mirror of
https://github.com/luau-lang/luau.git
synced 2025-05-04 10:33:46 +01:00
WIP
This commit is contained in:
parent
8aeba47463
commit
c99c1aa486
9 changed files with 312 additions and 279 deletions
|
@ -10,7 +10,7 @@ open import Agda.Builtin.String using (String)
|
|||
open import FFI.Data.ByteString using (ByteString)
|
||||
open import FFI.Data.HaskellString using (HaskellString; pack)
|
||||
open import FFI.Data.Maybe using (Maybe; just; nothing)
|
||||
open import FFI.Data.Either using (Either; mapLeft)
|
||||
open import FFI.Data.Either using (Either; mapL)
|
||||
open import FFI.Data.Scientific using (Scientific)
|
||||
open import FFI.Data.Vector using (Vector)
|
||||
|
||||
|
@ -73,5 +73,5 @@ postulate
|
|||
{-# COMPILE GHC eitherHDecode = Data.Aeson.eitherDecodeStrict #-}
|
||||
|
||||
eitherDecode : ByteString → Either String Value
|
||||
eitherDecode bytes = mapLeft pack (eitherHDecode bytes)
|
||||
eitherDecode bytes = mapL pack (eitherHDecode bytes)
|
||||
|
||||
|
|
|
@ -7,10 +7,22 @@ data Either (A B : Set) : Set where
|
|||
Right : B → Either A B
|
||||
{-# COMPILE GHC Either = data Data.Either.Either (Data.Either.Left|Data.Either.Right) #-}
|
||||
|
||||
mapLeft : ∀ {A B C} → (A → B) → (Either A C) → (Either B C)
|
||||
mapLeft f (Left x) = Left (f x)
|
||||
mapLeft f (Right x) = Right x
|
||||
swapLR : ∀ {A B} → Either A B → Either B A
|
||||
swapLR (Left x) = Right x
|
||||
swapLR (Right x) = Left x
|
||||
|
||||
mapRight : ∀ {A B C} → (B → C) → (Either A B) → (Either A C)
|
||||
mapRight f (Left x) = Left x
|
||||
mapRight f (Right x) = Right (f x)
|
||||
mapL : ∀ {A B C} → (A → B) → Either A C → Either B C
|
||||
mapL f (Left x) = Left (f x)
|
||||
mapL f (Right x) = Right x
|
||||
|
||||
mapR : ∀ {A B C} → (B → C) → Either A B → Either A C
|
||||
mapR f (Left x) = Left x
|
||||
mapR f (Right x) = Right (f x)
|
||||
|
||||
mapLR : ∀ {A B C D} → (A → B) → (C → D) → Either A C → Either B D
|
||||
mapLR f g (Left x) = Left (f x)
|
||||
mapLR f g (Right x) = Right (g x)
|
||||
|
||||
cond : ∀ {A B C : Set} → (A → C) → (B → C) → (Either A B) → C
|
||||
cond f g (Left x) = f x
|
||||
cond f g (Right x) = g x
|
||||
|
|
|
@ -6,68 +6,17 @@ open import Agda.Builtin.Equality using (_≡_)
|
|||
open import FFI.Data.Maybe using (just; nothing)
|
||||
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; var; binexp; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; +; -; *; /; <; >; <=; >=; ··)
|
||||
open import Luau.Type using (Type; strict; nil; number; string; boolean; none; any; _⇒_; _∪_; _∩_; tgt)
|
||||
open import Luau.Subtyping using (_≮:_)
|
||||
open import Luau.Heap using (Heap; function_is_end) renaming (_[_] to _[_]ᴴ)
|
||||
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
|
||||
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; ⊢ᴴ_; ⊢ᴼ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; var; addr; app; binexp; block; return; local; function; srcBinOp)
|
||||
open import Properties.Contradiction using (¬)
|
||||
open import Properties.Equality using (_≢_)
|
||||
open import Properties.TypeCheck(strict) using (typeCheckᴮ)
|
||||
open import Properties.Product using (_,_)
|
||||
|
||||
src : Type → Type
|
||||
src = Luau.Type.src strict
|
||||
|
||||
data Scalar : Type → Set where
|
||||
|
||||
number : Scalar number
|
||||
boolean : Scalar boolean
|
||||
string : Scalar string
|
||||
nil : Scalar nil
|
||||
|
||||
data Tree : Set where
|
||||
|
||||
scalar : ∀ {T} → Scalar T → Tree
|
||||
function : Tree
|
||||
function-ok : Tree → Tree
|
||||
function-err : Tree → Tree
|
||||
|
||||
data Language : Type → Tree → Set
|
||||
data ¬Language : Type → Tree → Set
|
||||
|
||||
data Language where
|
||||
|
||||
scalar : ∀ {T} → (s : Scalar T) → Language T (scalar s)
|
||||
function : ∀ {T U} → Language (T ⇒ U) function
|
||||
function-ok : ∀ {T U u} → (Language U u) → Language (T ⇒ U) (function-ok u)
|
||||
function-err : ∀ {T U t} → (¬Language T t) → Language (T ⇒ U) (function-err t)
|
||||
scalar-function-err : ∀ {S t} → (Scalar S) → Language S (function-err t)
|
||||
left : ∀ {T U t} → Language T t → Language (T ∪ U) t
|
||||
right : ∀ {T U u} → Language U u → Language (T ∪ U) u
|
||||
_,_ : ∀ {T U t} → Language T t → Language U t → Language (T ∩ U) t
|
||||
any : ∀ {t} → Language any t
|
||||
|
||||
data ¬Language where
|
||||
|
||||
scalar-scalar : ∀ {S T} → (s : Scalar S) → (Scalar T) → (S ≢ T) → ¬Language T (scalar s)
|
||||
scalar-function : ∀ {S} → (Scalar S) → ¬Language S function
|
||||
scalar-function-ok : ∀ {S u} → (Scalar S) → ¬Language S (function-ok u)
|
||||
function-scalar : ∀ {S T U} (s : Scalar S) → ¬Language (T ⇒ U) (scalar s)
|
||||
function-ok : ∀ {T U u} → (¬Language U u) → ¬Language (T ⇒ U) (function-ok u)
|
||||
function-err : ∀ {T U t} → (Language T t) → ¬Language (T ⇒ U) (function-err t)
|
||||
_,_ : ∀ {T U t} → ¬Language T t → ¬Language U t → ¬Language (T ∪ U) t
|
||||
left : ∀ {T U t} → ¬Language T t → ¬Language (T ∩ U) t
|
||||
right : ∀ {T U u} → ¬Language U u → ¬Language (T ∩ U) u
|
||||
none : ∀ {t} → ¬Language none t
|
||||
|
||||
data _≮:_ (T U : Type) : Set where
|
||||
|
||||
witness : ∀ t →
|
||||
|
||||
Language T t →
|
||||
¬Language U t →
|
||||
-----------------
|
||||
T ≮: U
|
||||
|
||||
data Warningᴱ (H : Heap yes) {Γ} : ∀ {M T} → (Γ ⊢ᴱ M ∈ T) → Set
|
||||
data Warningᴮ (H : Heap yes) {Γ} : ∀ {B T} → (Γ ⊢ᴮ B ∈ T) → Set
|
||||
|
||||
|
|
62
prototyping/Luau/Subtyping.agda
Normal file
62
prototyping/Luau/Subtyping.agda
Normal file
|
@ -0,0 +1,62 @@
|
|||
{-# OPTIONS --rewriting #-}
|
||||
|
||||
open import Luau.Type using (Type; Scalar; nil; number; string; boolean; none; any; _⇒_; _∪_; _∩_)
|
||||
open import Properties.Equality using (_≢_)
|
||||
|
||||
module Luau.Subtyping where
|
||||
|
||||
-- An implementation of semantic subtyping
|
||||
|
||||
-- We think of types as languages of trees
|
||||
|
||||
data Tree : Set where
|
||||
|
||||
scalar : ∀ {T} → Scalar T → Tree
|
||||
function : Tree
|
||||
function-ok : Tree → Tree
|
||||
function-err : Tree → Tree
|
||||
|
||||
data Language : Type → Tree → Set
|
||||
data ¬Language : Type → Tree → Set
|
||||
|
||||
data Language where
|
||||
|
||||
scalar : ∀ {T} → (s : Scalar T) → Language T (scalar s)
|
||||
function : ∀ {T U} → Language (T ⇒ U) function
|
||||
function-ok : ∀ {T U u} → (Language U u) → Language (T ⇒ U) (function-ok u)
|
||||
function-err : ∀ {T U t} → (¬Language T t) → Language (T ⇒ U) (function-err t)
|
||||
scalar-function-err : ∀ {S t} → (Scalar S) → Language S (function-err t)
|
||||
left : ∀ {T U t} → Language T t → Language (T ∪ U) t
|
||||
right : ∀ {T U u} → Language U u → Language (T ∪ U) u
|
||||
_,_ : ∀ {T U t} → Language T t → Language U t → Language (T ∩ U) t
|
||||
any : ∀ {t} → Language any t
|
||||
|
||||
data ¬Language where
|
||||
|
||||
scalar-scalar : ∀ {S T} → (s : Scalar S) → (Scalar T) → (S ≢ T) → ¬Language T (scalar s)
|
||||
scalar-function : ∀ {S} → (Scalar S) → ¬Language S function
|
||||
scalar-function-ok : ∀ {S u} → (Scalar S) → ¬Language S (function-ok u)
|
||||
function-scalar : ∀ {S T U} (s : Scalar S) → ¬Language (T ⇒ U) (scalar s)
|
||||
function-ok : ∀ {T U u} → (¬Language U u) → ¬Language (T ⇒ U) (function-ok u)
|
||||
function-err : ∀ {T U t} → (Language T t) → ¬Language (T ⇒ U) (function-err t)
|
||||
_,_ : ∀ {T U t} → ¬Language T t → ¬Language U t → ¬Language (T ∪ U) t
|
||||
left : ∀ {T U t} → ¬Language T t → ¬Language (T ∩ U) t
|
||||
right : ∀ {T U u} → ¬Language U u → ¬Language (T ∩ U) u
|
||||
none : ∀ {t} → ¬Language none t
|
||||
|
||||
-- Subtyping as language inclusion
|
||||
|
||||
_<:_ : Type → Type → Set
|
||||
(T <: U) = ∀ t → (Language T t) → (Language U t)
|
||||
|
||||
-- For warnings, we are interested in failures of subtyping,
|
||||
-- which is whrn there is a tree in T's language that isn't in U's.
|
||||
|
||||
data _≮:_ (T U : Type) : Set where
|
||||
|
||||
witness : ∀ t →
|
||||
|
||||
Language T t →
|
||||
¬Language U t →
|
||||
-----------------
|
||||
T ≮: U
|
|
@ -17,6 +17,13 @@ data Type : Set where
|
|||
_∪_ : Type → Type → Type
|
||||
_∩_ : Type → Type → Type
|
||||
|
||||
data Scalar : Type → Set where
|
||||
|
||||
number : Scalar number
|
||||
boolean : Scalar boolean
|
||||
string : Scalar string
|
||||
nil : Scalar nil
|
||||
|
||||
lhs : Type → Type
|
||||
lhs (T ⇒ _) = T
|
||||
lhs (T ∪ _) = T
|
||||
|
|
|
@ -5,7 +5,9 @@ module Properties where
|
|||
import Properties.Contradiction
|
||||
import Properties.Dec
|
||||
import Properties.Equality
|
||||
import Properties.Functions
|
||||
import Properties.Remember
|
||||
import Properties.Step
|
||||
import Properties.StrictMode
|
||||
import Properties.Subtyping
|
||||
import Properties.TypeCheck
|
||||
|
|
6
prototyping/Properties/Functions.agda
Normal file
6
prototyping/Properties/Functions.agda
Normal file
|
@ -0,0 +1,6 @@
|
|||
module Properties.Functions where
|
||||
|
||||
infixr 5 _∘_
|
||||
|
||||
_∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C)
|
||||
(f ∘ g) x = f (g x)
|
|
@ -4,11 +4,12 @@ module Properties.StrictMode where
|
|||
|
||||
import Agda.Builtin.Equality.Rewrite
|
||||
open import Agda.Builtin.Equality using (_≡_; refl)
|
||||
open import FFI.Data.Either using (Either; Left; Right)
|
||||
open import FFI.Data.Either using (Either; Left; Right; mapL; mapR; mapLR; swapLR; cond)
|
||||
open import FFI.Data.Maybe using (Maybe; just; nothing)
|
||||
open import Luau.Heap using (Heap; Object; function_is_end; defn; alloc; ok; next; lookup-not-allocated) renaming (_≡_⊕_↦_ to _≡ᴴ_⊕_↦_; _[_] to _[_]ᴴ; ∅ to ∅ᴴ)
|
||||
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr; _≮:_; witness; any; none; nil; number; string; boolean; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_; Tree; Language; ¬Language; Scalar)
|
||||
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr)
|
||||
open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_)
|
||||
open import Luau.Subtyping using (_≮:_; witness; any; none; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_; Tree; Language; ¬Language)
|
||||
open import Luau.Syntax using (Expr; yes; var; val; var_∈_; _⟨_⟩∈_; _$_; addr; number; bool; string; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name; ==; ~=)
|
||||
open import Luau.Type using (Type; strict; nil; number; boolean; string; _⇒_; none; any; _∩_; _∪_; tgt; _≡ᵀ_; _≡ᴹᵀ_)
|
||||
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orAny; srcBinOp; tgtBinOp)
|
||||
|
@ -20,37 +21,13 @@ open import Properties.Remember using (remember; _,_)
|
|||
open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
|
||||
open import Properties.Dec using (Dec; yes; no)
|
||||
open import Properties.Contradiction using (CONTRADICTION; ¬)
|
||||
open import Properties.Functions using (_∘_)
|
||||
open import Properties.Subtyping using (any-≮:; ≡-trans-≮:; ≮:-trans-≡; none-tgt-≮:; tgt-none-≮:; src-any-≮:; any-src-≮:; ≮:-antitrans; ≮:-antirefl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-none; any-≮:-scalar; scalar-≮:-none; any-≮:-none)
|
||||
open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴ)
|
||||
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
|
||||
open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return; +; -; *; /; <; >; <=; >=; ··)
|
||||
open import Luau.RuntimeType using (RuntimeType; valueType; number; string; boolean; nil; function)
|
||||
|
||||
-- Move these! --
|
||||
swapLR : ∀ {A B} → Either A B → Either B A
|
||||
swapLR (Left x) = Right x
|
||||
swapLR (Right x) = Left x
|
||||
|
||||
mapL : ∀ {A B C} → (A → B) → Either A C → Either B C
|
||||
mapL f (Left x) = Left (f x)
|
||||
mapL f (Right x) = Right x
|
||||
|
||||
mapR : ∀ {A B C} → (B → C) → Either A B → Either A C
|
||||
mapR f (Left x) = Left x
|
||||
mapR f (Right x) = Right (f x)
|
||||
|
||||
mapLR : ∀ {A B C D} → (A → B) → (C → D) → Either A C → Either B D
|
||||
mapLR f g (Left x) = Left (f x)
|
||||
mapLR f g (Right x) = Right (g x)
|
||||
|
||||
cond : ∀ {A B C : Set} → (A → C) → (B → C) → (Either A B) → C
|
||||
cond f g (Left x) = f x
|
||||
cond f g (Right x) = g x
|
||||
|
||||
infixr 5 _∘_
|
||||
_∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C)
|
||||
(f ∘ g) x = f (g x)
|
||||
--
|
||||
|
||||
src = Luau.Type.src strict
|
||||
|
||||
data _⊑_ (H : Heap yes) : Heap yes → Set where
|
||||
|
@ -86,193 +63,6 @@ lookup-⊑-nothing {H} a (snoc defn) p with a ≡ᴬ next H
|
|||
lookup-⊑-nothing {H} a (snoc defn) p | yes refl = refl
|
||||
lookup-⊑-nothing {H} a (snoc o) p | no q = trans (lookup-not-allocated o q) p
|
||||
|
||||
dec-language : ∀ T t → Either (¬Language T t) (Language T t)
|
||||
dec-language nil (scalar number) = Left (scalar-scalar number nil (λ ()))
|
||||
dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ()))
|
||||
dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ()))
|
||||
dec-language nil (scalar nil) = Right (scalar nil)
|
||||
dec-language nil function = Left (scalar-function nil)
|
||||
dec-language nil (function-ok t) = Left (scalar-function-ok nil)
|
||||
dec-language nil (function-err t) = Right (scalar-function-err nil)
|
||||
dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ()))
|
||||
dec-language boolean (scalar boolean) = Right (scalar boolean)
|
||||
dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ()))
|
||||
dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ()))
|
||||
dec-language boolean function = Left (scalar-function boolean)
|
||||
dec-language boolean (function-ok t) = Left (scalar-function-ok boolean)
|
||||
dec-language boolean (function-err t) = Right (scalar-function-err boolean)
|
||||
dec-language number (scalar number) = Right (scalar number)
|
||||
dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ()))
|
||||
dec-language number (scalar string) = Left (scalar-scalar string number (λ ()))
|
||||
dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ()))
|
||||
dec-language number function = Left (scalar-function number)
|
||||
dec-language number (function-ok t) = Left (scalar-function-ok number)
|
||||
dec-language number (function-err t) = Right (scalar-function-err number)
|
||||
dec-language string (scalar number) = Left (scalar-scalar number string (λ ()))
|
||||
dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ()))
|
||||
dec-language string (scalar string) = Right (scalar string)
|
||||
dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ()))
|
||||
dec-language string function = Left (scalar-function string)
|
||||
dec-language string (function-ok t) = Left (scalar-function-ok string)
|
||||
dec-language string (function-err t) = Right (scalar-function-err string)
|
||||
dec-language (T₁ ⇒ T₂) (scalar s) = Left (function-scalar s)
|
||||
dec-language (T₁ ⇒ T₂) function = Right function
|
||||
dec-language (T₁ ⇒ T₂) (function-ok t) = mapLR function-ok function-ok (dec-language T₂ t)
|
||||
dec-language (T₁ ⇒ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t))
|
||||
dec-language none t = Left none
|
||||
dec-language any t = Right any
|
||||
dec-language (T₁ ∪ T₂) t = cond (λ p → cond (Left ∘ _,_ p) (Right ∘ right) (dec-language T₂ t)) (Right ∘ left) (dec-language T₁ t)
|
||||
dec-language (T₁ ∩ T₂) t = cond (Left ∘ left) (λ p → cond (Left ∘ right) (Right ∘ _,_ p) (dec-language T₂ t)) (dec-language T₁ t)
|
||||
|
||||
≮:-antirefl : ∀ {T} → ¬(T ≮: T)
|
||||
≮:-antirefl (witness (scalar s) (scalar s) (scalar-scalar s t p)) = CONTRADICTION (p refl)
|
||||
≮:-antirefl (witness function function (scalar-function ()))
|
||||
≮:-antirefl (witness (function-ok t) (function-ok p) (function-ok q)) = ≮:-antirefl (witness t p q)
|
||||
≮:-antirefl (witness (function-err t) (function-err p) (function-err q)) = ≮:-antirefl (witness t q p)
|
||||
≮:-antirefl (witness t (left p) (q₁ , q₂)) = ≮:-antirefl (witness t p q₁)
|
||||
≮:-antirefl (witness t (right p) (q₁ , q₂)) = ≮:-antirefl (witness t p q₂)
|
||||
≮:-antirefl (witness t (p₁ , p₂) (left q)) = ≮:-antirefl (witness t p₁ q)
|
||||
≮:-antirefl (witness t (p₁ , p₂) (right q)) = ≮:-antirefl (witness t p₂ q)
|
||||
≮:-antirefl (witness (scalar s) any (scalar-scalar s () t))
|
||||
≮:-antirefl (witness (function-ok t) any (scalar-function-ok ()))
|
||||
≮:-antirefl (witness (function-err t) (scalar-function-err number) ())
|
||||
≮:-antirefl (witness (function-err t) (scalar-function-err boolean) ())
|
||||
≮:-antirefl (witness (function-err t) (scalar-function-err string) ())
|
||||
≮:-antirefl (witness (function-err t) (scalar-function-err nil) ())
|
||||
|
||||
≮:-antitrans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U)
|
||||
≮:-antitrans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t)
|
||||
|
||||
any-≮: : ∀ {T U} → (T ≮: U) → (any ≮: U)
|
||||
any-≮: (witness t p q) = witness t any q
|
||||
|
||||
none-≮: : ∀ {T U} → (T ≮: U) → (T ≮: none)
|
||||
none-≮: (witness t p q) = witness t p none
|
||||
|
||||
skalar = number ∪ (string ∪ (nil ∪ boolean))
|
||||
|
||||
tgt-function-ok : ∀ {T t} → (Language (tgt T) t) → Language T (function-ok t)
|
||||
tgt-function-ok {T = nil} (scalar ())
|
||||
tgt-function-ok {T = T₁ ⇒ T₂} p = function-ok p
|
||||
tgt-function-ok {T = none} (scalar ())
|
||||
tgt-function-ok {T = any} p = any
|
||||
tgt-function-ok {T = boolean} (scalar ())
|
||||
tgt-function-ok {T = number} (scalar ())
|
||||
tgt-function-ok {T = string} (scalar ())
|
||||
tgt-function-ok {T = T₁ ∪ T₂} (left p) = left (tgt-function-ok p)
|
||||
tgt-function-ok {T = T₁ ∪ T₂} (right p) = right (tgt-function-ok p)
|
||||
tgt-function-ok {T = T₁ ∩ T₂} (p₁ , p₂) = (tgt-function-ok p₁ , tgt-function-ok p₂)
|
||||
|
||||
function-ok-tgt : ∀ {T t} → Language T (function-ok t) → (Language (tgt T) t)
|
||||
function-ok-tgt (function-ok p) = p
|
||||
function-ok-tgt (left p) = left (function-ok-tgt p)
|
||||
function-ok-tgt (right p) = right (function-ok-tgt p)
|
||||
function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂)
|
||||
function-ok-tgt any = any
|
||||
|
||||
skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t))
|
||||
skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean)))
|
||||
|
||||
skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s))
|
||||
skalar-scalar number = left (scalar number)
|
||||
skalar-scalar boolean = right (right (right (scalar boolean)))
|
||||
skalar-scalar string = right (left (scalar string))
|
||||
skalar-scalar nil = right (right (left (scalar nil)))
|
||||
|
||||
tgt-src-≮: : ∀ {T U} → (tgt T ≮: U) → (T ≮: (skalar ∪ (none ⇒ U)))
|
||||
tgt-src-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q)
|
||||
|
||||
src-tgt-≮: : ∀ {T U} → (T ≮: (skalar ∪ (none ⇒ U))) → (tgt T ≮: U)
|
||||
src-tgt-≮: (witness (scalar s) p (q₁ , q₂)) = CONTRADICTION (≮:-antirefl (witness (scalar s) (skalar-scalar s) q₁))
|
||||
src-tgt-≮: (witness function p (q₁ , scalar-function ()))
|
||||
src-tgt-≮: (witness (function-ok t) p (q₁ , function-ok q₂)) = witness t (function-ok-tgt p) q₂
|
||||
src-tgt-≮: (witness (function-err (scalar s)) p (q₁ , function-err (scalar ())))
|
||||
|
||||
function-err-src : ∀ {T t} → (¬Language (src T) t) → Language T (function-err t)
|
||||
function-err-src {T = nil} none = scalar-function-err nil
|
||||
function-err-src {T = T₁ ⇒ T₂} p = function-err p
|
||||
function-err-src {T = none} (scalar-scalar number () p)
|
||||
function-err-src {T = none} (scalar-function-ok ())
|
||||
function-err-src {T = any} none = any
|
||||
function-err-src {T = boolean} p = scalar-function-err boolean
|
||||
function-err-src {T = number} p = scalar-function-err number
|
||||
function-err-src {T = string} p = scalar-function-err string
|
||||
function-err-src {T = T₁ ∪ T₂} (left p) = left (function-err-src p)
|
||||
function-err-src {T = T₁ ∪ T₂} (right p) = right (function-err-src p)
|
||||
function-err-src {T = T₁ ∩ T₂} (p₁ , p₂) = function-err-src p₁ , function-err-src p₂
|
||||
|
||||
¬function-err-src : ∀ {T t} → (Language (src T) t) → ¬Language T (function-err t)
|
||||
¬function-err-src {T = nil} (scalar ())
|
||||
¬function-err-src {T = T₁ ⇒ T₂} p = function-err p
|
||||
¬function-err-src {T = none} any = none
|
||||
¬function-err-src {T = any} (scalar ())
|
||||
¬function-err-src {T = boolean} (scalar ())
|
||||
¬function-err-src {T = number} (scalar ())
|
||||
¬function-err-src {T = string} (scalar ())
|
||||
¬function-err-src {T = T₁ ∪ T₂} (p₁ , p₂) = (¬function-err-src p₁ , ¬function-err-src p₂)
|
||||
¬function-err-src {T = T₁ ∩ T₂} (left p) = left (¬function-err-src p)
|
||||
¬function-err-src {T = T₁ ∩ T₂} (right p) = right (¬function-err-src p)
|
||||
|
||||
src-¬function-err : ∀ {T t} → Language T (function-err t) → (¬Language (src T) t)
|
||||
src-¬function-err {T = nil} p = none
|
||||
src-¬function-err {T = T₁ ⇒ T₂} (function-err p) = p
|
||||
src-¬function-err {T = none} (scalar-function-err ())
|
||||
src-¬function-err {T = any} p = none
|
||||
src-¬function-err {T = boolean} p = none
|
||||
src-¬function-err {T = number} p = none
|
||||
src-¬function-err {T = string} p = none
|
||||
src-¬function-err {T = T₁ ∪ T₂} (left p) = left (src-¬function-err p)
|
||||
src-¬function-err {T = T₁ ∪ T₂} (right p) = right (src-¬function-err p)
|
||||
src-¬function-err {T = T₁ ∩ T₂} (p₁ , p₂) = (src-¬function-err p₁ , src-¬function-err p₂)
|
||||
|
||||
src-¬scalar : ∀ {S T t} (s : Scalar S) → Language T (scalar s) → (¬Language (src T) t)
|
||||
src-¬scalar number (scalar number) = none
|
||||
src-¬scalar boolean (scalar boolean) = none
|
||||
src-¬scalar string (scalar string) = none
|
||||
src-¬scalar nil (scalar nil) = none
|
||||
src-¬scalar s (left p) = left (src-¬scalar s p)
|
||||
src-¬scalar s (right p) = right (src-¬scalar s p)
|
||||
src-¬scalar s (p₁ , p₂) = (src-¬scalar s p₁ , src-¬scalar s p₂)
|
||||
src-¬scalar s any = none
|
||||
|
||||
src-any-≮: : ∀ {T U} → (T ≮: src U) → (U ≮: (T ⇒ any))
|
||||
src-any-≮: (witness t p q) = witness (function-err t) (function-err-src q) (¬function-err-src p)
|
||||
|
||||
any-src-≮: : ∀ {S T U} → (U ≮: S) → (T ≮: (U ⇒ any)) → (U ≮: src T)
|
||||
any-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p)
|
||||
any-src-≮: r (witness (function-ok (scalar s)) p (function-ok (scalar-scalar s () q)))
|
||||
any-src-≮: r (witness (function-ok (function-ok _)) p (function-ok (scalar-function-ok ())))
|
||||
any-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p)
|
||||
|
||||
function-≮:-scalar : ∀ {S T U} → (Scalar U) → ((S ⇒ T) ≮: U)
|
||||
function-≮:-scalar s = witness function function (scalar-function s)
|
||||
|
||||
scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T))
|
||||
scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s)
|
||||
|
||||
any-≮:-scalar : ∀ {U} → (Scalar U) → (any ≮: U)
|
||||
any-≮:-scalar s = witness (function-ok (scalar s)) any (scalar-function-ok s)
|
||||
|
||||
scalar-≮:-none : ∀ {U} → (Scalar U) → (U ≮: none)
|
||||
scalar-≮:-none s = witness (scalar s) (scalar s) none
|
||||
|
||||
any-≮:-none : (any ≮: none)
|
||||
any-≮:-none = witness (scalar nil) any none
|
||||
|
||||
function-≮:-none : ∀ {T U} → ((T ⇒ U) ≮: none)
|
||||
function-≮:-none = witness function function none
|
||||
|
||||
scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U)
|
||||
scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p)
|
||||
|
||||
-- The rest of the proof just depends on those properties
|
||||
|
||||
≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U)
|
||||
≮:-trans-≡ p refl = p
|
||||
|
||||
≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U)
|
||||
≡-trans-≮: refl p = p
|
||||
|
||||
heap-weakeningᴱ : ∀ Γ H M {H′ U} → (H ⊑ H′) → (typeOfᴱ H′ Γ M ≮: U) → (typeOfᴱ H Γ M ≮: U)
|
||||
heap-weakeningᴱ Γ H (var x) h p = p
|
||||
heap-weakeningᴱ Γ H (val nil) h p = p
|
||||
|
@ -283,7 +73,7 @@ heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) p | no r = ≡-trans-≮:
|
|||
heap-weakeningᴱ Γ H (val (number x)) h p = p
|
||||
heap-weakeningᴱ Γ H (val (bool x)) h p = p
|
||||
heap-weakeningᴱ Γ H (val (string x)) h p = p
|
||||
heap-weakeningᴱ Γ H (M $ N) h p = src-tgt-≮: (heap-weakeningᴱ Γ H M h (tgt-src-≮: p))
|
||||
heap-weakeningᴱ Γ H (M $ N) h p = none-tgt-≮: (heap-weakeningᴱ Γ H M h (tgt-none-≮: p))
|
||||
heap-weakeningᴱ Γ H (function f ⟨ var x ∈ T ⟩∈ U is B end) h p = p
|
||||
heap-weakeningᴱ Γ H (block var b ∈ T is B end) h p = p
|
||||
heap-weakeningᴱ Γ H (binexp M op N) h p = p
|
||||
|
@ -304,7 +94,7 @@ substitutivityᴮ-unless-no : ∀ {Γ Γ′ T V} H B v x y (r : x ≢ y) → (Γ
|
|||
substitutivityᴱ H (var y) v x p = substitutivityᴱ-whenever H v x y (x ≡ⱽ y) p
|
||||
substitutivityᴱ H (val w) v x p = Left p
|
||||
substitutivityᴱ H (binexp M op N) v x p = Left p
|
||||
substitutivityᴱ H (M $ N) v x p = mapL src-tgt-≮: (substitutivityᴱ H M v x (tgt-src-≮: p))
|
||||
substitutivityᴱ H (M $ N) v x p = mapL none-tgt-≮: (substitutivityᴱ H M v x (tgt-none-≮: p))
|
||||
substitutivityᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = Left p
|
||||
substitutivityᴱ H (block var b ∈ T is B end) v x p = Left p
|
||||
substitutivityᴱ-whenever H v x x (yes refl) q = swapLR (≮:-antitrans q)
|
||||
|
@ -335,8 +125,8 @@ binOpPreservation H (·· v w) = refl
|
|||
reflect-subtypingᴱ : ∀ H M {H′ M′ T} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (typeOfᴱ H′ ∅ M′ ≮: T) → Either (typeOfᴱ H ∅ M ≮: T) (Warningᴱ H (typeCheckᴱ H ∅ M))
|
||||
reflect-subtypingᴮ : ∀ H B {H′ B′ T} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (typeOfᴮ H′ ∅ B′ ≮: T) → Either (typeOfᴮ H ∅ B ≮: T) (Warningᴮ H (typeCheckᴮ H ∅ B))
|
||||
|
||||
reflect-subtypingᴱ H (M $ N) (app₁ s) p = mapLR src-tgt-≮: app₁ (reflect-subtypingᴱ H M s (tgt-src-≮: p))
|
||||
reflect-subtypingᴱ H (M $ N) (app₂ v s) p = Left (src-tgt-≮: (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) (tgt-src-≮: p)))
|
||||
reflect-subtypingᴱ H (M $ N) (app₁ s) p = mapLR none-tgt-≮: app₁ (reflect-subtypingᴱ H M s (tgt-none-≮: p))
|
||||
reflect-subtypingᴱ H (M $ N) (app₂ v s) p = Left (none-tgt-≮: (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) (tgt-none-≮: p)))
|
||||
reflect-subtypingᴱ H (M $ N) (beta (function f ⟨ var y ∈ T ⟩∈ U is B end) v refl q) p = Left (≡-trans-≮: (cong tgt (cong orAny (cong typeOfᴹᴼ q))) p)
|
||||
reflect-subtypingᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) p = Left p
|
||||
reflect-subtypingᴱ H (block var b ∈ T is B end) (block s) p = Left p
|
||||
|
|
205
prototyping/Properties/Subtyping.agda
Normal file
205
prototyping/Properties/Subtyping.agda
Normal file
|
@ -0,0 +1,205 @@
|
|||
{-# OPTIONS --rewriting #-}
|
||||
|
||||
module Properties.Subtyping where
|
||||
|
||||
open import Agda.Builtin.Equality using (_≡_; refl)
|
||||
open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond)
|
||||
open import Luau.Subtyping using (_≮:_; Tree; Language; ¬Language; witness; any; none; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_)
|
||||
open import Luau.Type using (Type; Scalar; strict; nil; number; string; boolean; none; any; _⇒_; _∪_; _∩_; tgt)
|
||||
open import Properties.Contradiction using (CONTRADICTION; ¬)
|
||||
open import Properties.Equality using (_≢_)
|
||||
open import Properties.Functions using (_∘_)
|
||||
|
||||
src = Luau.Type.src strict
|
||||
|
||||
-- Language membership is decidable
|
||||
dec-language : ∀ T t → Either (¬Language T t) (Language T t)
|
||||
dec-language nil (scalar number) = Left (scalar-scalar number nil (λ ()))
|
||||
dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ()))
|
||||
dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ()))
|
||||
dec-language nil (scalar nil) = Right (scalar nil)
|
||||
dec-language nil function = Left (scalar-function nil)
|
||||
dec-language nil (function-ok t) = Left (scalar-function-ok nil)
|
||||
dec-language nil (function-err t) = Right (scalar-function-err nil)
|
||||
dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ()))
|
||||
dec-language boolean (scalar boolean) = Right (scalar boolean)
|
||||
dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ()))
|
||||
dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ()))
|
||||
dec-language boolean function = Left (scalar-function boolean)
|
||||
dec-language boolean (function-ok t) = Left (scalar-function-ok boolean)
|
||||
dec-language boolean (function-err t) = Right (scalar-function-err boolean)
|
||||
dec-language number (scalar number) = Right (scalar number)
|
||||
dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ()))
|
||||
dec-language number (scalar string) = Left (scalar-scalar string number (λ ()))
|
||||
dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ()))
|
||||
dec-language number function = Left (scalar-function number)
|
||||
dec-language number (function-ok t) = Left (scalar-function-ok number)
|
||||
dec-language number (function-err t) = Right (scalar-function-err number)
|
||||
dec-language string (scalar number) = Left (scalar-scalar number string (λ ()))
|
||||
dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ()))
|
||||
dec-language string (scalar string) = Right (scalar string)
|
||||
dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ()))
|
||||
dec-language string function = Left (scalar-function string)
|
||||
dec-language string (function-ok t) = Left (scalar-function-ok string)
|
||||
dec-language string (function-err t) = Right (scalar-function-err string)
|
||||
dec-language (T₁ ⇒ T₂) (scalar s) = Left (function-scalar s)
|
||||
dec-language (T₁ ⇒ T₂) function = Right function
|
||||
dec-language (T₁ ⇒ T₂) (function-ok t) = mapLR function-ok function-ok (dec-language T₂ t)
|
||||
dec-language (T₁ ⇒ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t))
|
||||
dec-language none t = Left none
|
||||
dec-language any t = Right any
|
||||
dec-language (T₁ ∪ T₂) t = cond (λ p → cond (Left ∘ _,_ p) (Right ∘ right) (dec-language T₂ t)) (Right ∘ left) (dec-language T₁ t)
|
||||
dec-language (T₁ ∩ T₂) t = cond (Left ∘ left) (λ p → cond (Left ∘ right) (Right ∘ _,_ p) (dec-language T₂ t)) (dec-language T₁ t)
|
||||
|
||||
-- ≮: is anti-reflexive
|
||||
≮:-antirefl : ∀ {T} → ¬(T ≮: T)
|
||||
≮:-antirefl (witness (scalar s) (scalar s) (scalar-scalar s t p)) = CONTRADICTION (p refl)
|
||||
≮:-antirefl (witness function function (scalar-function ()))
|
||||
≮:-antirefl (witness (function-ok t) (function-ok p) (function-ok q)) = ≮:-antirefl (witness t p q)
|
||||
≮:-antirefl (witness (function-err t) (function-err p) (function-err q)) = ≮:-antirefl (witness t q p)
|
||||
≮:-antirefl (witness t (left p) (q₁ , q₂)) = ≮:-antirefl (witness t p q₁)
|
||||
≮:-antirefl (witness t (right p) (q₁ , q₂)) = ≮:-antirefl (witness t p q₂)
|
||||
≮:-antirefl (witness t (p₁ , p₂) (left q)) = ≮:-antirefl (witness t p₁ q)
|
||||
≮:-antirefl (witness t (p₁ , p₂) (right q)) = ≮:-antirefl (witness t p₂ q)
|
||||
≮:-antirefl (witness (scalar s) any (scalar-scalar s () t))
|
||||
≮:-antirefl (witness (function-ok t) any (scalar-function-ok ()))
|
||||
≮:-antirefl (witness (function-err t) (scalar-function-err number) ())
|
||||
≮:-antirefl (witness (function-err t) (scalar-function-err boolean) ())
|
||||
≮:-antirefl (witness (function-err t) (scalar-function-err string) ())
|
||||
≮:-antirefl (witness (function-err t) (scalar-function-err nil) ())
|
||||
|
||||
-- ≮: is anti-tramsitive
|
||||
≮:-antitrans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U)
|
||||
≮:-antitrans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t)
|
||||
|
||||
≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U)
|
||||
≮:-trans-≡ p refl = p
|
||||
|
||||
≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U)
|
||||
≡-trans-≮: refl p = p
|
||||
|
||||
any-≮: : ∀ {T U} → (T ≮: U) → (any ≮: U)
|
||||
any-≮: (witness t p q) = witness t any q
|
||||
|
||||
none-≮: : ∀ {T U} → (T ≮: U) → (T ≮: none)
|
||||
none-≮: (witness t p q) = witness t p none
|
||||
|
||||
skalar = number ∪ (string ∪ (nil ∪ boolean))
|
||||
|
||||
-- Properties of tgt
|
||||
tgt-function-ok : ∀ {T t} → (Language (tgt T) t) → Language T (function-ok t)
|
||||
tgt-function-ok {T = nil} (scalar ())
|
||||
tgt-function-ok {T = T₁ ⇒ T₂} p = function-ok p
|
||||
tgt-function-ok {T = none} (scalar ())
|
||||
tgt-function-ok {T = any} p = any
|
||||
tgt-function-ok {T = boolean} (scalar ())
|
||||
tgt-function-ok {T = number} (scalar ())
|
||||
tgt-function-ok {T = string} (scalar ())
|
||||
tgt-function-ok {T = T₁ ∪ T₂} (left p) = left (tgt-function-ok p)
|
||||
tgt-function-ok {T = T₁ ∪ T₂} (right p) = right (tgt-function-ok p)
|
||||
tgt-function-ok {T = T₁ ∩ T₂} (p₁ , p₂) = (tgt-function-ok p₁ , tgt-function-ok p₂)
|
||||
|
||||
function-ok-tgt : ∀ {T t} → Language T (function-ok t) → (Language (tgt T) t)
|
||||
function-ok-tgt (function-ok p) = p
|
||||
function-ok-tgt (left p) = left (function-ok-tgt p)
|
||||
function-ok-tgt (right p) = right (function-ok-tgt p)
|
||||
function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂)
|
||||
function-ok-tgt any = any
|
||||
|
||||
skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t))
|
||||
skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean)))
|
||||
|
||||
skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s))
|
||||
skalar-scalar number = left (scalar number)
|
||||
skalar-scalar boolean = right (right (right (scalar boolean)))
|
||||
skalar-scalar string = right (left (scalar string))
|
||||
skalar-scalar nil = right (right (left (scalar nil)))
|
||||
|
||||
tgt-none-≮: : ∀ {T U} → (tgt T ≮: U) → (T ≮: (skalar ∪ (none ⇒ U)))
|
||||
tgt-none-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q)
|
||||
|
||||
none-tgt-≮: : ∀ {T U} → (T ≮: (skalar ∪ (none ⇒ U))) → (tgt T ≮: U)
|
||||
none-tgt-≮: (witness (scalar s) p (q₁ , q₂)) = CONTRADICTION (≮:-antirefl (witness (scalar s) (skalar-scalar s) q₁))
|
||||
none-tgt-≮: (witness function p (q₁ , scalar-function ()))
|
||||
none-tgt-≮: (witness (function-ok t) p (q₁ , function-ok q₂)) = witness t (function-ok-tgt p) q₂
|
||||
none-tgt-≮: (witness (function-err (scalar s)) p (q₁ , function-err (scalar ())))
|
||||
|
||||
-- Properties of src
|
||||
function-err-src : ∀ {T t} → (¬Language (src T) t) → Language T (function-err t)
|
||||
function-err-src {T = nil} none = scalar-function-err nil
|
||||
function-err-src {T = T₁ ⇒ T₂} p = function-err p
|
||||
function-err-src {T = none} (scalar-scalar number () p)
|
||||
function-err-src {T = none} (scalar-function-ok ())
|
||||
function-err-src {T = any} none = any
|
||||
function-err-src {T = boolean} p = scalar-function-err boolean
|
||||
function-err-src {T = number} p = scalar-function-err number
|
||||
function-err-src {T = string} p = scalar-function-err string
|
||||
function-err-src {T = T₁ ∪ T₂} (left p) = left (function-err-src p)
|
||||
function-err-src {T = T₁ ∪ T₂} (right p) = right (function-err-src p)
|
||||
function-err-src {T = T₁ ∩ T₂} (p₁ , p₂) = function-err-src p₁ , function-err-src p₂
|
||||
|
||||
¬function-err-src : ∀ {T t} → (Language (src T) t) → ¬Language T (function-err t)
|
||||
¬function-err-src {T = nil} (scalar ())
|
||||
¬function-err-src {T = T₁ ⇒ T₂} p = function-err p
|
||||
¬function-err-src {T = none} any = none
|
||||
¬function-err-src {T = any} (scalar ())
|
||||
¬function-err-src {T = boolean} (scalar ())
|
||||
¬function-err-src {T = number} (scalar ())
|
||||
¬function-err-src {T = string} (scalar ())
|
||||
¬function-err-src {T = T₁ ∪ T₂} (p₁ , p₂) = (¬function-err-src p₁ , ¬function-err-src p₂)
|
||||
¬function-err-src {T = T₁ ∩ T₂} (left p) = left (¬function-err-src p)
|
||||
¬function-err-src {T = T₁ ∩ T₂} (right p) = right (¬function-err-src p)
|
||||
|
||||
src-¬function-err : ∀ {T t} → Language T (function-err t) → (¬Language (src T) t)
|
||||
src-¬function-err {T = nil} p = none
|
||||
src-¬function-err {T = T₁ ⇒ T₂} (function-err p) = p
|
||||
src-¬function-err {T = none} (scalar-function-err ())
|
||||
src-¬function-err {T = any} p = none
|
||||
src-¬function-err {T = boolean} p = none
|
||||
src-¬function-err {T = number} p = none
|
||||
src-¬function-err {T = string} p = none
|
||||
src-¬function-err {T = T₁ ∪ T₂} (left p) = left (src-¬function-err p)
|
||||
src-¬function-err {T = T₁ ∪ T₂} (right p) = right (src-¬function-err p)
|
||||
src-¬function-err {T = T₁ ∩ T₂} (p₁ , p₂) = (src-¬function-err p₁ , src-¬function-err p₂)
|
||||
|
||||
src-¬scalar : ∀ {S T t} (s : Scalar S) → Language T (scalar s) → (¬Language (src T) t)
|
||||
src-¬scalar number (scalar number) = none
|
||||
src-¬scalar boolean (scalar boolean) = none
|
||||
src-¬scalar string (scalar string) = none
|
||||
src-¬scalar nil (scalar nil) = none
|
||||
src-¬scalar s (left p) = left (src-¬scalar s p)
|
||||
src-¬scalar s (right p) = right (src-¬scalar s p)
|
||||
src-¬scalar s (p₁ , p₂) = (src-¬scalar s p₁ , src-¬scalar s p₂)
|
||||
src-¬scalar s any = none
|
||||
|
||||
src-any-≮: : ∀ {T U} → (T ≮: src U) → (U ≮: (T ⇒ any))
|
||||
src-any-≮: (witness t p q) = witness (function-err t) (function-err-src q) (¬function-err-src p)
|
||||
|
||||
any-src-≮: : ∀ {S T U} → (U ≮: S) → (T ≮: (U ⇒ any)) → (U ≮: src T)
|
||||
any-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p)
|
||||
any-src-≮: r (witness (function-ok (scalar s)) p (function-ok (scalar-scalar s () q)))
|
||||
any-src-≮: r (witness (function-ok (function-ok _)) p (function-ok (scalar-function-ok ())))
|
||||
any-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p)
|
||||
|
||||
-- Properties of scalars
|
||||
function-≮:-scalar : ∀ {S T U} → (Scalar U) → ((S ⇒ T) ≮: U)
|
||||
function-≮:-scalar s = witness function function (scalar-function s)
|
||||
|
||||
scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T))
|
||||
scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s)
|
||||
|
||||
any-≮:-scalar : ∀ {U} → (Scalar U) → (any ≮: U)
|
||||
any-≮:-scalar s = witness (function-ok (scalar s)) any (scalar-function-ok s)
|
||||
|
||||
scalar-≮:-none : ∀ {U} → (Scalar U) → (U ≮: none)
|
||||
scalar-≮:-none s = witness (scalar s) (scalar s) none
|
||||
|
||||
scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U)
|
||||
scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p)
|
||||
|
||||
-- Properties of none
|
||||
any-≮:-none : (any ≮: none)
|
||||
any-≮:-none = witness (scalar nil) any none
|
||||
|
||||
function-≮:-none : ∀ {T U} → ((T ⇒ U) ≮: none)
|
||||
function-≮:-none = witness function function none
|
Loading…
Add table
Reference in a new issue