Boiled properties of function overloading down to 4 lemmas

This commit is contained in:
ajeffrey@roblox.com 2022-04-15 12:49:26 -05:00
parent 3170472606
commit b3e538a328
3 changed files with 82 additions and 11 deletions

View file

@ -3,15 +3,18 @@
module Luau.TypeCheck where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Either using (Either; Left; Right)
open import FFI.Data.Maybe using (Maybe; just)
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; number; bool; string; val; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.Type using (Type; nil; unknown; number; boolean; string; _⇒_; src; tgt)
open import Luau.Subtyping using (_≮:_; _<:_)
open import Luau.Type using (Type; nil; never; unknown; number; boolean; string; _⇒_; __; _∩_; src; tgt)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import FFI.Data.Vector using (Vector)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Properties.DecSubtyping using (dec-subtyping)
open import Properties.Product using (_×_; _,_)
orUnknown : Maybe Type Type
@ -44,6 +47,49 @@ tgtBinOp <= = boolean
tgtBinOp >= = boolean
tgtBinOp ·· = string
-- (F ⋓ G) is a function type whose domain is the union of F's and G's domain
-- and whose target is the union of F's and G's target.
_⋓_ : Type Type Type
(S T) (U V) = (S U) (T V)
(S T) (U₁ U₂) = ((S T) U₁) ((S T) U₂)
(S T) (U₁ U₂) = ((S T) U₁) ((S T) U₂)
(S T) unknown = unknown
(S T) nil = (S T)
(S T) never = (S T)
(S T) boolean = (S T)
(S T) number = (S T)
(S T) string = (S T)
(T₁ T₂) U = (T₁ U) (T₂ U)
(T₁ T₂) U = (T₁ U) (T₂ U)
unknown U = unknown
nil U = U
never U = U
boolean U = U
number U = U
string U = U
-- resolve F V is the result of applying a function of type F
-- to an argument of type V. This does function overload resolution,
-- e.g. `resolve (((number) -> string) & ((string) -> number)) (number)` is `string`.
resolveFun : {S V} Either (V ≮: S) (V <: S) Type Type
resolveFun (Left p) T = unknown
resolveFun (Right p) T = T
-- Honest this terminates, since each recursive call has
-- fewer intersections, and otherwise we proceed by structural induction.
{-# TERMINATING #-}
resolve : Type Type Type
resolve nil V = never
resolve (S T) V = resolveFun (dec-subtyping V S) T
resolve never V = never
resolve unknown V = unknown
resolve boolean V = never
resolve number V = never
resolve string V = never
resolve (F G) V = (resolve F V) (resolve G V)
resolve (F G) V = ((resolve F V) (resolve G V)) (resolve (F G) V)
data _⊢ᴮ_∈_ : VarCtxt Block yes Type Set
data _⊢ᴱ_∈_ : VarCtxt Expr yes Type Set
@ -112,8 +158,8 @@ data _⊢ᴱ_∈_ where
Γ ⊢ᴱ M T
Γ ⊢ᴱ N U
----------------------
Γ ⊢ᴱ (M $ N) (tgt T)
----------------------------
Γ ⊢ᴱ (M $ N) (resolve T U)
function : {f x B T U V Γ}

View file

@ -12,7 +12,7 @@ open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var
open import Luau.Subtyping using (_≮:_; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_; Tree; Language; ¬Language)
open import Luau.Syntax using (Expr; yes; var; val; var_∈_; _⟨_⟩∈_; _$_; addr; number; bool; string; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name; ==; ~=)
open import Luau.Type using (Type; nil; number; boolean; string; _⇒_; never; unknown; _∩_; __; src; tgt; _≡ᵀ_; _≡ᴹᵀ_)
open import Luau.TypeCheck using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orUnknown; srcBinOp; tgtBinOp)
open import Luau.TypeCheck using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orUnknown; srcBinOp; tgtBinOp; resolve)
open import Luau.Var using (_≡ⱽ_)
open import Luau.Addr using (_≡ᴬ_)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ⊕-lookup-miss; ⊕-swap; ⊕-over) renaming (_[_] to _[_]ⱽ)
@ -22,12 +22,29 @@ open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Contradiction using (CONTRADICTION; ¬)
open import Properties.Functions using (_∘_)
open import Properties.DecSubtyping using (dec-subtyping)
open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; never-tgt-≮:; tgt-never-≮:; src-unknown-≮:; unknown-src-≮:; ≮:-trans; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never)
open import Properties.TypeCheck using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴ)
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return; +; -; *; /; <; >; <=; >=; ··)
open import Luau.RuntimeType using (RuntimeType; valueType; number; string; boolean; nil; function)
-- PROVE THESE
postulate
resolve⁻¹ : Type Type Type
resolve-≮:-⇒ : {F V U} (resolve F V ≮: U) (F ≮: (V U))
⇒-≮:-resolve : {F V U} (F ≮: (V U)) (resolve F V ≮: U)
⇒-≮:-resolve⁻¹ : {F V U} (F ≮: (V U)) (V ≮: resolve⁻¹ F U)
resolve⁻¹-≮:-⇒ : {F V U} (V ≮: resolve⁻¹ F U) (F ≮: (V U))
resolve-⇒-≮: : {S T U V} (T ≮: U) resolve (S T) V ≮: U
resolve-⇒-≮: {S = S} {V = V} p with dec-subtyping V S
resolve-⇒-≮: p | Left q = unknown-≮: p
resolve-⇒-≮: p | Right q = p
--
data _⊑_ (H : Heap yes) : Heap yes Set where
refl : (H H)
snoc : {H a O} (H ≡ᴴ H a O) (H H)
@ -71,7 +88,7 @@ heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) p | no r = ≡-trans-≮:
heap-weakeningᴱ Γ H (val (number x)) h p = p
heap-weakeningᴱ Γ H (val (bool x)) h p = p
heap-weakeningᴱ Γ H (val (string x)) h p = p
heap-weakeningᴱ Γ H (M $ N) h p = never-tgt-≮: (heap-weakeningᴱ Γ H M h (tgt-never-≮: p))
heap-weakeningᴱ Γ H (M $ N) h p = ⇒-≮:-resolve (resolve⁻¹-≮:-⇒ (heap-weakeningᴱ Γ H N h (⇒-≮:-resolve⁻¹ (heap-weakeningᴱ Γ H M h (resolve-≮:-⇒ p)))))
heap-weakeningᴱ Γ H (function f var x T ⟩∈ U is B end) h p = p
heap-weakeningᴱ Γ H (block var b T is B end) h p = p
heap-weakeningᴱ Γ H (binexp M op N) h p = p
@ -92,7 +109,11 @@ substitutivityᴮ-unless-no : ∀ {Γ Γ′ T V} H B v x y (r : x ≢ y) → (Γ
substitutivityᴱ H (var y) v x p = substitutivityᴱ-whenever H v x y (x ≡ⱽ y) p
substitutivityᴱ H (val w) v x p = Left p
substitutivityᴱ H (binexp M op N) v x p = Left p
substitutivityᴱ H (M $ N) v x p = mapL never-tgt-≮: (substitutivityᴱ H M v x (tgt-never-≮: p))
substitutivityᴱ H (M $ N) v x p with substitutivityᴱ H M v x (resolve-≮:-⇒ p)
substitutivityᴱ H (M $ N) v x p | Left q with substitutivityᴱ H N v x (⇒-≮:-resolve⁻¹ q)
substitutivityᴱ H (M $ N) v x p | Left q | Left r = Left (⇒-≮:-resolve (resolve⁻¹-≮:-⇒ r))
substitutivityᴱ H (M $ N) v x p | Left q | Right r = Right r
substitutivityᴱ H (M $ N) v x p | Right q = Right q
substitutivityᴱ H (function f var y T ⟩∈ U is B end) v x p = Left p
substitutivityᴱ H (block var b T is B end) v x p = Left p
substitutivityᴱ-whenever H v x x (yes refl) q = swapLR (≮:-trans q)
@ -123,9 +144,13 @@ binOpPreservation H (·· v w) = refl
reflect-subtypingᴱ : H M {H M T} (H M ⟶ᴱ M H) (typeOfᴱ H M ≮: T) Either (typeOfᴱ H M ≮: T) (Warningᴱ H (typeCheckᴱ H M))
reflect-subtypingᴮ : H B {H B T} (H B ⟶ᴮ B H) (typeOfᴮ H B ≮: T) Either (typeOfᴮ H B ≮: T) (Warningᴮ H (typeCheckᴮ H B))
reflect-subtypingᴱ H (M $ N) (app₁ s) p = mapLR never-tgt-≮: app₁ (reflect-subtypingᴱ H M s (tgt-never-≮: p))
reflect-subtypingᴱ H (M $ N) (app₂ v s) p = Left (never-tgt-≮: (heap-weakeningᴱ H M (rednᴱ⊑ s) (tgt-never-≮: p)))
reflect-subtypingᴱ H (M $ N) (beta (function f var y T ⟩∈ U is B end) v refl q) p = Left (≡-trans-≮: (cong tgt (cong orUnknown (cong typeOfᴹᴼ q))) p)
reflect-subtypingᴱ H (M $ N) (app₁ s) p with reflect-subtypingᴱ H M s (resolve-≮:-⇒ p)
reflect-subtypingᴱ H (M $ N) (app₁ s) p | Left q = Left (⇒-≮:-resolve (resolve⁻¹-≮:-⇒ (heap-weakeningᴱ H N (rednᴱ⊑ s) (⇒-≮:-resolve⁻¹ q))))
reflect-subtypingᴱ H (M $ N) (app₁ s) p | Right W = Right (app₁ W)
reflect-subtypingᴱ H (M $ N) (app₂ v s) p with reflect-subtypingᴱ H N s (⇒-≮:-resolve⁻¹ (heap-weakeningᴱ H M (rednᴱ⊑ s) (resolve-≮:-⇒ p)))
reflect-subtypingᴱ H (M $ N) (app₂ v s) p | Left q = Left (⇒-≮:-resolve (resolve⁻¹-≮:-⇒ q))
reflect-subtypingᴱ H (M $ N) (app₂ v s) p | Right W = Right (app₂ W)
reflect-subtypingᴱ H (M $ N) {T = T} (beta (function f var y S ⟩∈ U is B end) v refl q) p = Left (≡-trans-≮: (cong (λ F resolve F (typeOfᴱ H N)) (cong orUnknown (cong typeOfᴹᴼ q))) (resolve-⇒-≮: p))
reflect-subtypingᴱ H (function f var x T ⟩∈ U is B end) (function a defn) p = Left p
reflect-subtypingᴱ H (block var b T is B end) (block s) p = Left p
reflect-subtypingᴱ H (block var b T is return (val v) B end) (return v) p = mapR BlockMismatch (swapLR (≮:-trans p))

View file

@ -6,7 +6,7 @@ open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Bool using (Bool; true; false)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import FFI.Data.Either using (Either)
open import Luau.TypeCheck using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; ⊢ᴼ_; ⊢ᴴ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; nil; var; addr; number; bool; string; app; function; block; binexp; done; return; local; nothing; orUnknown; tgtBinOp)
open import Luau.TypeCheck using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; ⊢ᴼ_; ⊢ᴴ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; nil; var; addr; number; bool; string; app; function; block; binexp; done; return; local; nothing; orUnknown; tgtBinOp; resolve)
open import Luau.Syntax using (Block; Expr; Value; BinaryOperator; yes; nil; addr; number; bool; string; val; var; binexp; _$_; function_is_end; block_is_end; _∙_; return; done; local_←_; _⟨_⟩; _⟨_⟩∈_; var_∈_; name; fun; arg; +; -; *; /; <; >; ==; ~=; <=; >=)
open import Luau.Type using (Type; nil; unknown; never; number; boolean; string; _⇒_; src; tgt)
open import Luau.RuntimeType using (RuntimeType; nil; number; function; string; valueType)
@ -39,7 +39,7 @@ typeOfᴮ : Heap yes → VarCtxt → (Block yes) → Type
typeOfᴱ H Γ (var x) = orUnknown(Γ [ x ]ⱽ)
typeOfᴱ H Γ (val v) = orUnknown(typeOfⱽ H v)
typeOfᴱ H Γ (M $ N) = tgt(typeOfᴱ H Γ M)
typeOfᴱ H Γ (M $ N) = resolve (typeOfᴱ H Γ M) (typeOfᴱ H Γ N)
typeOfᴱ H Γ (function f var x S ⟩∈ T is B end) = S T
typeOfᴱ H Γ (block var b T is B end) = T
typeOfᴱ H Γ (binexp M op N) = tgtBinOp op