|
|
@ -9,12 +9,12 @@ open import Luau.Heap using (Heap; Object; function_is_end; defn; alloc; ok; nex
|
|
|
|
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴᴱ; Warningᴴᴮ; UnallocatedAddress; UnboundVariable; app₀; app₁; app₂; block; return; local₀; local₁; local₂; function₀; function₁; function₂; heap; expr; addr)
|
|
|
|
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴᴱ; Warningᴴᴮ; UnallocatedAddress; UnboundVariable; app₀; app₁; app₂; block; return; local₀; local₁; local₂; function₀; function₁; function₂; heap; expr; addr)
|
|
|
|
open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_)
|
|
|
|
open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_)
|
|
|
|
open import Luau.Syntax using (Expr; yes; var; var_∈_; _⟨_⟩∈_; _$_; addr; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg)
|
|
|
|
open import Luau.Syntax using (Expr; yes; var; var_∈_; _⟨_⟩∈_; _$_; addr; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg)
|
|
|
|
open import Luau.Type using (Type; strict; nil; _⇒_; bot; tgt)
|
|
|
|
open import Luau.Type using (Type; strict; nil; _⇒_; bot; tgt; _≡ᵀ_; _≡ᴹᵀ_)
|
|
|
|
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orBot)
|
|
|
|
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orBot)
|
|
|
|
open import Luau.Value using (val; nil; addr)
|
|
|
|
open import Luau.Value using (val; nil; addr)
|
|
|
|
open import Luau.Var using (_≡ⱽ_)
|
|
|
|
open import Luau.Var using (_≡ⱽ_)
|
|
|
|
open import Luau.Addr using (_≡ᴬ_)
|
|
|
|
open import Luau.Addr using (_≡ᴬ_)
|
|
|
|
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ⊕-lookup-miss) renaming (_[_] to _[_]ⱽ)
|
|
|
|
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ⊕-lookup-miss; ⊕-swap; ⊕-over) renaming (_[_] to _[_]ⱽ)
|
|
|
|
open import Luau.VarCtxt using (VarCtxt; ∅)
|
|
|
|
open import Luau.VarCtxt using (VarCtxt; ∅)
|
|
|
|
open import Properties.Remember using (remember; _,_)
|
|
|
|
open import Properties.Remember using (remember; _,_)
|
|
|
|
open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
|
|
|
|
open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
|
|
|
@ -26,28 +26,35 @@ open import Luau.RuntimeError using (RuntimeErrorᴱ; RuntimeErrorᴮ; NilIsNotA
|
|
|
|
|
|
|
|
|
|
|
|
src = Luau.Type.src strict
|
|
|
|
src = Luau.Type.src strict
|
|
|
|
|
|
|
|
|
|
|
|
_≡ᵀ_ : ∀ (T U : Type) → Dec(T ≡ U)
|
|
|
|
|
|
|
|
_≡ᵀ_ = {!!}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_≡ᴹᵀ_ : ∀ (T U : Maybe Type) → Dec(T ≡ U)
|
|
|
|
|
|
|
|
_≡ᴹᵀ_ = {!!}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data _⊑_ (H : Heap yes) : Heap yes → Set where
|
|
|
|
data _⊑_ (H : Heap yes) : Heap yes → Set where
|
|
|
|
refl : (H ⊑ H)
|
|
|
|
refl : (H ⊑ H)
|
|
|
|
snoc : ∀ {H′ H″ a V} → (H ⊑ H′) → (H″ ≡ᴴ H′ ⊕ a ↦ V) → (H ⊑ H″)
|
|
|
|
snoc : ∀ {H′ a V} → (H′ ≡ᴴ H ⊕ a ↦ V) → (H ⊑ H′)
|
|
|
|
|
|
|
|
|
|
|
|
warning-⊑ : ∀ {H H′ Γ T M} {D : Γ ⊢ᴱ M ∈ T} → (H ⊑ H′) → (Warningᴱ H′ D) → Warningᴱ H D
|
|
|
|
rednᴱ⊑ : ∀ {H H′ M M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (H ⊑ H′)
|
|
|
|
warning-⊑ = {!!}
|
|
|
|
rednᴮ⊑ : ∀ {H H′ B B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (H ⊑ H′)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rednᴱ⊑ (function p) = snoc p
|
|
|
|
|
|
|
|
rednᴱ⊑ (app₁ s) = rednᴱ⊑ s
|
|
|
|
|
|
|
|
rednᴱ⊑ (app₂ p s) = rednᴱ⊑ s
|
|
|
|
|
|
|
|
rednᴱ⊑ (beta p q) = refl
|
|
|
|
|
|
|
|
rednᴱ⊑ (block s) = rednᴮ⊑ s
|
|
|
|
|
|
|
|
rednᴱ⊑ (return p) = refl
|
|
|
|
|
|
|
|
rednᴱ⊑ done = refl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rednᴮ⊑ (local s) = rednᴱ⊑ s
|
|
|
|
|
|
|
|
rednᴮ⊑ subst = refl
|
|
|
|
|
|
|
|
rednᴮ⊑ (function p) = snoc p
|
|
|
|
|
|
|
|
rednᴮ⊑ (return s) = rednᴱ⊑ s
|
|
|
|
|
|
|
|
|
|
|
|
data LookupResult (H : Heap yes) a V : Set where
|
|
|
|
data LookupResult (H : Heap yes) a V : Set where
|
|
|
|
just : (H [ a ]ᴴ ≡ just V) → LookupResult H a V
|
|
|
|
just : (H [ a ]ᴴ ≡ just V) → LookupResult H a V
|
|
|
|
nothing : (H [ a ]ᴴ ≡ nothing) → LookupResult H a V
|
|
|
|
nothing : (H [ a ]ᴴ ≡ nothing) → LookupResult H a V
|
|
|
|
|
|
|
|
|
|
|
|
lookup-⊑-just : ∀ {H H′ V} a → (H ⊑ H′) → (H′ [ a ]ᴴ ≡ just V) → LookupResult H a V
|
|
|
|
|
|
|
|
lookup-⊑-just = {!!}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lookup-⊑-nothing : ∀ {H H′} a → (H ⊑ H′) → (H′ [ a ]ᴴ ≡ nothing) → (H [ a ]ᴴ ≡ nothing)
|
|
|
|
lookup-⊑-nothing : ∀ {H H′} a → (H ⊑ H′) → (H′ [ a ]ᴴ ≡ nothing) → (H [ a ]ᴴ ≡ nothing)
|
|
|
|
lookup-⊑-nothing = {!!}
|
|
|
|
lookup-⊑-nothing {H} a refl p = p
|
|
|
|
|
|
|
|
lookup-⊑-nothing {H} a (snoc defn) p with a ≡ᴬ next H
|
|
|
|
|
|
|
|
lookup-⊑-nothing {H} a (snoc defn) p | yes refl = refl
|
|
|
|
|
|
|
|
lookup-⊑-nothing {H} a (snoc o) p | no q = trans (lookup-not-allocated o q) p
|
|
|
|
|
|
|
|
|
|
|
|
data OrWarningᴱ {Γ M T} (H : Heap yes) (D : Γ ⊢ᴱ M ∈ T) A : Set where
|
|
|
|
data OrWarningᴱ {Γ M T} (H : Heap yes) (D : Γ ⊢ᴱ M ∈ T) A : Set where
|
|
|
|
ok : A → OrWarningᴱ H D A
|
|
|
|
ok : A → OrWarningᴱ H D A
|
|
|
@ -65,29 +72,41 @@ data OrWarningᴴᴮ {Γ B T} H (D : Γ ⊢ᴴᴮ H ▷ B ∈ T) A : Set where
|
|
|
|
ok : A → OrWarningᴴᴮ H D A
|
|
|
|
ok : A → OrWarningᴴᴮ H D A
|
|
|
|
warning : Warningᴴᴮ H D → OrWarningᴴᴮ H D A
|
|
|
|
warning : Warningᴴᴮ H D → OrWarningᴴᴮ H D A
|
|
|
|
|
|
|
|
|
|
|
|
redn-⊑ : ∀ {H H′ M M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (H ⊑ H′)
|
|
|
|
|
|
|
|
redn-⊑ = {!!}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
⊕-overwrite : ∀ {Γ x y T U} → (x ≡ y) → ((Γ ⊕ x ↦ T) ⊕ y ↦ U) ≡ (Γ ⊕ y ↦ U)
|
|
|
|
|
|
|
|
⊕-overwrite = {!!}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
⊕-swap : ∀ {Γ x y T U} → (x ≢ y) → ((Γ ⊕ x ↦ T) ⊕ y ↦ U) ≡ ((Γ ⊕ y ↦ U) ⊕ x ↦ T)
|
|
|
|
|
|
|
|
⊕-swap = {!!}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
⊕-lookup : ∀ {Γ x y T} → (x ≢ y) → ((Γ ⊕ x ↦ T) [ y ]ⱽ) ≡ (Γ [ y ]ⱽ)
|
|
|
|
|
|
|
|
⊕-lookup = {!!}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
heap-weakeningᴱ : ∀ {H H′ M Γ} → (H ⊑ H′) → OrWarningᴱ H (typeCheckᴱ H Γ M) (typeOfᴱ H Γ M ≡ typeOfᴱ H′ Γ M)
|
|
|
|
heap-weakeningᴱ : ∀ {H H′ M Γ} → (H ⊑ H′) → OrWarningᴱ H (typeCheckᴱ H Γ M) (typeOfᴱ H Γ M ≡ typeOfᴱ H′ Γ M)
|
|
|
|
heap-weakeningᴮ : ∀ {H H′ B Γ} → (H ⊑ H′) → OrWarningᴮ H (typeCheckᴮ H Γ B) (typeOfᴮ H Γ B ≡ typeOfᴮ H′ Γ B)
|
|
|
|
heap-weakeningᴮ : ∀ {H H′ B Γ} → (H ⊑ H′) → OrWarningᴮ H (typeCheckᴮ H Γ B) (typeOfᴮ H Γ B ≡ typeOfᴮ H′ Γ B)
|
|
|
|
|
|
|
|
|
|
|
|
heap-weakeningᴱ = {!!}
|
|
|
|
heap-weakeningᴱ {M = nil} h = ok refl
|
|
|
|
heap-weakeningᴮ = {!!}
|
|
|
|
heap-weakeningᴱ {M = var x} h = ok refl
|
|
|
|
|
|
|
|
heap-weakeningᴱ {M = addr a} refl = ok refl
|
|
|
|
|
|
|
|
heap-weakeningᴱ {M = addr a} (snoc {a = b} defn) with a ≡ᴬ b
|
|
|
|
|
|
|
|
heap-weakeningᴱ {M = addr a} (snoc {a = a} defn) | yes refl = warning (UnallocatedAddress a refl)
|
|
|
|
|
|
|
|
heap-weakeningᴱ {M = addr a} (snoc {a = b} p) | no q = ok (cong orBot (cong typeOfᴹᴼ (lookup-not-allocated p q)))
|
|
|
|
|
|
|
|
heap-weakeningᴱ {M = M $ N} h with heap-weakeningᴱ h
|
|
|
|
|
|
|
|
heap-weakeningᴱ {M = M $ N} h | ok p = ok (cong tgt p)
|
|
|
|
|
|
|
|
heap-weakeningᴱ {M = M $ N} h | warning W = warning (app₁ W)
|
|
|
|
|
|
|
|
heap-weakeningᴱ {M = function f ⟨ var x ∈ T ⟩∈ U is B end} h = ok refl
|
|
|
|
|
|
|
|
heap-weakeningᴱ {M = block b is B end} h with heap-weakeningᴮ h
|
|
|
|
|
|
|
|
heap-weakeningᴱ {M = block b is B end} h | ok p = ok p
|
|
|
|
|
|
|
|
heap-weakeningᴱ {M = block b is B end} h | warning W = warning (block b W)
|
|
|
|
|
|
|
|
heap-weakeningᴮ {B = function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B} h with heap-weakeningᴮ h
|
|
|
|
|
|
|
|
heap-weakeningᴮ {B = function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B} h | ok p = ok p
|
|
|
|
|
|
|
|
heap-weakeningᴮ {B = function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B} h | warning W = warning (function₂ f W)
|
|
|
|
|
|
|
|
heap-weakeningᴮ {B = local var x ∈ T ← M ∙ B} h with heap-weakeningᴮ h
|
|
|
|
|
|
|
|
heap-weakeningᴮ {B = local var x ∈ T ← M ∙ B} h | ok p = ok p
|
|
|
|
|
|
|
|
heap-weakeningᴮ {B = local var x ∈ T ← M ∙ B} h | warning W = warning (local₂ W)
|
|
|
|
|
|
|
|
heap-weakeningᴮ {B = return M ∙ B} h with heap-weakeningᴱ h
|
|
|
|
|
|
|
|
heap-weakeningᴮ {B = return M ∙ B} h | ok p = ok p
|
|
|
|
|
|
|
|
heap-weakeningᴮ {B = return M ∙ B} h | warning W = warning (return W)
|
|
|
|
|
|
|
|
heap-weakeningᴮ {B = done} h = ok refl
|
|
|
|
|
|
|
|
|
|
|
|
bot-not-obj : ∀ O → bot ≢ typeOfᴼ O
|
|
|
|
bot-not-obj : ∀ O → bot ≢ typeOfᴼ O
|
|
|
|
bot-not-obj (function f ⟨ var x ∈ T ⟩∈ U is B end) ()
|
|
|
|
bot-not-obj (function f ⟨ var x ∈ T ⟩∈ U is B end) ()
|
|
|
|
|
|
|
|
|
|
|
|
typeOf-val-not-bot : ∀ {H Γ} v → OrWarningᴱ H (typeCheckᴱ H Γ (val v)) (bot ≢ typeOfᴱ H Γ (val v))
|
|
|
|
typeOf-val-not-bot : ∀ {H Γ} v → OrWarningᴱ H (typeCheckᴱ H Γ (val v)) (bot ≢ typeOfᴱ H Γ (val v))
|
|
|
|
typeOf-val-not-bot = {!!}
|
|
|
|
typeOf-val-not-bot nil = ok (λ ())
|
|
|
|
|
|
|
|
typeOf-val-not-bot {H = H} (addr a) with remember (H [ a ]ᴴ)
|
|
|
|
|
|
|
|
typeOf-val-not-bot {H = H} (addr a) | (just O , p) = ok (λ q → bot-not-obj O (trans q (cong orBot (cong typeOfᴹᴼ p))))
|
|
|
|
|
|
|
|
typeOf-val-not-bot {H = H} (addr a) | (nothing , p) = warning (UnallocatedAddress a p)
|
|
|
|
|
|
|
|
|
|
|
|
substitutivityᴱ : ∀ {Γ T H} M v x → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) M ≡ typeOfᴱ H Γ (M [ v / x ]ᴱ))
|
|
|
|
substitutivityᴱ : ∀ {Γ T H} M v x → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) M ≡ typeOfᴱ H Γ (M [ v / x ]ᴱ))
|
|
|
|
substitutivityᴱ-whenever-yes : ∀ {Γ T H} v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≡ typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (yes p)))
|
|
|
|
substitutivityᴱ-whenever-yes : ∀ {Γ T H} v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≡ typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (yes p)))
|
|
|
@ -107,10 +126,10 @@ substitutivityᴱ (block b is B end) v x p = substitutivityᴮ B v x p
|
|
|
|
substitutivityᴱ-whenever-yes v x x refl q = trans (cong orBot q) (sym (typeOfᴱⱽ v))
|
|
|
|
substitutivityᴱ-whenever-yes v x x refl q = trans (cong orBot q) (sym (typeOfᴱⱽ v))
|
|
|
|
substitutivityᴱ-whenever-no v x y p q = cong orBot ( sym (⊕-lookup-miss x y _ _ p))
|
|
|
|
substitutivityᴱ-whenever-no v x y p q = cong orBot ( sym (⊕-lookup-miss x y _ _ p))
|
|
|
|
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p with x ≡ⱽ f
|
|
|
|
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p with x ≡ⱽ f
|
|
|
|
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | yes q = substitutivityᴮ-unless-yes B v x f q p (⊕-overwrite q)
|
|
|
|
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | yes q = substitutivityᴮ-unless-yes B v x f q p (⊕-over q)
|
|
|
|
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | no q = substitutivityᴮ-unless-no B v x f q p (⊕-swap q)
|
|
|
|
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | no q = substitutivityᴮ-unless-no B v x f q p (⊕-swap q)
|
|
|
|
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p with x ≡ⱽ y
|
|
|
|
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p with x ≡ⱽ y
|
|
|
|
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p | yes q = substitutivityᴮ-unless-yes B v x y q p (⊕-overwrite q)
|
|
|
|
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p | yes q = substitutivityᴮ-unless-yes B v x y q p (⊕-over q)
|
|
|
|
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p | no q = substitutivityᴮ-unless-no B v x y q p (⊕-swap q)
|
|
|
|
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p | no q = substitutivityᴮ-unless-no B v x y q p (⊕-swap q)
|
|
|
|
substitutivityᴮ (return M ∙ B) v x p = substitutivityᴱ M v x p
|
|
|
|
substitutivityᴮ (return M ∙ B) v x p = substitutivityᴱ M v x p
|
|
|
|
substitutivityᴮ done v x p = refl
|
|
|
|
substitutivityᴮ done v x p = refl
|
|
|
@ -125,7 +144,7 @@ preservationᴱ (app₁ s) with preservationᴱ s
|
|
|
|
preservationᴱ (app₁ s) | ok p = ok (cong tgt p)
|
|
|
|
preservationᴱ (app₁ s) | ok p = ok (cong tgt p)
|
|
|
|
preservationᴱ (app₁ s) | warning (expr W) = warning (expr (app₁ W))
|
|
|
|
preservationᴱ (app₁ s) | warning (expr W) = warning (expr (app₁ W))
|
|
|
|
preservationᴱ (app₁ s) | warning (heap W) = warning (heap W)
|
|
|
|
preservationᴱ (app₁ s) | warning (heap W) = warning (heap W)
|
|
|
|
preservationᴱ (app₂ p s) with heap-weakeningᴱ (redn-⊑ s)
|
|
|
|
preservationᴱ (app₂ p s) with heap-weakeningᴱ (rednᴱ⊑ s)
|
|
|
|
preservationᴱ (app₂ p s) | ok q = ok (cong tgt q)
|
|
|
|
preservationᴱ (app₂ p s) | ok q = ok (cong tgt q)
|
|
|
|
preservationᴱ (app₂ p s) | warning W = warning (expr (app₁ W))
|
|
|
|
preservationᴱ (app₂ p s) | warning W = warning (expr (app₁ W))
|
|
|
|
preservationᴱ {H = H} (beta {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} {V = V} p refl) with remember (typeOfⱽ H V)
|
|
|
|
preservationᴱ {H = H} (beta {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} {V = V} p refl) with remember (typeOfⱽ H V)
|
|
|
@ -143,7 +162,7 @@ preservationᴱ (block {b = b} s) | warning (heap W) = warning (heap W)
|
|
|
|
preservationᴱ (return p) = ok refl
|
|
|
|
preservationᴱ (return p) = ok refl
|
|
|
|
preservationᴱ done = ok refl
|
|
|
|
preservationᴱ done = ok refl
|
|
|
|
|
|
|
|
|
|
|
|
preservationᴮ (local {x = var x ∈ T} s) with heap-weakeningᴮ (redn-⊑ s)
|
|
|
|
preservationᴮ (local {x = var x ∈ T} s) with heap-weakeningᴮ (rednᴱ⊑ s)
|
|
|
|
preservationᴮ (local {x = var x ∈ T} s) | ok p = ok p
|
|
|
|
preservationᴮ (local {x = var x ∈ T} s) | ok p = ok p
|
|
|
|
preservationᴮ (local {x = var x ∈ T} s) | warning W = warning (block (local₂ W))
|
|
|
|
preservationᴮ (local {x = var x ∈ T} s) | warning W = warning (block (local₂ W))
|
|
|
|
preservationᴮ {H = H} (subst {v = v}) with remember (typeOfⱽ H v)
|
|
|
|
preservationᴮ {H = H} (subst {v = v}) with remember (typeOfⱽ H v)
|
|
|
@ -153,7 +172,7 @@ preservationᴮ (subst {x = var x ∈ T} {v = v} {B = B}) | (just U , p) | no q
|
|
|
|
preservationᴮ (subst {x = var x ∈ T} {v = v}) | (nothing , p) with typeOf-val-not-bot v
|
|
|
|
preservationᴮ (subst {x = var x ∈ T} {v = v}) | (nothing , p) with typeOf-val-not-bot v
|
|
|
|
preservationᴮ (subst {x = var x ∈ T} {v = v}) | (nothing , p) | ok q = CONTRADICTION (q (sym (trans (typeOfᴱⱽ v) (cong orBot p))))
|
|
|
|
preservationᴮ (subst {x = var x ∈ T} {v = v}) | (nothing , p) | ok q = CONTRADICTION (q (sym (trans (typeOfᴱⱽ v) (cong orBot p))))
|
|
|
|
preservationᴮ (subst {x = var x ∈ T} {v = v}) | (nothing , p) | warning W = warning (block (local₁ W))
|
|
|
|
preservationᴮ (subst {x = var x ∈ T} {v = v}) | (nothing , p) | warning W = warning (block (local₁ W))
|
|
|
|
preservationᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) with heap-weakeningᴮ (snoc refl defn)
|
|
|
|
preservationᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) with heap-weakeningᴮ (snoc defn)
|
|
|
|
preservationᴮ (function {a = a} {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) | ok r = ok (trans r (substitutivityᴮ {T = S ⇒ T} B (addr a) f refl))
|
|
|
|
preservationᴮ (function {a = a} {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) | ok r = ok (trans r (substitutivityᴮ {T = S ⇒ T} B (addr a) f refl))
|
|
|
|
preservationᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) | warning W = warning (block (function₂ f W))
|
|
|
|
preservationᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} {B = B} defn) | warning W = warning (block (function₂ f W))
|
|
|
|
preservationᴮ (return s) with preservationᴱ s
|
|
|
|
preservationᴮ (return s) with preservationᴱ s
|
|
|
@ -176,30 +195,30 @@ reflect-substitutionᴱ (M $ N) v x p (app₀ q) = app₀ (λ s → q (trans (co
|
|
|
|
reflect-substitutionᴱ (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ M v x p W)
|
|
|
|
reflect-substitutionᴱ (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ M v x p W)
|
|
|
|
reflect-substitutionᴱ (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ N v x p W)
|
|
|
|
reflect-substitutionᴱ (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ N v x p W)
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) with (x ≡ⱽ y)
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) with (x ≡ⱽ y)
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-yes B v x y r p (⊕-overwrite r))))
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-yes B v x y r p (⊕-over r))))
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-no B v x y r p (⊕-swap r))))
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-no B v x y r p (⊕-swap r))))
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) with (x ≡ⱽ y)
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) with (x ≡ⱽ y)
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-overwrite r) W)
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-over r) W)
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W)
|
|
|
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W)
|
|
|
|
reflect-substitutionᴱ (block b is B end) v x p (block b W) = block b (reflect-substitutionᴮ B v x p W)
|
|
|
|
reflect-substitutionᴱ (block b is B end) v x p (block b W) = block b (reflect-substitutionᴮ B v x p W)
|
|
|
|
|
|
|
|
|
|
|
|
reflect-substitutionᴱ-whenever-no v x y p q (UnboundVariable y r) = UnboundVariable y (trans (⊕-lookup p) r)
|
|
|
|
reflect-substitutionᴱ-whenever-no v x y p q (UnboundVariable y r) = UnboundVariable y (trans (sym (⊕-lookup-miss x y _ _ p)) r)
|
|
|
|
reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) with trans p (cong typeOfᴹᴼ q)
|
|
|
|
reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) with trans p (cong typeOfᴹᴼ q)
|
|
|
|
reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) | ()
|
|
|
|
reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) | ()
|
|
|
|
|
|
|
|
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) with (x ≡ⱽ y)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) with (x ≡ⱽ y)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-yes C v x y r p (⊕-overwrite r))))
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-yes C v x y r p (⊕-over r))))
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-no C v x y r p (⊕-swap r))))
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-no C v x y r p (⊕-swap r))))
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) with (x ≡ⱽ y)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) with (x ≡ⱽ y)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes C v x y r p (⊕-overwrite r) W)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes C v x y r p (⊕-over r) W)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no C v x y r p (⊕-swap r) W)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no C v x y r p (⊕-swap r) W)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W) with (x ≡ⱽ f)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W) with (x ≡ⱽ f)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W)| yes r = function₂ f (reflect-substitutionᴮ-unless-yes B v x f r p (⊕-overwrite r) W)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W)| yes r = function₂ f (reflect-substitutionᴮ-unless-yes B v x f r p (⊕-over r) W)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W)| no r = function₂ f (reflect-substitutionᴮ-unless-no B v x f r p (⊕-swap r) W)
|
|
|
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W)| no r = function₂ f (reflect-substitutionᴮ-unless-no B v x f r p (⊕-swap r) W)
|
|
|
|
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₀ q) = local₀ (λ r → q (trans r (substitutivityᴱ M v x p)))
|
|
|
|
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₀ q) = local₀ (λ r → q (trans r (substitutivityᴱ M v x p)))
|
|
|
|
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₁ W) = local₁ (reflect-substitutionᴱ M v x p W)
|
|
|
|
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₁ W) = local₁ (reflect-substitutionᴱ M v x p W)
|
|
|
|
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) with (x ≡ⱽ y)
|
|
|
|
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) with (x ≡ⱽ y)
|
|
|
|
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) | yes r = local₂ (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-overwrite r) W)
|
|
|
|
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) | yes r = local₂ (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-over r) W)
|
|
|
|
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) | no r = local₂ (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W)
|
|
|
|
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) | no r = local₂ (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W)
|
|
|
|
reflect-substitutionᴮ (return M ∙ B) v x p (return W) = return (reflect-substitutionᴱ M v x p W)
|
|
|
|
reflect-substitutionᴮ (return M ∙ B) v x p (return W) = return (reflect-substitutionᴱ M v x p W)
|
|
|
|
|
|
|
|
|
|
|
@ -244,7 +263,7 @@ reflect-weakeningᴼ h (function₁ f W′) = function₁ f (reflect-weakening
|
|
|
|
reflectᴱ : ∀ {H H′ M M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴱ H′ (typeCheckᴱ H′ ∅ M′) → Warningᴴᴱ H (typeCheckᴴᴱ H ∅ M)
|
|
|
|
reflectᴱ : ∀ {H H′ M M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴱ H′ (typeCheckᴱ H′ ∅ M′) → Warningᴴᴱ H (typeCheckᴴᴱ H ∅ M)
|
|
|
|
reflectᴮ : ∀ {H H′ B B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴮ H′ (typeCheckᴮ H′ ∅ B′) → Warningᴴᴮ H (typeCheckᴴᴮ H ∅ B)
|
|
|
|
reflectᴮ : ∀ {H H′ B B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴮ H′ (typeCheckᴮ H′ ∅ B′) → Warningᴴᴮ H (typeCheckᴴᴮ H ∅ B)
|
|
|
|
|
|
|
|
|
|
|
|
reflectᴱ (app₁ s) (app₀ p) with preservationᴱ s | heap-weakeningᴱ (redn-⊑ s)
|
|
|
|
reflectᴱ (app₁ s) (app₀ p) with preservationᴱ s | heap-weakeningᴱ (rednᴱ⊑ s)
|
|
|
|
reflectᴱ (app₁ s) (app₀ p) | ok q | ok q′ = expr (app₀ (λ r → p (trans (trans (cong src (sym q)) r) q′)))
|
|
|
|
reflectᴱ (app₁ s) (app₀ p) | ok q | ok q′ = expr (app₀ (λ r → p (trans (trans (cong src (sym q)) r) q′)))
|
|
|
|
reflectᴱ (app₁ s) (app₀ p) | warning (expr W) | _ = expr (app₁ W)
|
|
|
|
reflectᴱ (app₁ s) (app₀ p) | warning (expr W) | _ = expr (app₁ W)
|
|
|
|
reflectᴱ (app₁ s) (app₀ p) | warning (heap W) | _ = heap W
|
|
|
|
reflectᴱ (app₁ s) (app₀ p) | warning (heap W) | _ = heap W
|
|
|
@ -252,13 +271,13 @@ reflectᴱ (app₁ s) (app₀ p) | _ | warning W = expr (app₂ W)
|
|
|
|
reflectᴱ (app₁ s) (app₁ W′) with reflectᴱ s W′
|
|
|
|
reflectᴱ (app₁ s) (app₁ W′) with reflectᴱ s W′
|
|
|
|
reflectᴱ (app₁ s) (app₁ W′) | heap W = heap W
|
|
|
|
reflectᴱ (app₁ s) (app₁ W′) | heap W = heap W
|
|
|
|
reflectᴱ (app₁ s) (app₁ W′) | expr W = expr (app₁ W)
|
|
|
|
reflectᴱ (app₁ s) (app₁ W′) | expr W = expr (app₁ W)
|
|
|
|
reflectᴱ (app₁ s) (app₂ W′) = expr (app₂ (reflect-weakeningᴱ (redn-⊑ s) W′))
|
|
|
|
reflectᴱ (app₁ s) (app₂ W′) = expr (app₂ (reflect-weakeningᴱ (rednᴱ⊑ s) W′))
|
|
|
|
reflectᴱ (app₂ p s) (app₀ p′) with heap-weakeningᴱ (redn-⊑ s) | preservationᴱ s
|
|
|
|
reflectᴱ (app₂ p s) (app₀ p′) with heap-weakeningᴱ (rednᴱ⊑ s) | preservationᴱ s
|
|
|
|
reflectᴱ (app₂ p s) (app₀ p′) | ok q | ok q′ = expr (app₀ (λ r → p′ (trans (trans (cong src (sym q)) r) q′)))
|
|
|
|
reflectᴱ (app₂ p s) (app₀ p′) | ok q | ok q′ = expr (app₀ (λ r → p′ (trans (trans (cong src (sym q)) r) q′)))
|
|
|
|
reflectᴱ (app₂ p s) (app₀ p′) | warning W | _ = expr (app₁ W)
|
|
|
|
reflectᴱ (app₂ p s) (app₀ p′) | warning W | _ = expr (app₁ W)
|
|
|
|
reflectᴱ (app₂ p s) (app₀ p′) | _ | warning (expr W) = expr (app₂ W)
|
|
|
|
reflectᴱ (app₂ p s) (app₀ p′) | _ | warning (expr W) = expr (app₂ W)
|
|
|
|
reflectᴱ (app₂ p s) (app₀ p′) | _ | warning (heap W) = heap W
|
|
|
|
reflectᴱ (app₂ p s) (app₀ p′) | _ | warning (heap W) = heap W
|
|
|
|
reflectᴱ (app₂ p s) (app₁ W′) = expr (app₁ (reflect-weakeningᴱ (redn-⊑ s) W′))
|
|
|
|
reflectᴱ (app₂ p s) (app₁ W′) = expr (app₁ (reflect-weakeningᴱ (rednᴱ⊑ s) W′))
|
|
|
|
reflectᴱ (app₂ p s) (app₂ W′) with reflectᴱ s W′
|
|
|
|
reflectᴱ (app₂ p s) (app₂ W′) with reflectᴱ s W′
|
|
|
|
reflectᴱ (app₂ p s) (app₂ W′) | heap W = heap W
|
|
|
|
reflectᴱ (app₂ p s) (app₂ W′) | heap W = heap W
|
|
|
|
reflectᴱ (app₂ p s) (app₂ W′) | expr W = expr (app₂ W)
|
|
|
|
reflectᴱ (app₂ p s) (app₂ W′) | expr W = expr (app₂ W)
|
|
|
@ -282,14 +301,14 @@ reflectᴮ (local s) (local₀ p) | warning (heap W) = heap W
|
|
|
|
reflectᴮ (local s) (local₁ W′) with reflectᴱ s W′
|
|
|
|
reflectᴮ (local s) (local₁ W′) with reflectᴱ s W′
|
|
|
|
reflectᴮ (local s) (local₁ W′) | heap W = heap W
|
|
|
|
reflectᴮ (local s) (local₁ W′) | heap W = heap W
|
|
|
|
reflectᴮ (local s) (local₁ W′) | expr W = block (local₁ W)
|
|
|
|
reflectᴮ (local s) (local₁ W′) | expr W = block (local₁ W)
|
|
|
|
reflectᴮ (local s) (local₂ W′) = block (local₂ (reflect-weakeningᴮ (redn-⊑ s) W′))
|
|
|
|
reflectᴮ (local s) (local₂ W′) = block (local₂ (reflect-weakeningᴮ (rednᴱ⊑ s) W′))
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = v}) W with just T ≡ᴹᵀ typeOfⱽ H v
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = v}) W with just T ≡ᴹᵀ typeOfⱽ H v
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = v}) W | yes p = block (local₂ (reflect-substitutionᴮ _ v x p W))
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = v}) W | yes p = block (local₂ (reflect-substitutionᴮ _ v x p W))
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = nil}) W | no p = block (local₀ λ r → p (cong just r))
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = nil}) W | no p = block (local₀ λ r → p (cong just r))
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = addr a}) W | no p with remember(H [ a ]ᴴ)
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = addr a}) W | no p with remember(H [ a ]ᴴ)
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = addr a}) W | no p | (nothing , q) = block (local₁ (UnallocatedAddress a q))
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = addr a}) W | no p | (nothing , q) = block (local₁ (UnallocatedAddress a q))
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = addr a}) W | no p | (just O , q) = block (local₀ (λ r → p (trans (cong just (trans r (cong orBot (cong typeOfᴹᴼ q)))) (cong typeOfᴹᴼ (sym q)))))
|
|
|
|
reflectᴮ (subst {H = H} {x = var x ∈ T} {v = addr a}) W | no p | (just O , q) = block (local₀ (λ r → p (trans (cong just (trans r (cong orBot (cong typeOfᴹᴼ q)))) (cong typeOfᴹᴼ (sym q)))))
|
|
|
|
reflectᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} defn) W = block (function₂ f (reflect-weakeningᴮ (snoc refl defn) (reflect-substitutionᴮ _ _ f refl W)))
|
|
|
|
reflectᴮ (function {F = f ⟨ var x ∈ S ⟩∈ T} defn) W = block (function₂ f (reflect-weakeningᴮ (snoc defn) (reflect-substitutionᴮ _ _ f refl W)))
|
|
|
|
reflectᴮ (return s) (return W′) with reflectᴱ s W′
|
|
|
|
reflectᴮ (return s) (return W′) with reflectᴱ s W′
|
|
|
|
reflectᴮ (return s) (return W′) | heap W = heap W
|
|
|
|
reflectᴮ (return s) (return W′) | heap W = heap W
|
|
|
|
reflectᴮ (return s) (return W′) | expr W = block (return W)
|
|
|
|
reflectᴮ (return s) (return W′) | expr W = block (return W)
|
|
|
@ -299,11 +318,11 @@ reflectᴴᴮ : ∀ {H H′ B B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warni
|
|
|
|
|
|
|
|
|
|
|
|
reflectᴴᴱ s (expr W′) = reflectᴱ s W′
|
|
|
|
reflectᴴᴱ s (expr W′) = reflectᴱ s W′
|
|
|
|
reflectᴴᴱ (function {a = a} p) (heap (addr b refl W′)) with b ≡ᴬ a
|
|
|
|
reflectᴴᴱ (function {a = a} p) (heap (addr b refl W′)) with b ≡ᴬ a
|
|
|
|
reflectᴴᴱ (function defn) (heap (addr a refl (function₀ f p))) | yes refl with heap-weakeningᴮ (snoc refl defn)
|
|
|
|
reflectᴴᴱ (function defn) (heap (addr a refl (function₀ f p))) | yes refl with heap-weakeningᴮ (snoc defn)
|
|
|
|
reflectᴴᴱ (function defn) (heap (addr a refl (function₀ f p))) | yes refl | ok r = expr (function₀ f λ q → p (trans q r))
|
|
|
|
reflectᴴᴱ (function defn) (heap (addr a refl (function₀ f p))) | yes refl | ok r = expr (function₀ f λ q → p (trans q r))
|
|
|
|
reflectᴴᴱ (function defn) (heap (addr a refl (function₀ f p))) | yes refl | warning W = expr (function₁ f W)
|
|
|
|
reflectᴴᴱ (function defn) (heap (addr a refl (function₀ f p))) | yes refl | warning W = expr (function₁ f W)
|
|
|
|
reflectᴴᴱ (function defn) (heap (addr a refl (function₁ f W′))) | yes refl = expr (function₁ f (reflect-weakeningᴮ (snoc refl defn) W′))
|
|
|
|
reflectᴴᴱ (function defn) (heap (addr a refl (function₁ f W′))) | yes refl = expr (function₁ f (reflect-weakeningᴮ (snoc defn) W′))
|
|
|
|
reflectᴴᴱ (function p) (heap (addr b refl W′)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ (snoc refl p) W′))
|
|
|
|
reflectᴴᴱ (function p) (heap (addr b refl W′)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ (snoc p) W′))
|
|
|
|
reflectᴴᴱ (app₁ s) (heap W′) with reflectᴴᴱ s (heap W′)
|
|
|
|
reflectᴴᴱ (app₁ s) (heap W′) with reflectᴴᴱ s (heap W′)
|
|
|
|
reflectᴴᴱ (app₁ s) (heap W′) | heap W = heap W
|
|
|
|
reflectᴴᴱ (app₁ s) (heap W′) | heap W = heap W
|
|
|
|
reflectᴴᴱ (app₁ s) (heap W′) | expr W = expr (app₁ W)
|
|
|
|
reflectᴴᴱ (app₁ s) (heap W′) | expr W = expr (app₁ W)
|
|
|
@ -323,11 +342,11 @@ reflectᴴᴮ (local {x = var x ∈ T} s) (heap W′) | heap W = heap W
|
|
|
|
reflectᴴᴮ (local {x = var x ∈ T} s) (heap W′) | expr W = block (local₁ W)
|
|
|
|
reflectᴴᴮ (local {x = var x ∈ T} s) (heap W′) | expr W = block (local₁ W)
|
|
|
|
reflectᴴᴮ (subst) (heap W′) = heap W′
|
|
|
|
reflectᴴᴮ (subst) (heap W′) = heap W′
|
|
|
|
reflectᴴᴮ (function {a = a} p) (heap (addr b refl W′)) with b ≡ᴬ a
|
|
|
|
reflectᴴᴮ (function {a = a} p) (heap (addr b refl W′)) with b ≡ᴬ a
|
|
|
|
reflectᴴᴮ (function defn) (heap (addr a refl (function₀ f p))) | yes refl with heap-weakeningᴮ (snoc refl defn)
|
|
|
|
reflectᴴᴮ (function defn) (heap (addr a refl (function₀ f p))) | yes refl with heap-weakeningᴮ (snoc defn)
|
|
|
|
reflectᴴᴮ (function defn) (heap (addr a refl (function₀ f p))) | yes refl | ok r = block (function₀ f (λ q → p (trans q r)))
|
|
|
|
reflectᴴᴮ (function defn) (heap (addr a refl (function₀ f p))) | yes refl | ok r = block (function₀ f (λ q → p (trans q r)))
|
|
|
|
reflectᴴᴮ (function defn) (heap (addr a refl (function₀ f p))) | yes refl | warning W = block (function₁ f W)
|
|
|
|
reflectᴴᴮ (function defn) (heap (addr a refl (function₀ f p))) | yes refl | warning W = block (function₁ f W)
|
|
|
|
reflectᴴᴮ (function defn) (heap (addr a refl (function₁ f W′))) | yes refl = block (function₁ f (reflect-weakeningᴮ (snoc refl defn) W′))
|
|
|
|
reflectᴴᴮ (function defn) (heap (addr a refl (function₁ f W′))) | yes refl = block (function₁ f (reflect-weakeningᴮ (snoc defn) W′))
|
|
|
|
reflectᴴᴮ (function p) (heap (addr b refl W′)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ (snoc refl p) W′))
|
|
|
|
reflectᴴᴮ (function p) (heap (addr b refl W′)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ (snoc p) W′))
|
|
|
|
reflectᴴᴮ (return s) (heap W′) with reflectᴴᴱ s (heap W′)
|
|
|
|
reflectᴴᴮ (return s) (heap W′) with reflectᴴᴱ s (heap W′)
|
|
|
|
reflectᴴᴮ (return s) (heap W′) | heap W = heap W
|
|
|
|
reflectᴴᴮ (return s) (heap W′) | heap W = heap W
|
|
|
|
reflectᴴᴮ (return s) (heap W′) | expr W = block (return W)
|
|
|
|
reflectᴴᴮ (return s) (heap W′) | expr W = block (return W)
|
|
|
|