) stringP funP srcy tgty (scalar nil) Tt = CONTRADICTION (language-comp (scalar nil) ¬Tt Tt)
lemma numP boolP (Right Ut) stringP funP srcy tgty (scalar nil) Tt = Ut
lemma numP boolP nilP (Left ¬Tt) funP srcy tgty (scalar string) Tt = CONTRADICTION (language-comp (scalar string) ¬Tt Tt)
lemma numP boolP nilP (Right Ut) funP srcy tgty (scalar string) Tt = Ut
lemma numP boolP nilP stringP (Left ¬Tt) srcy tgty function Tt = CONTRADICTION (language-comp function ¬Tt Tt)
lemma numP boolP nilP stringP (Right Ut) srcy tgty function Tt = Ut
lemma numP boolP nilP stringP funP srcy tgty (function-ok t) Tt = tgt-function-ok (tgty t (function-ok-tgt Tt))
lemma numP boolP nilP stringP funP srcy tgty (function-err t) Tt = function-err-src (<:-impl-⊇ srcy t (src-¬function-err Tt))
result : Either (T ≮: U) (T <: U)
result with decQ (scalar number)
result | Left r = Left r
result | Right numP with decQ (scalar boolean)
result | Right numP | Left r = Left r
result | Right numP | Right boolP with decQ (scalar nil)
result | Right numP | Right boolP | Left r = Left r
result | Right numP | Right boolP | Right nilP with decQ (scalar string)
result | Right numP | Right boolP | Right nilP | Left r = Left r
result | Right numP | Right boolP | Right nilP | Right strP with decQ (function)
result | Right numP | Right boolP | Right nilP | Right strP | Left r = Left r
result | Right numP | Right boolP | Right nilP | Right strP | Right funP with dec-subtyping (src U) (src T)
result | Right numP | Right boolP | Right nilP | Right strP | Right funP | Left r = Left (src-≮: r)
result | Right numP | Right boolP | Right nilP | Right strP | Right funP | Right srcy with dec-subtyping (tgt T) (tgt U)
result | Right numP | Right boolP | Right nilP | Right strP | Right funP | Right srcy | Left r = Left (tgt-≮: r)
result | Right numP | Right boolP | Right nilP | Right strP | Right funP | Right srcy | Right tgty = Right (lemma numP boolP nilP strP funP srcy tgty)
-- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf)
-- defines a "set-theoretic" model (sec 2.5)
-- Unfortunately we don't quite have this property, due to uninhabited types,