mirror of
https://github.com/luau-lang/luau.git
synced 2025-05-04 10:33:46 +01:00
WIP
This commit is contained in:
parent
74b41606dd
commit
dec87d2922
5 changed files with 219 additions and 199 deletions
|
@ -19,8 +19,7 @@ open import Properties.Equality using (_≢_)
|
|||
-- Honest this terminates, since saturation maintains the depth of nested arrows
|
||||
{-# TERMINATING #-}
|
||||
dec-subtypingˢⁿ : ∀ {T U} → Scalar T → Normal U → Either (T ≮: U) (T <: U)
|
||||
dec-subtypingˢᶠᵒ : ∀ {F S T} → FunType F → Saturated F → FunType (S ⇒ T) → Either (F ≮: (S ⇒ T)) (F <:ᵒ (S ⇒ T))
|
||||
dec-subtypingˢᶠ : ∀ {F G} → FunType F → Saturated F → FunType G → Either (F ≮: G) (F <: G)
|
||||
dec-subtypingˢᶠ : ∀ {F G} → FunType F → Saturated F → FunType G → Either (F ≮: G) (F <:ᵒ G)
|
||||
dec-subtypingᶠ : ∀ {F G} → FunType F → FunType G → Either (F ≮: G) (F <: G)
|
||||
dec-subtypingᶠⁿ : ∀ {F U} → FunType F → Normal U → Either (F ≮: U) (F <: U)
|
||||
dec-subtypingⁿ : ∀ {T U} → Normal T → Normal U → Either (T ≮: U) (T <: U)
|
||||
|
@ -30,7 +29,7 @@ dec-subtypingˢⁿ T U with dec-language _ (scalar T)
|
|||
dec-subtypingˢⁿ T U | Left p = Left (witness (scalar T) (scalar T) p)
|
||||
dec-subtypingˢⁿ T U | Right p = Right (scalar-<: T p)
|
||||
|
||||
dec-subtypingˢᶠᵒ {F} {S} {T} Fᶠ (defn sat-∩ sat-∪) (Sⁿ ⇒ Tⁿ) = result (top Fᶠ (λ o → o)) where
|
||||
dec-subtypingˢᶠ {F} {S ⇒ T} Fᶠ (defn sat-∩ sat-∪) (Sⁿ ⇒ Tⁿ) = result (top Fᶠ (λ o → o)) where
|
||||
|
||||
data Top G : Set where
|
||||
|
||||
|
@ -91,7 +90,7 @@ dec-subtypingˢᶠᵒ {F} {S} {T} Fᶠ (defn sat-∩ sat-∪) (Sⁿ ⇒ Tⁿ) =
|
|||
result₀ : LargestSrc F → Either (F ≮: (S ⇒ T)) (F <:ᵒ (S ⇒ T))
|
||||
result₀ (no S₀ T₀ o₀ (witness t T₀t ¬Tt) tgt₀) = Left (witness (function-tgt t) (ov-language Fᶠ (λ o → function-tgt (tgt₀ o t T₀t))) (function-tgt ¬Tt))
|
||||
result₀ (yes S₀ T₀ o₀ T₀<:T src₀) with dec-subtypingⁿ Sⁿ (normal-overload-src Fᶠ o₀)
|
||||
result₀ (yes S₀ T₀ o₀ T₀<:T src₀) | Right S<:S₀ = Right (defn o₀ S<:S₀ T₀<:T)
|
||||
result₀ (yes S₀ T₀ o₀ T₀<:T src₀) | Right S<:S₀ = Right λ { here → defn o₀ S<:S₀ T₀<:T }
|
||||
result₀ (yes S₀ T₀ o₀ T₀<:T src₀) | Left (witness s Ss ¬S₀s) = Left (result₁ (smallest Fᶠ (λ o → o))) where
|
||||
|
||||
data SmallestTgt (G : Type) : Set where
|
||||
|
@ -125,17 +124,14 @@ dec-subtypingˢᶠᵒ {F} {S} {T} Fᶠ (defn sat-∩ sat-∪) (Sⁿ ⇒ Tⁿ) =
|
|||
lemma {S′} o | Left ¬S′s = function-ok₁ ¬S′s
|
||||
lemma {S′} o | Right S′s = function-ok₂ (tgt₁ o S′s t T₁t)
|
||||
|
||||
dec-subtypingˢᶠ F Fˢ (S ⇒ T) with dec-subtypingˢᶠᵒ F Fˢ (S ⇒ T)
|
||||
dec-subtypingˢᶠ F Fˢ (S ⇒ T) | Left F≮:S⇒T = Left F≮:S⇒T
|
||||
dec-subtypingˢᶠ F Fˢ (S ⇒ T) | Right F<:ᵒS⇒T = Right (<:ᵒ-impl-<: F F<:ᵒS⇒T)
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) with dec-subtypingˢᶠ F Fˢ G | dec-subtypingˢᶠ F Fˢ H
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) | Left F≮:G | _ = Left (≮:-∩-left F≮:G)
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) | _ | Left F≮:H = Left (≮:-∩-right F≮:H)
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) | Right F<:G | Right F<:H = Right (<:-∩-glb F<:G F<:H)
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) | Right F<:G | Right F<:H = Right (λ { (left o) → F<:G o ; (right o) → F<:H o })
|
||||
|
||||
dec-subtypingᶠ F G with dec-subtypingˢᶠ (normal-saturate F) (saturated F) G
|
||||
dec-subtypingᶠ F G | Left H≮:G = Left (<:-trans-≮: (saturate-<: F) H≮:G)
|
||||
dec-subtypingᶠ F G | Right H<:G = Right (<:-trans (<:-saturate F) H<:G)
|
||||
dec-subtypingᶠ F G | Right H<:G = Right (<:-trans (<:-saturate F) (<:ᵒ-impl-<: (normal-saturate F) G H<:G))
|
||||
|
||||
dec-subtypingᶠⁿ T never = Left (witness function (fun-function T) never)
|
||||
dec-subtypingᶠⁿ T unknown = Right <:-unknown
|
||||
|
@ -173,7 +169,7 @@ dec-subtyping T U | Right p = Right (<:-trans (<:-normalize T) (<:-trans p (norm
|
|||
-- <:ᵒ coincides with <:, that is F is a subtype of (S ⇒ T) precisely
|
||||
-- when one of its overloads is.
|
||||
|
||||
<:-impl-<:ᵒ : ∀ {F S T} → FunType F → Saturated F → (F <: (S ⇒ T)) → (F <:ᵒ (S ⇒ T))
|
||||
<:-impl-<:ᵒ {F} {S} {T} Fᶠ Fˢ F<:S⇒T with dec-subtypingˢᶠᵒ Fᶠ Fˢ (normal S ⇒ normal T)
|
||||
<:-impl-<:ᵒ {F} {S} {T} Fᶠ Fˢ F<:S⇒T | Left F≮:S⇒T = CONTRADICTION (<:-impl-¬≮: (<:-trans F<:S⇒T (<:-normalize (S ⇒ T))) F≮:S⇒T)
|
||||
<:-impl-<:ᵒ {F} {S} {T} Fᶠ Fˢ F<:S⇒T | Right F<:ᵒS⇒T = F<:ᵒS⇒T >>=ˡ <:-normalize S >>=ʳ normalize-<: T
|
||||
<:-impl-<:ᵒ : ∀ {F G} → FunType F → Saturated F → FunType G → (F <: G) → (F <:ᵒ G)
|
||||
<:-impl-<:ᵒ {F} {G} Fᶠ Fˢ Gᶠ F<:G with dec-subtypingˢᶠ Fᶠ Fˢ Gᶠ
|
||||
<:-impl-<:ᵒ {F} {G} Fᶠ Fˢ Gᶠ F<:G | Left F≮:G = CONTRADICTION (<:-impl-¬≮: F<:G F≮:G)
|
||||
<:-impl-<:ᵒ {F} {G} Fᶠ Fˢ Gᶠ F<:G | Right F<:ᵒG = F<:ᵒG
|
||||
|
|
|
@ -9,109 +9,104 @@ open import Luau.TypeSaturation using (saturate)
|
|||
open import Properties.Contradiction using (CONTRADICTION)
|
||||
open import Properties.DecSubtyping using (dec-subtyping; dec-subtypingⁿ; <:-impl-<:ᵒ)
|
||||
open import Properties.Functions using (_∘_)
|
||||
open import Properties.Subtyping using (<:-refl; <:-trans; <:-trans-≮:; ≮:-trans-<:; <:-∩-left; <:-∩-right; <:-∩-glb; <:-∪-right; <:-impl-¬≮:; <:-unknown; <:-function; function-≮:-never; <:-never; unknown-≮:-function; scalar-≮:-function; ≮:-∪-right; scalar-≮:-never)
|
||||
open import Properties.Subtyping using (<:-refl; <:-trans; <:-trans-≮:; ≮:-trans-<:; <:-∩-left; <:-∩-right; <:-∩-glb; <:-impl-¬≮:; <:-unknown; <:-function; function-≮:-never; <:-never; unknown-≮:-function; scalar-≮:-function; ≮:-∪-right; scalar-≮:-never; <:-∪-left; <:-∪-right)
|
||||
open import Properties.TypeNormalization using (Normal; FunType; normal; _⇒_; _∩_; _∪_; never; unknown; <:-normalize; normalize-<:; fun-≮:-never; unknown-≮:-fun; scalar-≮:-fun)
|
||||
open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; _<:ᵒ_; normal-saturate; saturated; <:-saturate; saturate-<:; defn; here; left; right)
|
||||
|
||||
data ResolvedTo F G R : Set where
|
||||
data ResolvedTo F G V : Set where
|
||||
|
||||
yes : ∀ Sʳ Tʳ →
|
||||
|
||||
Overloads F (Sʳ ⇒ Tʳ) →
|
||||
(R <: Sʳ) →
|
||||
(∀ {S T} → Overloads G (S ⇒ T) → (R <: S) → (Tʳ <: T)) →
|
||||
(V <: Sʳ) →
|
||||
(∀ {S T} → Overloads G (S ⇒ T) → (V <: S) → (Tʳ <: T)) →
|
||||
--------------------------------------------
|
||||
ResolvedTo F G R
|
||||
ResolvedTo F G V
|
||||
|
||||
no :
|
||||
|
||||
(∀ {S T} → Overloads G (S ⇒ T) → (R ≮: S)) →
|
||||
(∀ {S T} → Overloads G (S ⇒ T) → (V ≮: S)) →
|
||||
--------------------------------------------
|
||||
ResolvedTo F G R
|
||||
ResolvedTo F G V
|
||||
|
||||
Resolved : Type → Type → Set
|
||||
Resolved F R = ResolvedTo F F R
|
||||
Resolved F V = ResolvedTo F F V
|
||||
|
||||
target : ∀ {F R} → Resolved F R → Type
|
||||
target : ∀ {F V} → Resolved F V → Type
|
||||
target (yes _ T _ _ _) = T
|
||||
target (no _) = unknown
|
||||
|
||||
resolveˢ : ∀ {F G R} → FunType G → Saturated F → Normal R → (G ⊆ᵒ F) → ResolvedTo F G R
|
||||
resolveˢ (Sⁿ ⇒ Tⁿ) (defn sat-∩ sat-∪) Rⁿ G⊆F with dec-subtypingⁿ Rⁿ Sⁿ
|
||||
resolveˢ (Sⁿ ⇒ Tⁿ) (defn sat-∩ sat-∪) Rⁿ G⊆F | Left R≮:S = no (λ { here → R≮:S })
|
||||
resolveˢ (Sⁿ ⇒ Tⁿ) (defn sat-∩ sat-∪) Rⁿ G⊆F | Right R<:S = yes _ _ (G⊆F here) R<:S (λ { here _ → <:-refl })
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Rⁿ G⊆F with resolveˢ Gᶠ (defn sat-∩ sat-∪) Rⁿ (G⊆F ∘ left) | resolveˢ Hᶠ (defn sat-∩ sat-∪) Rⁿ (G⊆F ∘ right)
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Rⁿ G⊆F | yes S₁ T₁ o₁ R<:S₁ tgt₁ | yes S₂ T₂ o₂ R<:S₂ tgt₂ with sat-∩ o₁ o₂
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Rⁿ G⊆F | yes S₁ T₁ o₁ R<:S₁ tgt₁ | yes S₂ T₂ o₂ R<:S₂ tgt₂ | defn o p₁ p₂ =
|
||||
yes _ _ o (<:-trans (<:-∩-glb R<:S₁ R<:S₂) p₁) (λ { (left o) p → <:-trans p₂ (<:-trans <:-∩-left (tgt₁ o p)) ; (right o) p → <:-trans p₂ (<:-trans <:-∩-right (tgt₂ o p)) })
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Rⁿ G⊆F | yes S₁ T₁ o₁ R<:S₁ tgt₁ | no src₂ =
|
||||
yes _ _ o₁ R<:S₁ (λ { (left o) p → tgt₁ o p ; (right o) p → CONTRADICTION (<:-impl-¬≮: p (src₂ o)) })
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Rⁿ G⊆F | no src₁ | yes S₂ T₂ o₂ R<:S₂ tgt₂ =
|
||||
yes _ _ o₂ R<:S₂ (λ { (left o) p → CONTRADICTION (<:-impl-¬≮: p (src₁ o)) ; (right o) p → tgt₂ o p })
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Rⁿ G⊆F | no src₁ | no src₂ =
|
||||
resolveˢ : ∀ {F G V} → FunType G → Saturated F → Normal V → (G ⊆ᵒ F) → ResolvedTo F G V
|
||||
resolveˢ (Sⁿ ⇒ Tⁿ) (defn sat-∩ sat-∪) Vⁿ G⊆F with dec-subtypingⁿ Vⁿ Sⁿ
|
||||
resolveˢ (Sⁿ ⇒ Tⁿ) (defn sat-∩ sat-∪) Vⁿ G⊆F | Left V≮:S = no (λ { here → V≮:S })
|
||||
resolveˢ (Sⁿ ⇒ Tⁿ) (defn sat-∩ sat-∪) Vⁿ G⊆F | Right V<:S = yes _ _ (G⊆F here) V<:S (λ { here _ → <:-refl })
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F with resolveˢ Gᶠ (defn sat-∩ sat-∪) Vⁿ (G⊆F ∘ left) | resolveˢ Hᶠ (defn sat-∩ sat-∪) Vⁿ (G⊆F ∘ right)
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ with sat-∩ o₁ o₂
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ | defn o p₁ p₂ =
|
||||
yes _ _ o (<:-trans (<:-∩-glb V<:S₁ V<:S₂) p₁) (λ { (left o) p → <:-trans p₂ (<:-trans <:-∩-left (tgt₁ o p)) ; (right o) p → <:-trans p₂ (<:-trans <:-∩-right (tgt₂ o p)) })
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | no src₂ =
|
||||
yes _ _ o₁ V<:S₁ (λ { (left o) p → tgt₁ o p ; (right o) p → CONTRADICTION (<:-impl-¬≮: p (src₂ o)) })
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F | no src₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ =
|
||||
yes _ _ o₂ V<:S₂ (λ { (left o) p → CONTRADICTION (<:-impl-¬≮: p (src₁ o)) ; (right o) p → tgt₂ o p })
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Vⁿ G⊆F | no src₁ | no src₂ =
|
||||
no (λ { (left o) → src₁ o ; (right o) → src₂ o })
|
||||
|
||||
resolveᶠ : ∀ {F R} → FunType F → Normal R → Type
|
||||
resolveᶠ Fᶠ Rⁿ = target (resolveˢ (normal-saturate Fᶠ) (saturated Fᶠ) Rⁿ (λ o → o))
|
||||
resolveᶠ : ∀ {F V} → FunType F → Normal V → Type
|
||||
resolveᶠ Fᶠ Vⁿ = target (resolveˢ (normal-saturate Fᶠ) (saturated Fᶠ) Vⁿ (λ o → o))
|
||||
|
||||
resolveⁿ : ∀ {F R} → Normal F → Normal R → Type
|
||||
resolveⁿ (Sⁿ ⇒ Tⁿ) Rⁿ = resolveᶠ (Sⁿ ⇒ Tⁿ) Rⁿ
|
||||
resolveⁿ (Fᶠ ∩ Gᶠ) Rⁿ = resolveᶠ (Fᶠ ∩ Gᶠ) Rⁿ
|
||||
resolveⁿ (Sⁿ ∪ Tˢ) Rⁿ = unknown
|
||||
resolveⁿ unknown Rⁿ = unknown
|
||||
resolveⁿ never Rⁿ = never
|
||||
resolveⁿ : ∀ {F V} → Normal F → Normal V → Type
|
||||
resolveⁿ (Sⁿ ⇒ Tⁿ) Vⁿ = resolveᶠ (Sⁿ ⇒ Tⁿ) Vⁿ
|
||||
resolveⁿ (Fᶠ ∩ Gᶠ) Vⁿ = resolveᶠ (Fᶠ ∩ Gᶠ) Vⁿ
|
||||
resolveⁿ (Sⁿ ∪ Tˢ) Vⁿ = unknown
|
||||
resolveⁿ unknown Vⁿ = unknown
|
||||
resolveⁿ never Vⁿ = never
|
||||
|
||||
resolve : Type → Type → Type
|
||||
resolve F R = resolveⁿ (normal F) (normal R)
|
||||
resolve F V = resolveⁿ (normal F) (normal V)
|
||||
|
||||
<:-target-⇒ : ∀ {R S T} → (r : Resolved (S ⇒ T) R) → (T <: target r)
|
||||
<:-target-⇒ (yes Sʳ Tʳ here x₁ x₂) = <:-refl
|
||||
<:-target-⇒ (no x) = <:-unknown
|
||||
resolveˢ-<:-⇒ : ∀ {F V U} → (FunType F) → (Saturated F) → (FunType (V ⇒ U)) → (r : Resolved F V) → (F <: (V ⇒ U)) → (target r <: U)
|
||||
resolveˢ-<:-⇒ Fᶠ Fˢ V⇒Uᶠ r F<:V⇒U with <:-impl-<:ᵒ Fᶠ Fˢ V⇒Uᶠ F<:V⇒U here
|
||||
resolveˢ-<:-⇒ Fᶠ Fˢ V⇒Uᶠ (yes Sʳ Tʳ oʳ V<:Sʳ tgtʳ) F<:V⇒U | defn o o₁ o₂ = <:-trans (tgtʳ o o₁) o₂
|
||||
resolveˢ-<:-⇒ Fᶠ Fˢ V⇒Uᶠ (no tgtʳ) F<:V⇒U | defn o o₁ o₂ = CONTRADICTION (<:-impl-¬≮: o₁ (tgtʳ o))
|
||||
|
||||
<:-resolve-⇒ⁿ : ∀ {R S T} → (Fⁿ : Normal (S ⇒ T)) → (Rⁿ : Normal R) → T <: resolveⁿ Fⁿ Rⁿ
|
||||
<:-resolve-⇒ⁿ (Sⁿ ⇒ Tⁿ) Rⁿ = <:-target-⇒ (resolveˢ (Sⁿ ⇒ Tⁿ) (saturated (Sⁿ ⇒ Tⁿ)) Rⁿ (λ o → o))
|
||||
resolveⁿ-<:-⇒ : ∀ {F V U} → (Fⁿ : Normal F) → (Vⁿ : Normal V) → (Uⁿ : Normal U) → (F <: (V ⇒ U)) → (resolveⁿ Fⁿ Vⁿ <: U)
|
||||
resolveⁿ-<:-⇒ (Sⁿ ⇒ Tⁿ) Vⁿ Uⁿ F<:V⇒U = resolveˢ-<:-⇒ (normal-saturate (Sⁿ ⇒ Tⁿ)) (saturated (Sⁿ ⇒ Tⁿ)) (Vⁿ ⇒ Uⁿ) (resolveˢ (normal-saturate (Sⁿ ⇒ Tⁿ)) (saturated (Sⁿ ⇒ Tⁿ)) Vⁿ (λ o → o)) F<:V⇒U
|
||||
resolveⁿ-<:-⇒ (Fⁿ ∩ Gⁿ) Vⁿ Uⁿ F<:V⇒U = resolveˢ-<:-⇒ (normal-saturate (Fⁿ ∩ Gⁿ)) (saturated (Fⁿ ∩ Gⁿ)) (Vⁿ ⇒ Uⁿ) (resolveˢ (normal-saturate (Fⁿ ∩ Gⁿ)) (saturated (Fⁿ ∩ Gⁿ)) Vⁿ (λ o → o)) (<:-trans (saturate-<: (Fⁿ ∩ Gⁿ)) F<:V⇒U)
|
||||
resolveⁿ-<:-⇒ (Sⁿ ∪ Tˢ) Vⁿ Uⁿ F<:V⇒U = CONTRADICTION (<:-impl-¬≮: F<:V⇒U (<:-trans-≮: <:-∪-right (scalar-≮:-function Tˢ)))
|
||||
resolveⁿ-<:-⇒ never Vⁿ Uⁿ F<:V⇒U = <:-never
|
||||
resolveⁿ-<:-⇒ unknown Vⁿ Uⁿ F<:V⇒U = CONTRADICTION (<:-impl-¬≮: F<:V⇒U unknown-≮:-function)
|
||||
|
||||
<:-resolve-⇒ : ∀ {R S T} → T <: resolve (S ⇒ T) R
|
||||
<:-resolve-⇒ {R} {S} {T} = <:-trans (<:-normalize T) (<:-resolve-⇒ⁿ (normal (S ⇒ T)) (normal R))
|
||||
resolve-<:-⇒ : ∀ {F V U} → (F <: (V ⇒ U)) → (resolve F V <: U)
|
||||
resolve-<:-⇒ {F} {V} {U} F<:V⇒U = <:-trans (resolveⁿ-<:-⇒ (normal F) (normal V) (normal U) (<:-trans (normalize-<: F) (<:-trans F<:V⇒U (<:-normalize (V ⇒ U))))) (normalize-<: U)
|
||||
|
||||
resolveˢ-<:-⇒ : ∀ {F R U} → (FunType F) → (Saturated F) → (r : Resolved F R) → (F <: (R ⇒ U)) → (target r <: U)
|
||||
resolveˢ-<:-⇒ Fᶠ Fˢ r F<:R⇒U with <:-impl-<:ᵒ Fᶠ Fˢ F<:R⇒U
|
||||
resolveˢ-<:-⇒ Fᶠ Fˢ (yes Sʳ Tʳ oʳ R<:Sʳ tgtʳ) F<:R⇒U | defn o o₁ o₂ = <:-trans (tgtʳ o o₁) o₂
|
||||
resolveˢ-<:-⇒ Fᶠ Fˢ (no tgtʳ) F<:R⇒U | defn o o₁ o₂ = CONTRADICTION (<:-impl-¬≮: o₁ (tgtʳ o))
|
||||
resolve-≮:-⇒ : ∀ {F V U} → (resolve F V ≮: U) → (F ≮: (V ⇒ U))
|
||||
resolve-≮:-⇒ {F} {V} {U} FV≮:U with dec-subtyping F (V ⇒ U)
|
||||
resolve-≮:-⇒ {F} {V} {U} FV≮:U | Left F≮:V⇒U = F≮:V⇒U
|
||||
resolve-≮:-⇒ {F} {V} {U} FV≮:U | Right F<:V⇒U = CONTRADICTION (<:-impl-¬≮: (resolve-<:-⇒ F<:V⇒U) FV≮:U)
|
||||
|
||||
resolveⁿ-<:-⇒ : ∀ {F R U} → (Fⁿ : Normal F) → (Rⁿ : Normal R) → (F <: (R ⇒ U)) → (resolveⁿ Fⁿ Rⁿ <: U)
|
||||
resolveⁿ-<:-⇒ (Sⁿ ⇒ Tⁿ) Rⁿ F<:R⇒U = resolveˢ-<:-⇒ (normal-saturate (Sⁿ ⇒ Tⁿ)) (saturated (Sⁿ ⇒ Tⁿ)) (resolveˢ (normal-saturate (Sⁿ ⇒ Tⁿ)) (saturated (Sⁿ ⇒ Tⁿ)) Rⁿ (λ o → o)) F<:R⇒U
|
||||
resolveⁿ-<:-⇒ (Fⁿ ∩ Gⁿ) Rⁿ F<:R⇒U = resolveˢ-<:-⇒ (normal-saturate (Fⁿ ∩ Gⁿ)) (saturated (Fⁿ ∩ Gⁿ)) (resolveˢ (normal-saturate (Fⁿ ∩ Gⁿ)) (saturated (Fⁿ ∩ Gⁿ)) Rⁿ (λ o → o)) (<:-trans (saturate-<: (Fⁿ ∩ Gⁿ)) F<:R⇒U)
|
||||
resolveⁿ-<:-⇒ (Sⁿ ∪ Tˢ) Rⁿ F<:R⇒U = CONTRADICTION (<:-impl-¬≮: F<:R⇒U (<:-trans-≮: <:-∪-right (scalar-≮:-function Tˢ)))
|
||||
resolveⁿ-<:-⇒ never Rⁿ F<:R⇒U = <:-never
|
||||
resolveⁿ-<:-⇒ unknown Rⁿ F<:R⇒U = CONTRADICTION (<:-impl-¬≮: F<:R⇒U unknown-≮:-function)
|
||||
<:-resolveˢ-⇒ : ∀ {S T V} → (r : Resolved (S ⇒ T) V) → (V <: S) → T <: target r
|
||||
<:-resolveˢ-⇒ (yes S T here _ _) V<:S = <:-refl
|
||||
<:-resolveˢ-⇒ (no _) V<:S = <:-unknown
|
||||
|
||||
resolve-<:-⇒ : ∀ {F R U} → (F <: (R ⇒ U)) → (resolve F R <: U)
|
||||
resolve-<:-⇒ {F} {R} F<:R⇒U = resolveⁿ-<:-⇒ (normal F) (normal R) (<:-trans (normalize-<: F) (<:-trans F<:R⇒U (<:-function (normalize-<: R) <:-refl)))
|
||||
<:-resolveⁿ-⇒ : ∀ {S T V} → (Sⁿ : Normal S) → (Tⁿ : Normal T) → (Vⁿ : Normal V) → (V <: S) → T <: resolveⁿ (Sⁿ ⇒ Tⁿ) Vⁿ
|
||||
<:-resolveⁿ-⇒ Sⁿ Tⁿ Vⁿ V<:S = <:-resolveˢ-⇒ (resolveˢ (Sⁿ ⇒ Tⁿ) (saturated (Sⁿ ⇒ Tⁿ)) Vⁿ (λ o → o)) V<:S
|
||||
|
||||
resolve-≮:-⇒ : ∀ {F R U} → (resolve F R ≮: U) → (F ≮: (R ⇒ U))
|
||||
resolve-≮:-⇒ {F} {R} {U} FR≮:U with dec-subtyping F (R ⇒ U)
|
||||
resolve-≮:-⇒ {F} {R} {U} FR≮:U | Left F≮:R⇒U = F≮:R⇒U
|
||||
resolve-≮:-⇒ {F} {R} {U} FR≮:U | Right F<:R⇒U = CONTRADICTION (<:-impl-¬≮: (resolve-<:-⇒ F<:R⇒U) FR≮:U)
|
||||
<:-resolve-⇒ : ∀ {S T V} → (V <: S) → T <: resolve (S ⇒ T) V
|
||||
<:-resolve-⇒ {S} {T} {V} V<:S = <:-trans (<:-normalize T) (<:-resolveⁿ-⇒ (normal S) (normal T) (normal V) (<:-trans (normalize-<: V) (<:-trans V<:S (<:-normalize S))))
|
||||
|
||||
⇒-<:-resolveⁿ : ∀ {F V U} → (Fⁿ : Normal F) → (Vⁿ : Normal V) → (resolveⁿ Fⁿ Vⁿ <: U) → (F <: (V ⇒ U))
|
||||
⇒-<:-resolveⁿ (Sⁿ ⇒ Tⁿ) Vⁿ FV<:U = {!!}
|
||||
⇒-<:-resolveⁿ (Fⁿ ∩ Gⁿ) Vⁿ FV<:U = {!!}
|
||||
⇒-<:-resolveⁿ (Fⁿ ∪ Tˢ) Vⁿ FV<:U = {!FV<:U!}
|
||||
⇒-<:-resolveⁿ never Vⁿ FV<:U = <:-never
|
||||
⇒-<:-resolveⁿ unknown Vⁿ FV<:U = {!FV<:U!}
|
||||
|
||||
⇒-<:-resolve : ∀ {F V U} → (resolve F V <: U) → (F <: (V ⇒ U))
|
||||
⇒-<:-resolve {F} {V} {U} FV<:U = {!!}
|
||||
|
||||
⇒-≮:-resolve : ∀ {F V U} → (F ≮: (V ⇒ U)) → (resolve F V ≮: U)
|
||||
⇒-≮:-resolve F≮:V⇒U = {!!}
|
||||
|
||||
<:-resolveˢ : ∀ {F G V W} → (r : Resolved F V) → (s : Resolved G W) → (F <: G) → (V <: W) → target r <: target s
|
||||
<:-resolveˢ = {!!}
|
||||
<:-resolveˢ : ∀ {F G V W} → (r : Resolved F V) → (s : Resolved G W) → (F <:ᵒ G) → (V <: W) → target r <: target s
|
||||
<:-resolveˢ (yes Sʳ Tʳ oʳ V<:Sʳ tgtʳ) (yes Sˢ Tˢ oˢ W<:Sˢ tgtˢ) F<:G V<:W with F<:G oˢ
|
||||
<:-resolveˢ (yes Sʳ Tʳ oʳ V<:Sʳ tgtʳ) (yes Sˢ Tˢ oˢ W<:Sˢ tgtˢ) F<:G V<:W | defn o o₁ o₂ = <:-trans (tgtʳ o (<:-trans (<:-trans V<:W W<:Sˢ) o₁)) o₂
|
||||
<:-resolveˢ (no r) (yes Sˢ Tˢ oˢ W<:Sˢ tgtˢ) F<:G V<:W with F<:G oˢ
|
||||
<:-resolveˢ (no r) (yes Sˢ Tˢ oˢ W<:Sˢ tgtˢ) F<:G V<:W | defn o o₁ o₂ = CONTRADICTION (<:-impl-¬≮: (<:-trans V<:W (<:-trans W<:Sˢ o₁)) (r o))
|
||||
<:-resolveˢ r (no s) F<:G V<:W = <:-unknown
|
||||
|
||||
<:-resolveᶠ : ∀ {F G V W} → (Fᶠ : FunType F) → (Gᶠ : FunType G) → (Vⁿ : Normal V) → (Wⁿ : Normal W) → (F <: G) → (V <: W) → resolveᶠ Fᶠ Vⁿ <: resolveᶠ Gᶠ Wⁿ
|
||||
<:-resolveᶠ Fᶠ Gᶠ Vⁿ Wⁿ F<:G V<:W = <:-resolveˢ (resolveˢ (normal-saturate Fᶠ) (saturated Fᶠ) Vⁿ (λ o → o)) (resolveˢ (normal-saturate Gᶠ) (saturated Gᶠ) Wⁿ (λ o → o)) (<:-trans (saturate-<: Fᶠ) (<:-trans F<:G (<:-saturate Gᶠ))) V<:W
|
||||
<:-resolveᶠ Fᶠ Gᶠ Vⁿ Wⁿ F<:G V<:W = <:-resolveˢ
|
||||
(resolveˢ (normal-saturate Fᶠ) (saturated Fᶠ) Vⁿ (λ o → o))
|
||||
(resolveˢ (normal-saturate Gᶠ) (saturated Gᶠ) Wⁿ (λ o → o))
|
||||
(<:-impl-<:ᵒ (normal-saturate Fᶠ) (saturated Fᶠ) (normal-saturate Gᶠ) (<:-trans (saturate-<: Fᶠ) (<:-trans F<:G (<:-saturate Gᶠ))))
|
||||
V<:W
|
||||
|
||||
<:-resolveⁿ : ∀ {F G V W} → (Fⁿ : Normal F) → (Gⁿ : Normal G) → (Vⁿ : Normal V) → (Wⁿ : Normal W) → (F <: G) → (V <: W) → resolveⁿ Fⁿ Vⁿ <: resolveⁿ Gⁿ Wⁿ
|
||||
<:-resolveⁿ (Rⁿ ⇒ Sⁿ) (Tⁿ ⇒ Uⁿ) Vⁿ Wⁿ F<:G V<:W = <:-resolveᶠ (Rⁿ ⇒ Sⁿ) (Tⁿ ⇒ Uⁿ) Vⁿ Wⁿ F<:G V<:W
|
||||
|
@ -131,5 +126,6 @@ resolve-≮:-⇒ {F} {R} {U} FR≮:U | Right F<:R⇒U = CONTRADICTION (<:-impl-
|
|||
<:-resolveⁿ Fⁿ unknown Vⁿ Wⁿ F<:G V<:W = <:-unknown
|
||||
|
||||
<:-resolve : ∀ {F G V W} → (F <: G) → (V <: W) → resolve F V <: resolve G W
|
||||
<:-resolve F<:G V<:W = {!!}
|
||||
|
||||
<:-resolve {F} {G} {V} {W} F<:G V<:W = <:-resolveⁿ (normal F) (normal G) (normal V) (normal W)
|
||||
(<:-trans (normalize-<: F) (<:-trans F<:G (<:-normalize G)))
|
||||
(<:-trans (normalize-<: V) (<:-trans V<:W (<:-normalize W)))
|
||||
|
|
|
@ -24,25 +24,15 @@ open import Properties.Dec using (Dec; yes; no)
|
|||
open import Properties.Contradiction using (CONTRADICTION; ¬)
|
||||
open import Properties.Functions using (_∘_)
|
||||
open import Properties.DecSubtyping using (dec-subtyping)
|
||||
open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; ≮:-trans; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never)
|
||||
open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; ≮:-trans; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never; <:-refl; <:-unknown; <:-impl-¬≮:)
|
||||
open import Properties.FunctionTypes using (src-unknown-≮:; unknown-src-≮:)
|
||||
open import Properties.ResolveOverloads using (resolve; <:-resolve; resolve-≮:-⇒)
|
||||
open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; ≮:-trans; <:-trans-≮:; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never)
|
||||
open import Properties.ResolveOverloads using (resolve; <:-resolve; resolve-<:-⇒; <:-resolve-⇒)
|
||||
open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; ≮:-trans; <:-trans-≮:; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never; ≡-impl-<:; ≡-trans-<:; <:-trans-≡; ≮:-trans-<:; <:-trans)
|
||||
open import Properties.TypeCheck using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴ)
|
||||
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
|
||||
open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return; +; -; *; /; <; >; <=; >=; ··)
|
||||
open import Luau.RuntimeType using (RuntimeType; valueType; number; string; boolean; nil; function)
|
||||
|
||||
-- PROVE THESE
|
||||
|
||||
postulate
|
||||
resolve⁻¹ : Type → Type → Type
|
||||
⇒-≮:-resolve : ∀ {F V U} → (F ≮: (V ⇒ U)) → (resolve F V ≮: U)
|
||||
⇒-≮:-resolve⁻¹ : ∀ {F V U} → (F ≮: (V ⇒ U)) → (V ≮: resolve⁻¹ F U)
|
||||
resolve⁻¹-≮:-⇒ : ∀ {F V U} → (V ≮: resolve⁻¹ F U) → (F ≮: (V ⇒ U))
|
||||
|
||||
--
|
||||
|
||||
data _⊑_ (H : Heap yes) : Heap yes → Set where
|
||||
refl : (H ⊑ H)
|
||||
snoc : ∀ {H′ a O} → (H′ ≡ᴴ H ⊕ a ↦ O) → (H ⊑ H′)
|
||||
|
@ -76,55 +66,32 @@ lookup-⊑-nothing {H} a (snoc defn) p with a ≡ᴬ next H
|
|||
lookup-⊑-nothing {H} a (snoc defn) p | yes refl = refl
|
||||
lookup-⊑-nothing {H} a (snoc o) p | no q = trans (lookup-not-allocated o q) p
|
||||
|
||||
heap-weakeningᴱ : ∀ Γ H M {H′ U} → (H ⊑ H′) → (typeOfᴱ H′ Γ M ≮: U) → (typeOfᴱ H Γ M ≮: U)
|
||||
heap-weakeningᴱ Γ H (var x) h p = p
|
||||
heap-weakeningᴱ Γ H (val nil) h p = p
|
||||
heap-weakeningᴱ Γ H (val (addr a)) refl p = p
|
||||
heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) p with a ≡ᴬ b
|
||||
heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = a} defn) p | yes refl = unknown-≮: p
|
||||
heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) p | no r = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ (lookup-not-allocated q r))) p
|
||||
heap-weakeningᴱ Γ H (val (number x)) h p = p
|
||||
heap-weakeningᴱ Γ H (val (bool x)) h p = p
|
||||
heap-weakeningᴱ Γ H (val (string x)) h p = p
|
||||
heap-weakeningᴱ Γ H (M $ N) h p = ⇒-≮:-resolve (resolve⁻¹-≮:-⇒ (heap-weakeningᴱ Γ H N h (⇒-≮:-resolve⁻¹ (heap-weakeningᴱ Γ H M h (resolve-≮:-⇒ p)))))
|
||||
heap-weakeningᴱ Γ H (function f ⟨ var x ∈ T ⟩∈ U is B end) h p = p
|
||||
heap-weakeningᴱ Γ H (block var b ∈ T is B end) h p = p
|
||||
heap-weakeningᴱ Γ H (binexp M op N) h p = p
|
||||
<:-heap-weakeningᴱ : ∀ Γ H M {H′} → (H ⊑ H′) → (typeOfᴱ H′ Γ M <: typeOfᴱ H Γ M)
|
||||
<:-heap-weakeningᴱ Γ H (var x) h = <:-refl
|
||||
<:-heap-weakeningᴱ Γ H (val nil) h = <:-refl
|
||||
<:-heap-weakeningᴱ Γ H (val (addr a)) refl = <:-refl
|
||||
<:-heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) with a ≡ᴬ b
|
||||
<:-heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = a} defn) | yes refl = <:-unknown
|
||||
<:-heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) | no r = ≡-impl-<: (sym (cong orUnknown (cong typeOfᴹᴼ (lookup-not-allocated q r))))
|
||||
<:-heap-weakeningᴱ Γ H (val (number n)) h = <:-refl
|
||||
<:-heap-weakeningᴱ Γ H (val (bool b)) h = <:-refl
|
||||
<:-heap-weakeningᴱ Γ H (val (string s)) h = <:-refl
|
||||
<:-heap-weakeningᴱ Γ H (M $ N) h = <:-resolve (<:-heap-weakeningᴱ Γ H M h) (<:-heap-weakeningᴱ Γ H N h)
|
||||
<:-heap-weakeningᴱ Γ H (function f ⟨ var x ∈ S ⟩∈ T is B end) h = <:-refl
|
||||
<:-heap-weakeningᴱ Γ H (block var b ∈ T is N end) h = <:-refl
|
||||
<:-heap-weakeningᴱ Γ H (binexp M op N) h = <:-refl
|
||||
|
||||
heap-weakeningᴮ : ∀ Γ H B {H′ U} → (H ⊑ H′) → (typeOfᴮ H′ Γ B ≮: U) → (typeOfᴮ H Γ B ≮: U)
|
||||
heap-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h p = heap-weakeningᴮ (Γ ⊕ f ↦ (T ⇒ U)) H B h p
|
||||
heap-weakeningᴮ Γ H (local var x ∈ T ← M ∙ B) h p = heap-weakeningᴮ (Γ ⊕ x ↦ T) H B h p
|
||||
heap-weakeningᴮ Γ H (return M ∙ B) h p = heap-weakeningᴱ Γ H M h p
|
||||
heap-weakeningᴮ Γ H done h p = p
|
||||
<:-heap-weakeningᴮ : ∀ Γ H B {H′} → (H ⊑ H′) → (typeOfᴮ H′ Γ B <: typeOfᴮ H Γ B)
|
||||
<:-heap-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h = <:-heap-weakeningᴮ (Γ ⊕ f ↦ (T ⇒ U)) H B h
|
||||
<:-heap-weakeningᴮ Γ H (local var x ∈ T ← M ∙ B) h = <:-heap-weakeningᴮ (Γ ⊕ x ↦ T) H B h
|
||||
<:-heap-weakeningᴮ Γ H (return M ∙ B) h = <:-heap-weakeningᴱ Γ H M h
|
||||
<:-heap-weakeningᴮ Γ H done h = <:-refl
|
||||
|
||||
substitutivityᴱ : ∀ {Γ T U} H M v x → (typeOfᴱ H Γ (M [ v / x ]ᴱ) ≮: U) → Either (typeOfᴱ H (Γ ⊕ x ↦ T) M ≮: U) (typeOfᴱ H ∅ (val v) ≮: T)
|
||||
substitutivityᴱ-whenever : ∀ {Γ T U} H v x y (r : Dec(x ≡ y)) → (typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever r) ≮: U) → Either (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≮: U) (typeOfᴱ H ∅ (val v) ≮: T)
|
||||
substitutivityᴮ : ∀ {Γ T U} H B v x → (typeOfᴮ H Γ (B [ v / x ]ᴮ) ≮: U) → Either (typeOfᴮ H (Γ ⊕ x ↦ T) B ≮: U) (typeOfᴱ H ∅ (val v) ≮: T)
|
||||
substitutivityᴮ-unless : ∀ {Γ T U V} H B v x y (r : Dec(x ≡ y)) → (typeOfᴮ H (Γ ⊕ y ↦ U) (B [ v / x ]ᴮunless r) ≮: V) → Either (typeOfᴮ H ((Γ ⊕ x ↦ T) ⊕ y ↦ U) B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T)
|
||||
substitutivityᴮ-unless-yes : ∀ {Γ Γ′ T V} H B v x y (r : x ≡ y) → (Γ′ ≡ Γ) → (typeOfᴮ H Γ (B [ v / x ]ᴮunless yes r) ≮: V) → Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T)
|
||||
substitutivityᴮ-unless-no : ∀ {Γ Γ′ T V} H B v x y (r : x ≢ y) → (Γ′ ≡ Γ ⊕ x ↦ T) → (typeOfᴮ H Γ (B [ v / x ]ᴮunless no r) ≮: V) → Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T)
|
||||
≮:-heap-weakeningᴱ : ∀ Γ H M {H′ U} → (H ⊑ H′) → (typeOfᴱ H′ Γ M ≮: U) → (typeOfᴱ H Γ M ≮: U)
|
||||
≮:-heap-weakeningᴱ Γ H M h p = <:-trans-≮: (<:-heap-weakeningᴱ Γ H M h) p
|
||||
|
||||
substitutivityᴱ H (var y) v x p = substitutivityᴱ-whenever H v x y (x ≡ⱽ y) p
|
||||
substitutivityᴱ H (val w) v x p = Left p
|
||||
substitutivityᴱ H (binexp M op N) v x p = Left p
|
||||
substitutivityᴱ H (M $ N) v x p with substitutivityᴱ H M v x (resolve-≮:-⇒ p)
|
||||
substitutivityᴱ H (M $ N) v x p | Left q with substitutivityᴱ H N v x (⇒-≮:-resolve⁻¹ q)
|
||||
substitutivityᴱ H (M $ N) v x p | Left q | Left r = Left (⇒-≮:-resolve (resolve⁻¹-≮:-⇒ r))
|
||||
substitutivityᴱ H (M $ N) v x p | Left q | Right r = Right r
|
||||
substitutivityᴱ H (M $ N) v x p | Right q = Right q
|
||||
substitutivityᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = Left p
|
||||
substitutivityᴱ H (block var b ∈ T is B end) v x p = Left p
|
||||
substitutivityᴱ-whenever H v x x (yes refl) q = swapLR (≮:-trans q)
|
||||
substitutivityᴱ-whenever H v x y (no p) q = Left (≡-trans-≮: (cong orUnknown (sym (⊕-lookup-miss x y _ _ p))) q)
|
||||
|
||||
substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p = substitutivityᴮ-unless H B v x f (x ≡ⱽ f) p
|
||||
substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p = substitutivityᴮ-unless H B v x y (x ≡ⱽ y) p
|
||||
substitutivityᴮ H (return M ∙ B) v x p = substitutivityᴱ H M v x p
|
||||
substitutivityᴮ H done v x p = Left p
|
||||
substitutivityᴮ-unless H B v x y (yes p) q = substitutivityᴮ-unless-yes H B v x y p (⊕-over p) q
|
||||
substitutivityᴮ-unless H B v x y (no p) q = substitutivityᴮ-unless-no H B v x y p (⊕-swap p) q
|
||||
substitutivityᴮ-unless-yes H B v x y refl refl p = Left p
|
||||
substitutivityᴮ-unless-no H B v x y p refl q = substitutivityᴮ H B v x q
|
||||
≮:-heap-weakeningᴮ : ∀ Γ H B {H′ U} → (H ⊑ H′) → (typeOfᴮ H′ Γ B ≮: U) → (typeOfᴮ H Γ B ≮: U)
|
||||
≮:-heap-weakeningᴮ Γ H B h p = <:-trans-≮: (<:-heap-weakeningᴮ Γ H B h) p
|
||||
|
||||
binOpPreservation : ∀ H {op v w x} → (v ⟦ op ⟧ w ⟶ x) → (tgtBinOp op ≡ typeOfᴱ H ∅ (val x))
|
||||
binOpPreservation H (+ m n) = refl
|
||||
|
@ -139,28 +106,78 @@ binOpPreservation H (== v w) = refl
|
|||
binOpPreservation H (~= v w) = refl
|
||||
binOpPreservation H (·· v w) = refl
|
||||
|
||||
reflect-subtypingᴱ : ∀ H M {H′ M′ T} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (typeOfᴱ H′ ∅ M′ ≮: T) → Either (typeOfᴱ H ∅ M ≮: T) (Warningᴱ H (typeCheckᴱ H ∅ M))
|
||||
reflect-subtypingᴮ : ∀ H B {H′ B′ T} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (typeOfᴮ H′ ∅ B′ ≮: T) → Either (typeOfᴮ H ∅ B ≮: T) (Warningᴮ H (typeCheckᴮ H ∅ B))
|
||||
<:-substitutivityᴱ : ∀ {Γ T} H M v x → (typeOfᴱ H ∅ (val v) <: T) → (typeOfᴱ H Γ (M [ v / x ]ᴱ) <: typeOfᴱ H (Γ ⊕ x ↦ T) M)
|
||||
<:-substitutivityᴱ-whenever : ∀ {Γ T} H v x y (r : Dec(x ≡ y)) → (typeOfᴱ H ∅ (val v) <: T) → (typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever r) <: typeOfᴱ H (Γ ⊕ x ↦ T) (var y))
|
||||
<:-substitutivityᴮ : ∀ {Γ T} H B v x → (typeOfᴱ H ∅ (val v) <: T) → (typeOfᴮ H Γ (B [ v / x ]ᴮ) <: typeOfᴮ H (Γ ⊕ x ↦ T) B)
|
||||
<:-substitutivityᴮ-unless : ∀ {Γ T U} H B v x y (r : Dec(x ≡ y)) → (typeOfᴱ H ∅ (val v) <: T) → (typeOfᴮ H (Γ ⊕ y ↦ U) (B [ v / x ]ᴮunless r) <: typeOfᴮ H ((Γ ⊕ x ↦ T) ⊕ y ↦ U) B)
|
||||
<:-substitutivityᴮ-unless-yes : ∀ {Γ Γ′} H B v x y (r : x ≡ y) → (Γ′ ≡ Γ) → (typeOfᴮ H Γ (B [ v / x ]ᴮunless yes r) <: typeOfᴮ H Γ′ B)
|
||||
<:-substitutivityᴮ-unless-no : ∀ {Γ Γ′ T} H B v x y (r : x ≢ y) → (Γ′ ≡ Γ ⊕ x ↦ T) → (typeOfᴱ H ∅ (val v) <: T) → (typeOfᴮ H Γ (B [ v / x ]ᴮunless no r) <: typeOfᴮ H Γ′ B)
|
||||
|
||||
reflect-subtypingᴱ H (M $ N) (app₁ s) p with reflect-subtypingᴱ H M s (resolve-≮:-⇒ p)
|
||||
reflect-subtypingᴱ H (M $ N) (app₁ s) p | Left q = Left (⇒-≮:-resolve (resolve⁻¹-≮:-⇒ (heap-weakeningᴱ ∅ H N (rednᴱ⊑ s) (⇒-≮:-resolve⁻¹ q))))
|
||||
reflect-subtypingᴱ H (M $ N) (app₁ s) p | Right W = Right (app₁ W)
|
||||
reflect-subtypingᴱ H (M $ N) (app₂ v s) p with reflect-subtypingᴱ H N s (⇒-≮:-resolve⁻¹ (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) (resolve-≮:-⇒ p)))
|
||||
reflect-subtypingᴱ H (M $ N) (app₂ v s) p | Left q = Left (⇒-≮:-resolve (resolve⁻¹-≮:-⇒ q))
|
||||
reflect-subtypingᴱ H (M $ N) (app₂ v s) p | Right W = Right (app₂ W)
|
||||
reflect-subtypingᴱ H (M $ N) {T = T} (beta (function f ⟨ var y ∈ S ⟩∈ U is B end) v refl q) p = Left (≡-trans-≮: (cong (λ F → resolve F (typeOfᴱ H ∅ N)) (cong orUnknown (cong typeOfᴹᴼ q))) (<:-trans-≮: (<:-resolve {typeOfᴱ H ∅ N} {S} {U}) p))
|
||||
reflect-subtypingᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) p = Left p
|
||||
reflect-subtypingᴱ H (block var b ∈ T is B end) (block s) p = Left p
|
||||
reflect-subtypingᴱ H (block var b ∈ T is return (val v) ∙ B end) (return v) p = mapR BlockMismatch (swapLR (≮:-trans p))
|
||||
reflect-subtypingᴱ H (block var b ∈ T is done end) done p = mapR BlockMismatch (swapLR (≮:-trans p))
|
||||
reflect-subtypingᴱ H (binexp M op N) (binOp₀ s) p = Left (≡-trans-≮: (binOpPreservation H s) p)
|
||||
reflect-subtypingᴱ H (binexp M op N) (binOp₁ s) p = Left p
|
||||
reflect-subtypingᴱ H (binexp M op N) (binOp₂ s) p = Left p
|
||||
<:-substitutivityᴱ H (var y) v x p = <:-substitutivityᴱ-whenever H v x y (x ≡ⱽ y) p
|
||||
<:-substitutivityᴱ H (val w) v x p = <:-refl
|
||||
<:-substitutivityᴱ H (binexp M op N) v x p = <:-refl
|
||||
<:-substitutivityᴱ H (M $ N) v x p = <:-resolve (<:-substitutivityᴱ H M v x p) (<:-substitutivityᴱ H N v x p)
|
||||
<:-substitutivityᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = <:-refl
|
||||
<:-substitutivityᴱ H (block var b ∈ T is B end) v x p = <:-refl
|
||||
<:-substitutivityᴱ-whenever H v x x (yes refl) p = p
|
||||
<:-substitutivityᴱ-whenever H v x y (no o) p = (≡-impl-<: (cong orUnknown (⊕-lookup-miss x y _ _ o)))
|
||||
|
||||
reflect-subtypingᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) p = mapLR (heap-weakeningᴮ _ _ B (snoc defn)) (CONTRADICTION ∘ ≮:-refl) (substitutivityᴮ _ B (addr a) f p)
|
||||
reflect-subtypingᴮ H (local var x ∈ T ← M ∙ B) (local s) p = Left (heap-weakeningᴮ (x ↦ T) H B (rednᴱ⊑ s) p)
|
||||
reflect-subtypingᴮ H (local var x ∈ T ← M ∙ B) (subst v) p = mapR LocalVarMismatch (substitutivityᴮ H B v x p)
|
||||
reflect-subtypingᴮ H (return M ∙ B) (return s) p = mapR return (reflect-subtypingᴱ H M s p)
|
||||
<:-substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p = <:-substitutivityᴮ-unless H B v x f (x ≡ⱽ f) p
|
||||
<:-substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p = <:-substitutivityᴮ-unless H B v x y (x ≡ⱽ y) p
|
||||
<:-substitutivityᴮ H (return M ∙ B) v x p = <:-substitutivityᴱ H M v x p
|
||||
<:-substitutivityᴮ H done v x p = <:-refl
|
||||
<:-substitutivityᴮ-unless H B v x y (yes r) p = <:-substitutivityᴮ-unless-yes H B v x y r (⊕-over r)
|
||||
<:-substitutivityᴮ-unless H B v x y (no r) p = <:-substitutivityᴮ-unless-no H B v x y r (⊕-swap r) p
|
||||
<:-substitutivityᴮ-unless-yes H B v x y refl refl = <:-refl
|
||||
<:-substitutivityᴮ-unless-no H B v x y r refl p = <:-substitutivityᴮ H B v x p
|
||||
|
||||
≮:-substitutivityᴱ : ∀ {Γ T U} H M v x → (typeOfᴱ H Γ (M [ v / x ]ᴱ) ≮: U) → Either (typeOfᴱ H (Γ ⊕ x ↦ T) M ≮: U) (typeOfᴱ H ∅ (val v) ≮: T)
|
||||
≮:-substitutivityᴱ {T = T} H M v x p with dec-subtyping (typeOfᴱ H ∅ (val v)) T
|
||||
≮:-substitutivityᴱ H M v x p | Left q = Right q
|
||||
≮:-substitutivityᴱ H M v x p | Right q = Left (<:-trans-≮: (<:-substitutivityᴱ H M v x q) p)
|
||||
|
||||
≮:-substitutivityᴮ : ∀ {Γ T U} H B v x → (typeOfᴮ H Γ (B [ v / x ]ᴮ) ≮: U) → Either (typeOfᴮ H (Γ ⊕ x ↦ T) B ≮: U) (typeOfᴱ H ∅ (val v) ≮: T)
|
||||
≮:-substitutivityᴮ {T = T} H M v x p with dec-subtyping (typeOfᴱ H ∅ (val v)) T
|
||||
≮:-substitutivityᴮ H M v x p | Left q = Right q
|
||||
≮:-substitutivityᴮ H M v x p | Right q = Left (<:-trans-≮: (<:-substitutivityᴮ H M v x q) p)
|
||||
|
||||
≮:-substitutivityᴮ-unless : ∀ {Γ T U V} H B v x y (r : Dec(x ≡ y)) → (typeOfᴮ H (Γ ⊕ y ↦ U) (B [ v / x ]ᴮunless r) ≮: V) → Either (typeOfᴮ H ((Γ ⊕ x ↦ T) ⊕ y ↦ U) B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T)
|
||||
≮:-substitutivityᴮ-unless {T = T} H B v x y r p with dec-subtyping (typeOfᴱ H ∅ (val v)) T
|
||||
≮:-substitutivityᴮ-unless H B v x y r p | Left q = Right q
|
||||
≮:-substitutivityᴮ-unless H B v x y r p | Right q = Left (<:-trans-≮: (<:-substitutivityᴮ-unless H B v x y r q) p)
|
||||
|
||||
<:-reductionᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Either (typeOfᴱ H′ ∅ M′ <: typeOfᴱ H ∅ M) (Warningᴱ H (typeCheckᴱ H ∅ M))
|
||||
<:-reductionᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Either (typeOfᴮ H′ ∅ B′ <: typeOfᴮ H ∅ B) (Warningᴮ H (typeCheckᴮ H ∅ B))
|
||||
|
||||
<:-reductionᴱ H (M $ N) (app₁ s) = mapLR (λ p → <:-resolve p (<:-heap-weakeningᴱ ∅ H N (rednᴱ⊑ s))) app₁ (<:-reductionᴱ H M s)
|
||||
<:-reductionᴱ H (M $ N) (app₂ q s) = mapLR (λ p → <:-resolve (<:-heap-weakeningᴱ ∅ H M (rednᴱ⊑ s)) p) app₂ (<:-reductionᴱ H N s)
|
||||
<:-reductionᴱ H (M $ N) (beta (function f ⟨ var y ∈ S ⟩∈ U is B end) v refl q) with dec-subtyping (typeOfᴱ H ∅ (val v)) S
|
||||
<:-reductionᴱ H (M $ N) (beta (function f ⟨ var y ∈ S ⟩∈ U is B end) v refl q) | Left r = Right (FunctionCallMismatch (≮:-trans-≡ r (cong src (cong orUnknown (cong typeOfᴹᴼ (sym q))))))
|
||||
<:-reductionᴱ H (M $ N) (beta (function f ⟨ var y ∈ S ⟩∈ U is B end) v refl q) | Right r = Left (<:-trans-≡ (<:-resolve-⇒ r) (cong (λ F → resolve F (typeOfᴱ H ∅ N)) (cong orUnknown (cong typeOfᴹᴼ (sym q)))))
|
||||
<:-reductionᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) = Left <:-refl
|
||||
<:-reductionᴱ H (block var b ∈ T is B end) (block s) = Left <:-refl
|
||||
<:-reductionᴱ H (block var b ∈ T is return (val v) ∙ B end) (return v) with dec-subtyping (typeOfᴱ H ∅ (val v)) T
|
||||
<:-reductionᴱ H (block var b ∈ T is return (val v) ∙ B end) (return v) | Left p = Right (BlockMismatch p)
|
||||
<:-reductionᴱ H (block var b ∈ T is return (val v) ∙ B end) (return v) | Right p = Left p
|
||||
<:-reductionᴱ H (block var b ∈ T is done end) done with dec-subtyping nil T
|
||||
<:-reductionᴱ H (block var b ∈ T is done end) done | Left p = Right (BlockMismatch p)
|
||||
<:-reductionᴱ H (block var b ∈ T is done end) done | Right p = Left p
|
||||
<:-reductionᴱ H (binexp M op N) (binOp₀ s) = Left (≡-impl-<: (sym (binOpPreservation H s)))
|
||||
<:-reductionᴱ H (binexp M op N) (binOp₁ s) = Left <:-refl
|
||||
<:-reductionᴱ H (binexp M op N) (binOp₂ s) = Left <:-refl
|
||||
|
||||
<:-reductionᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) = Left (<:-trans (<:-substitutivityᴮ _ B (addr a) f <:-refl) (<:-heap-weakeningᴮ (f ↦ (T ⇒ U)) H B (snoc defn)))
|
||||
<:-reductionᴮ H (local var x ∈ T ← M ∙ B) (local s) = Left (<:-heap-weakeningᴮ (x ↦ T) H B (rednᴱ⊑ s))
|
||||
<:-reductionᴮ H (local var x ∈ T ← M ∙ B) (subst v) with dec-subtyping (typeOfᴱ H ∅ (val v)) T
|
||||
<:-reductionᴮ H (local var x ∈ T ← M ∙ B) (subst v) | Left p = Right (LocalVarMismatch p)
|
||||
<:-reductionᴮ H (local var x ∈ T ← M ∙ B) (subst v) | Right p = Left (<:-substitutivityᴮ H B v x p)
|
||||
<:-reductionᴮ H (return M ∙ B) (return s) = mapR return (<:-reductionᴱ H M s)
|
||||
|
||||
≮:-reductionᴱ : ∀ H M {H′ M′ T} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (typeOfᴱ H′ ∅ M′ ≮: T) → Either (typeOfᴱ H ∅ M ≮: T) (Warningᴱ H (typeCheckᴱ H ∅ M))
|
||||
≮:-reductionᴱ H M s p = mapL (λ q → <:-trans-≮: q p) (<:-reductionᴱ H M s)
|
||||
|
||||
≮:-reductionᴮ : ∀ H B {H′ B′ T} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (typeOfᴮ H′ ∅ B′ ≮: T) → Either (typeOfᴮ H ∅ B ≮: T) (Warningᴮ H (typeCheckᴮ H ∅ B))
|
||||
≮:-reductionᴮ H B s p = mapL (λ q → <:-trans-≮: q p) (<:-reductionᴮ H B s)
|
||||
|
||||
reflect-substitutionᴱ : ∀ {Γ T} H M v x → Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) → Either (Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) M)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T))
|
||||
reflect-substitutionᴱ-whenever : ∀ {Γ T} H v x y (p : Dec(x ≡ y)) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever p)) → Either (Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y))) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T))
|
||||
|
@ -171,29 +188,29 @@ reflect-substitutionᴮ-unless-no : ∀ {Γ Γ′ T} H B v x y (r : x ≢ y) →
|
|||
|
||||
reflect-substitutionᴱ H (var y) v x W = reflect-substitutionᴱ-whenever H v x y (x ≡ⱽ y) W
|
||||
reflect-substitutionᴱ H (val (addr a)) v x (UnallocatedAddress r) = Left (UnallocatedAddress r)
|
||||
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) with substitutivityᴱ H N v x p
|
||||
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) with ≮:-substitutivityᴱ H N v x p
|
||||
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Right W = Right (Right W)
|
||||
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q with substitutivityᴱ H M v x (src-unknown-≮: q)
|
||||
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q with ≮:-substitutivityᴱ H M v x (src-unknown-≮: q)
|
||||
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Left r = Left ((FunctionCallMismatch ∘ unknown-src-≮: q) r)
|
||||
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Right W = Right (Right W)
|
||||
reflect-substitutionᴱ H (M $ N) v x (app₁ W) = mapL app₁ (reflect-substitutionᴱ H M v x W)
|
||||
reflect-substitutionᴱ H (M $ N) v x (app₂ W) = mapL app₂ (reflect-substitutionᴱ H N v x W)
|
||||
reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H B v x y (x ≡ⱽ y) q)
|
||||
reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (≮:-substitutivityᴮ-unless H B v x y (x ≡ⱽ y) q)
|
||||
reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W)
|
||||
reflect-substitutionᴱ H (block var b ∈ T is B end) v x (BlockMismatch q) = mapLR BlockMismatch Right (substitutivityᴮ H B v x q)
|
||||
reflect-substitutionᴱ H (block var b ∈ T is B end) v x (BlockMismatch q) = mapLR BlockMismatch Right (≮:-substitutivityᴮ H B v x q)
|
||||
reflect-substitutionᴱ H (block var b ∈ T is B end) v x (block₁ W′) = mapL block₁ (reflect-substitutionᴮ H B v x W′)
|
||||
reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₁ q) = mapLR BinOpMismatch₁ Right (substitutivityᴱ H M v x q)
|
||||
reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₂ q) = mapLR BinOpMismatch₂ Right (substitutivityᴱ H N v x q)
|
||||
reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₁ q) = mapLR BinOpMismatch₁ Right (≮:-substitutivityᴱ H M v x q)
|
||||
reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₂ q) = mapLR BinOpMismatch₂ Right (≮:-substitutivityᴱ H N v x q)
|
||||
reflect-substitutionᴱ H (binexp M op N) v x (bin₁ W) = mapL bin₁ (reflect-substitutionᴱ H M v x W)
|
||||
reflect-substitutionᴱ H (binexp M op N) v x (bin₂ W) = mapL bin₂ (reflect-substitutionᴱ H N v x W)
|
||||
|
||||
reflect-substitutionᴱ-whenever H a x x (yes refl) (UnallocatedAddress p) = Right (Left (UnallocatedAddress p))
|
||||
reflect-substitutionᴱ-whenever H v x y (no p) (UnboundVariable q) = Left (UnboundVariable (trans (sym (⊕-lookup-miss x y _ _ p)) q))
|
||||
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H C v x y (x ≡ⱽ y) q)
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (≮:-substitutivityᴮ-unless H C v x y (x ≡ⱽ y) q)
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H C v x y (x ≡ⱽ y) W)
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (function₂ W) = mapL function₂ (reflect-substitutionᴮ-unless H B v x f (x ≡ⱽ f) W)
|
||||
reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (LocalVarMismatch q) = mapLR LocalVarMismatch Right (substitutivityᴱ H M v x q)
|
||||
reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (LocalVarMismatch q) = mapLR LocalVarMismatch Right (≮:-substitutivityᴱ H M v x q)
|
||||
reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (local₁ W) = mapL local₁ (reflect-substitutionᴱ H M v x W)
|
||||
reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (local₂ W) = mapL local₂ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W)
|
||||
reflect-substitutionᴮ H (return M ∙ B) v x (return W) = mapL return (reflect-substitutionᴱ H M v x W)
|
||||
|
@ -208,61 +225,61 @@ reflect-weakeningᴮ : ∀ Γ H B {H′} → (H ⊑ H′) → Warningᴮ H′ (t
|
|||
|
||||
reflect-weakeningᴱ Γ H (var x) h (UnboundVariable p) = (UnboundVariable p)
|
||||
reflect-weakeningᴱ Γ H (val (addr a)) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p)
|
||||
reflect-weakeningᴱ Γ H (M $ N) h (FunctionCallMismatch p) = FunctionCallMismatch (heap-weakeningᴱ Γ H N h (unknown-src-≮: p (heap-weakeningᴱ Γ H M h (src-unknown-≮: p))))
|
||||
reflect-weakeningᴱ Γ H (M $ N) h (FunctionCallMismatch p) = FunctionCallMismatch (≮:-heap-weakeningᴱ Γ H N h (unknown-src-≮: p (≮:-heap-weakeningᴱ Γ H M h (src-unknown-≮: p))))
|
||||
reflect-weakeningᴱ Γ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ Γ H M h W)
|
||||
reflect-weakeningᴱ Γ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ Γ H N h W)
|
||||
reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₁ p) = BinOpMismatch₁ (heap-weakeningᴱ Γ H M h p)
|
||||
reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₂ p) = BinOpMismatch₂ (heap-weakeningᴱ Γ H N h p)
|
||||
reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₁ p) = BinOpMismatch₁ (≮:-heap-weakeningᴱ Γ H M h p)
|
||||
reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₂ p) = BinOpMismatch₂ (≮:-heap-weakeningᴱ Γ H N h p)
|
||||
reflect-weakeningᴱ Γ H (binexp M op N) h (bin₁ W′) = bin₁ (reflect-weakeningᴱ Γ H M h W′)
|
||||
reflect-weakeningᴱ Γ H (binexp M op N) h (bin₂ W′) = bin₂ (reflect-weakeningᴱ Γ H N h W′)
|
||||
reflect-weakeningᴱ Γ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (Γ ⊕ y ↦ T) H B h p)
|
||||
reflect-weakeningᴱ Γ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (≮:-heap-weakeningᴮ (Γ ⊕ y ↦ T) H B h p)
|
||||
reflect-weakeningᴱ Γ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ ⊕ y ↦ T) H B h W)
|
||||
reflect-weakeningᴱ Γ H (block var b ∈ T is B end) h (BlockMismatch p) = BlockMismatch (heap-weakeningᴮ Γ H B h p)
|
||||
reflect-weakeningᴱ Γ H (block var b ∈ T is B end) h (BlockMismatch p) = BlockMismatch (≮:-heap-weakeningᴮ Γ H B h p)
|
||||
reflect-weakeningᴱ Γ H (block var b ∈ T is B end) h (block₁ W) = block₁ (reflect-weakeningᴮ Γ H B h W)
|
||||
|
||||
reflect-weakeningᴮ Γ H (return M ∙ B) h (return W) = return (reflect-weakeningᴱ Γ H M h W)
|
||||
reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (LocalVarMismatch p) = LocalVarMismatch (heap-weakeningᴱ Γ H M h p)
|
||||
reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (LocalVarMismatch p) = LocalVarMismatch (≮:-heap-weakeningᴱ Γ H M h p)
|
||||
reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (local₁ W) = local₁ (reflect-weakeningᴱ Γ H M h W)
|
||||
reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (local₂ W) = local₂ (reflect-weakeningᴮ (Γ ⊕ y ↦ T) H B h W)
|
||||
reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (Γ ⊕ x ↦ T) H C h p)
|
||||
reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (FunctionDefnMismatch p) = FunctionDefnMismatch (≮:-heap-weakeningᴮ (Γ ⊕ x ↦ T) H C h p)
|
||||
reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ ⊕ x ↦ T) H C h W)
|
||||
reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₂ W) = function₂ (reflect-weakeningᴮ (Γ ⊕ f ↦ (T ⇒ U)) H B h W)
|
||||
|
||||
reflect-weakeningᴼ : ∀ H O {H′} → (H ⊑ H′) → Warningᴼ H′ (typeCheckᴼ H′ O) → Warningᴼ H (typeCheckᴼ H O)
|
||||
reflect-weakeningᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (x ↦ T) H B h p)
|
||||
reflect-weakeningᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (≮:-heap-weakeningᴮ (x ↦ T) H B h p)
|
||||
reflect-weakeningᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (x ↦ T) H B h W)
|
||||
|
||||
reflectᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴱ H′ (typeCheckᴱ H′ ∅ M′) → Either (Warningᴱ H (typeCheckᴱ H ∅ M)) (Warningᴴ H (typeCheckᴴ H))
|
||||
reflectᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴮ H′ (typeCheckᴮ H′ ∅ B′) → Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H))
|
||||
|
||||
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) = cond (Left ∘ FunctionCallMismatch ∘ heap-weakeningᴱ ∅ H N (rednᴱ⊑ s) ∘ unknown-src-≮: p) (Left ∘ app₁) (reflect-subtypingᴱ H M s (src-unknown-≮: p))
|
||||
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) = cond (Left ∘ FunctionCallMismatch ∘ ≮:-heap-weakeningᴱ ∅ H N (rednᴱ⊑ s) ∘ unknown-src-≮: p) (Left ∘ app₁) (≮:-reductionᴱ H M s (src-unknown-≮: p))
|
||||
reflectᴱ H (M $ N) (app₁ s) (app₁ W′) = mapL app₁ (reflectᴱ H M s W′)
|
||||
reflectᴱ H (M $ N) (app₁ s) (app₂ W′) = Left (app₂ (reflect-weakeningᴱ ∅ H N (rednᴱ⊑ s) W′))
|
||||
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch q) = cond (λ r → Left (FunctionCallMismatch (unknown-src-≮: r (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) (src-unknown-≮: r))))) (Left ∘ app₂) (reflect-subtypingᴱ H N s q)
|
||||
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch q) = cond (λ r → Left (FunctionCallMismatch (unknown-src-≮: r (≮:-heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) (src-unknown-≮: r))))) (Left ∘ app₂) (≮:-reductionᴱ H N s q)
|
||||
reflectᴱ H (M $ N) (app₂ p s) (app₁ W′) = Left (app₁ (reflect-weakeningᴱ ∅ H M (rednᴱ⊑ s) W′))
|
||||
reflectᴱ H (M $ N) (app₂ p s) (app₂ W′) = mapL app₂ (reflectᴱ H N s W′)
|
||||
reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) with substitutivityᴮ H B v x q
|
||||
reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) with ≮:-substitutivityᴮ H B v x q
|
||||
reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Left r = Right (addr a p (FunctionDefnMismatch r))
|
||||
reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Right r = Left (FunctionCallMismatch (≮:-trans-≡ r ((cong src (cong orUnknown (cong typeOfᴹᴼ (sym p)))))))
|
||||
reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) with reflect-substitutionᴮ _ B v x W′
|
||||
reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Left W = Right (addr a p (function₁ W))
|
||||
reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Right (Left W) = Left (app₂ W)
|
||||
reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Right (Right q) = Left (FunctionCallMismatch (≮:-trans-≡ q (cong src (cong orUnknown (cong typeOfᴹᴼ (sym p))))))
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (BlockMismatch p) = Left (cond BlockMismatch block₁ (reflect-subtypingᴮ H B s p))
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (BlockMismatch p) = Left (cond BlockMismatch block₁ (≮:-reductionᴮ H B s p))
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ W′) = mapL block₁ (reflectᴮ H B s W′)
|
||||
reflectᴱ H (block var b ∈ T is B end) (return v) W′ = Left (block₁ (return W′))
|
||||
reflectᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (UnallocatedAddress ())
|
||||
reflectᴱ H (binexp M op N) (binOp₀ ()) (UnallocatedAddress p)
|
||||
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) = Left (cond BinOpMismatch₁ bin₁ (reflect-subtypingᴱ H M s p))
|
||||
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) = Left (BinOpMismatch₂ (heap-weakeningᴱ ∅ H N (rednᴱ⊑ s) p))
|
||||
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) = Left (cond BinOpMismatch₁ bin₁ (≮:-reductionᴱ H M s p))
|
||||
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) = Left (BinOpMismatch₂ (≮:-heap-weakeningᴱ ∅ H N (rednᴱ⊑ s) p))
|
||||
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W′) = mapL bin₁ (reflectᴱ H M s W′)
|
||||
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₂ W′) = Left (bin₂ (reflect-weakeningᴱ ∅ H N (rednᴱ⊑ s) W′))
|
||||
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) = Left (BinOpMismatch₁ (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) p))
|
||||
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) = Left (cond BinOpMismatch₂ bin₂ (reflect-subtypingᴱ H N s p))
|
||||
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) = Left (BinOpMismatch₁ (≮:-heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) p))
|
||||
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) = Left (cond BinOpMismatch₂ bin₂ (≮:-reductionᴱ H N s p))
|
||||
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₁ W′) = Left (bin₁ (reflect-weakeningᴱ ∅ H M (rednᴱ⊑ s) W′))
|
||||
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W′) = mapL bin₂ (reflectᴱ H N s W′)
|
||||
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (LocalVarMismatch p) = Left (cond LocalVarMismatch local₁ (reflect-subtypingᴱ H M s p))
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (LocalVarMismatch p) = Left (cond LocalVarMismatch local₁ (≮:-reductionᴱ H M s p))
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₁ W′) = mapL local₁ (reflectᴱ H M s W′)
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₂ W′) = Left (local₂ (reflect-weakeningᴮ (x ↦ T) H B (rednᴱ⊑ s) W′))
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ = Left (cond local₂ (cond local₁ LocalVarMismatch) (reflect-substitutionᴮ H B v x W′))
|
||||
|
@ -279,7 +296,7 @@ reflectᴴᴱ H (M $ N) (app₁ s) W = mapL app₁ (reflectᴴᴱ H M s W)
|
|||
reflectᴴᴱ H (M $ N) (app₂ v s) W = mapL app₂ (reflectᴴᴱ H N s W)
|
||||
reflectᴴᴱ H (M $ N) (beta O v refl p) W = Right W
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (addr b refl W) with b ≡ᴬ a
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakeningᴮ (x ↦ T) H B (snoc defn) p))
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (≮:-heap-weakeningᴮ (x ↦ T) H B (snoc defn) p))
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x ↦ T) H B (snoc defn) W))
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W))
|
||||
reflectᴴᴱ H (block var b ∈ T is B end) (block s) W = mapL block₁ (reflectᴴᴮ H B s W)
|
||||
|
@ -290,7 +307,7 @@ reflectᴴᴱ H (binexp M op N) (binOp₁ s) W = mapL bin₁ (reflectᴴᴱ H M
|
|||
reflectᴴᴱ H (binexp M op N) (binOp₂ s) W = mapL bin₂ (reflectᴴᴱ H N s W)
|
||||
|
||||
reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a p) (addr b refl W) with b ≡ᴬ a
|
||||
reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakeningᴮ (x ↦ T) H C (snoc defn) p))
|
||||
reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (≮:-heap-weakeningᴮ (x ↦ T) H C (snoc defn) p))
|
||||
reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x ↦ T) H C (snoc defn) W))
|
||||
reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W))
|
||||
reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (local s) W = mapL local₁ (reflectᴴᴱ H M s W)
|
||||
|
|
|
@ -98,9 +98,18 @@ language-comp (function-tgt t) (function-tgt p) (function-tgt q) = language-comp
|
|||
≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U)
|
||||
≮:-trans-≡ p refl = p
|
||||
|
||||
<:-trans-≡ : ∀ {S T U} → (S <: T) → (T ≡ U) → (S <: U)
|
||||
<:-trans-≡ p refl = p
|
||||
|
||||
≡-impl-<: : ∀ {T U} → (T ≡ U) → (T <: U)
|
||||
≡-impl-<: refl = <:-refl
|
||||
|
||||
≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U)
|
||||
≡-trans-≮: refl p = p
|
||||
|
||||
≡-trans-<: : ∀ {S T U} → (S ≡ T) → (T <: U) → (S <: U)
|
||||
≡-trans-<: refl p = p
|
||||
|
||||
≮:-trans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U)
|
||||
≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t)
|
||||
|
||||
|
|
|
@ -152,6 +152,10 @@ data <:-Close (P : Type → Set) : Type → Set where
|
|||
_⊆ᵒ_ : Type → Type → Set
|
||||
F ⊆ᵒ G = ∀ {S T} → Overloads F (S ⇒ T) → Overloads G (S ⇒ T)
|
||||
|
||||
-- F <:ᵒ G when every overload of G is a supertype of an overload of F
|
||||
_<:ᵒ_ : Type → Type → Set
|
||||
_<:ᵒ_ F G = ∀ {S T} → Overloads G (S ⇒ T) → <:-Close (Overloads F) (S ⇒ T)
|
||||
|
||||
-- P ⊂: Q when any type in P is a subtype of some type in Q
|
||||
_⊂:_ : (Type → Set) → (Type → Set) → Set
|
||||
P ⊂: Q = ∀ {S T} → P (S ⇒ T) → <:-Close Q (S ⇒ T)
|
||||
|
@ -171,10 +175,6 @@ _>>=ˡ_ : ∀ {P R S T} → <:-Close P (S ⇒ T) → (R <: S) → <:-Close P (R
|
|||
_>>=ʳ_ : ∀ {P S T U} → <:-Close P (S ⇒ T) → (T <: U) → <:-Close P (S ⇒ U)
|
||||
(defn p p₁ p₂) >>=ʳ q = defn p p₁ (<:-trans p₂ q)
|
||||
|
||||
-- F <:ᵒ (S ⇒ T) when (S ⇒ T) is a supertype of an overload of F
|
||||
_<:ᵒ_ : Type → Type → Set
|
||||
_<:ᵒ_ F = <:-Close (Overloads F)
|
||||
|
||||
-- Properties of ⊂:
|
||||
⊂:-refl : ∀ {P} → P ⊂: P
|
||||
⊂:-refl p = just p
|
||||
|
@ -233,8 +233,10 @@ ov-<: F here p = p
|
|||
ov-<: (F ∩ G) (left o) p = <:-trans <:-∩-left (ov-<: F o p)
|
||||
ov-<: (F ∩ G) (right o) p = <:-trans <:-∩-right (ov-<: G o p)
|
||||
|
||||
<:ᵒ-impl-<: : ∀ {F S T} → FunType F → F <:ᵒ (S ⇒ T) → F <: (S ⇒ T)
|
||||
<:ᵒ-impl-<: F (defn o o₁ o₂) = ov-<: F o (<:-function o₁ o₂)
|
||||
<:ᵒ-impl-<: : ∀ {F G} → FunType F → FunType G → (F <:ᵒ G) → (F <: G)
|
||||
<:ᵒ-impl-<: F (T ⇒ U) F<G with F<G here
|
||||
<:ᵒ-impl-<: F (T ⇒ U) F<G | defn o o₁ o₂ = ov-<: F o (<:-function o₁ o₂)
|
||||
<:ᵒ-impl-<: F (G ∩ H) F<G = <:-∩-glb (<:ᵒ-impl-<: F G (F<G ∘ left)) (<:ᵒ-impl-<: F H (F<G ∘ right))
|
||||
|
||||
⊂:-overloads-left : ∀ {F G} → Overloads F ⊂: Overloads (F ∩ G)
|
||||
⊂:-overloads-left p = just (left p)
|
||||
|
@ -419,8 +421,8 @@ data Saturated (F : Type) : Set where
|
|||
|
||||
defn :
|
||||
|
||||
(∀ {R S T U} → Overloads F (R ⇒ S) → Overloads F (T ⇒ U) → F <:ᵒ ((R ∩ T) ⇒ (S ∩ U))) →
|
||||
(∀ {R S T U} → Overloads F (R ⇒ S) → Overloads F (T ⇒ U) → F <:ᵒ ((R ∪ T) ⇒ (S ∪ U))) →
|
||||
(∀ {R S T U} → Overloads F (R ⇒ S) → Overloads F (T ⇒ U) → <:-Close (Overloads F) ((R ∩ T) ⇒ (S ∩ U))) →
|
||||
(∀ {R S T U} → Overloads F (R ⇒ S) → Overloads F (T ⇒ U) → <:-Close (Overloads F) ((R ∪ T) ⇒ (S ∪ U))) →
|
||||
-----------
|
||||
Saturated F
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue