This commit is contained in:
ajeffrey@roblox.com 2022-03-17 21:58:04 -05:00
parent 4fdead5e3c
commit afadb3cd18
5 changed files with 422 additions and 397 deletions

View file

@ -25,7 +25,7 @@ data RuntimeErrorᴮ {a} (H : Heap a) : Block a → Set
data RuntimeErrorᴱ {a} (H : Heap a) : Expr a Set
data RuntimeErrorᴱ H where
FunctionMismatch : v w (function valueType v) RuntimeErrorᴱ H (val v $ val w)
FunctionMismatch : v w (valueType v function) RuntimeErrorᴱ H (val v $ val w)
BinOpMismatch₁ : v w {op} (BinOpError op (valueType v)) RuntimeErrorᴱ H (binexp (val v) op (val w))
BinOpMismatch₂ : v w {op} (BinOpError op (valueType w)) RuntimeErrorᴱ H (binexp (val v) op (val w))
UnboundVariable : {x} RuntimeErrorᴱ H (var x)

View file

@ -16,16 +16,22 @@ open import Properties.Product using (_,_)
src : Type Type
src = Luau.Type.src strict
data _<:_ (T U : Type) : Set where
temp : (T U) (T <: U)
data _≮:_ (T U : Type) : Set where
temp : (T U) (T ≮: U)
data BinOpWarning : BinaryOperator Type Set where
+ : {T} (T number) BinOpWarning + T
- : {T} (T number) BinOpWarning - T
* : {T} (T number) BinOpWarning * T
/ : {T} (T number) BinOpWarning / T
< : {T} (T number) BinOpWarning < T
> : {T} (T number) BinOpWarning > T
<= : {T} (T number) BinOpWarning <= T
>= : {T} (T number) BinOpWarning >= T
·· : {T} (T string) BinOpWarning ·· T
+ : {T} (T ≮: number) BinOpWarning + T
- : {T} (T ≮: number) BinOpWarning - T
* : {T} (T ≮: number) BinOpWarning * T
/ : {T} (T ≮: number) BinOpWarning / T
< : {T} (T ≮: number) BinOpWarning < T
> : {T} (T ≮: number) BinOpWarning > T
<= : {T} (T ≮: number) BinOpWarning <= T
>= : {T} (T ≮: number) BinOpWarning >= T
·· : {T} (T ≮: string) BinOpWarning ·· T
data Warningᴱ (H : Heap yes) {Γ} : {M T} (Γ ⊢ᴱ M T) Set
data Warningᴮ (H : Heap yes) {Γ} : {B T} (Γ ⊢ᴮ B T) Set
@ -46,7 +52,7 @@ data Warningᴱ H {Γ} where
FunctionCallMismatch : {M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
(src T U)
(U ≮: src T)
-----------------
Warningᴱ H (app D₁ D₂)
@ -88,7 +94,7 @@ data Warningᴱ H {Γ} where
FunctionDefnMismatch : {f x B T U V} {D : (Γ x T) ⊢ᴮ B V}
(U V)
(V ≮: U)
-------------------------
Warningᴱ H (function {f} {U = U} D)
@ -100,7 +106,7 @@ data Warningᴱ H {Γ} where
BlockMismatch : {b B T U} {D : Γ ⊢ᴮ B U}
(T U)
(U ≮: T)
------------------------------
Warningᴱ H (block {b} {T = T} D)
@ -120,7 +126,7 @@ data Warningᴮ H {Γ} where
LocalVarMismatch : {x M B T U V} {D₁ : Γ ⊢ᴱ M U} {D₂ : (Γ x T) ⊢ᴮ B V}
(T U)
(U ≮: T)
--------------------
Warningᴮ H (local D₁ D₂)
@ -138,7 +144,8 @@ data Warningᴮ H {Γ} where
FunctionDefnMismatch : {f x B C T U V W} {D₁ : (Γ x T) ⊢ᴮ C V} {D₂ : (Γ f (T U)) ⊢ᴮ B W}
(U V)
(V ≮: U
)
-------------------------------------
Warningᴮ H (function D₁ D₂)
@ -158,7 +165,7 @@ data Warningᴼ (H : Heap yes) : ∀ {V} → (⊢ᴼ V) → Set where
FunctionDefnMismatch : {f x B T U V} {D : (x T) ⊢ᴮ B V}
(U V)
(V ≮: U)
---------------------------------
Warningᴼ H (function {f} {U = U} D)

View file

@ -10,7 +10,7 @@ open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.Type using (Type; Mode; nil; none; number; boolean; string; _⇒_; tgt)
open import Luau.Type using (Type; Mode; nil; any; number; boolean; string; _⇒_; tgt)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import FFI.Data.Vector using (Vector)
open import FFI.Data.Maybe using (Maybe; just; nothing)
@ -19,9 +19,9 @@ open import Properties.Product using (_×_; _,_)
src : Type Type
src = Luau.Type.src m
orNone : Maybe Type Type
orNone nothing = none
orNone (just T) = T
orAny : Maybe Type Type
orAny nothing = any
orAny (just T) = T
tgtBinOp : BinaryOperator Type
tgtBinOp + = number
@ -76,7 +76,7 @@ data _⊢ᴱ_∈_ where
var : {x T Γ}
T orNone(Γ [ x ]ⱽ)
T orAny(Γ [ x ]ⱽ)
----------------
Γ ⊢ᴱ (var x) T

View file

@ -4,13 +4,14 @@ module Properties.StrictMode where
import Agda.Builtin.Equality.Rewrite
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Either using (Either; Left; Right)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Luau.Heap using (Heap; Object; function_is_end; defn; alloc; ok; next; lookup-not-allocated) renaming (_≡_⊕_↦_ to _≡ᴴ_⊕_↦_; _[_] to _[_]ᴴ; to ∅ᴴ)
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴᴱ; Warningᴴᴮ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpWarning; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr; +; -; *; /; <; >; <=; >=; ··)
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpWarning; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr; +; -; *; /; <; >; <=; >=; ··; _<:_; _≮:_)
open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_)
open import Luau.Syntax using (Expr; yes; var; val; var_∈_; _⟨_⟩∈_; _$_; addr; number; bool; string; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name; ==; ~=)
open import Luau.Type using (Type; strict; nil; _⇒_; none; tgt; _≡ᵀ_; _≡ᴹᵀ_)
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orNone; tgtBinOp)
open import Luau.Type using (Type; strict; nil; number; boolean; string; _⇒_; none; any; tgt; _≡ᵀ_; _≡ᴹᵀ_)
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orAny; tgtBinOp)
open import Luau.Var using (_≡ⱽ_)
open import Luau.Addr using (_≡ᴬ_)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ⊕-lookup-miss; ⊕-swap; ⊕-over) renaming (_[_] to _[_]ⱽ)
@ -18,17 +19,43 @@ open import Luau.VarCtxt using (VarCtxt; ∅)
open import Properties.Remember using (remember; _,_)
open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴᴱ; typeCheckᴴᴮ; mustBeFunction; mustBeNumber; mustBeString)
open import Properties.Contradiction using (CONTRADICTION; ¬)
open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴ)
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return; +; -; *; /; <; >; <=; >=; ··)
open import Luau.RuntimeType using (valueType)
open import Luau.RuntimeType using (valueType; number; string; function)
-- Move these! --
swapLR : {A B} Either A B Either B A
swapLR (Left x) = Right x
swapLR (Right x) = Left x
mapL : {A B C} (A B) Either A C Either B C
mapL f (Left x) = Left (f x)
mapL f (Right x) = Right x
mapR : {A B C} (B C) Either A B Either A C
mapR f (Left x) = Left x
mapR f (Right x) = Right (f x)
mapLR : {A B C D} (A B) (C D) Either A C Either B D
mapLR f g (Left x) = Left (f x)
mapLR f g (Right x) = Right (g x)
cond : {A B C : Set} (A C) (B C) (Either A B) C
cond f g (Left x) = f x
cond f g (Right x) = g x
infixr 5 _∘_
_∘_ : {A B C : Set} (B C) (A B) (A C)
(f g) x = f (g x)
--
src = Luau.Type.src strict
data _⊑_ (H : Heap yes) : Heap yes Set where
refl : (H H)
snoc : {H a V} (H ≡ᴴ H a V) (H H)
snoc : {H a O} (H ≡ᴴ H a O) (H H)
rednᴱ⊑ : {H H M M} (H M ⟶ᴱ M H) (H H)
rednᴮ⊑ : {H H B B} (H B ⟶ᴮ B H) (H H)
@ -59,404 +86,395 @@ lookup-⊑-nothing {H} a (snoc defn) p with a ≡ᴬ next H
lookup-⊑-nothing {H} a (snoc defn) p | yes refl = refl
lookup-⊑-nothing {H} a (snoc o) p | no q = trans (lookup-not-allocated o q) p
data OrWarningᴱ {Γ M T} (H : Heap yes) (D : Γ ⊢ᴱ M T) A : Set where
ok : A OrWarningᴱ H D A
warning : Warningᴱ H D OrWarningᴱ H D A
-- For the moment subtyping is just syntactic equality, with any as top but this will change!
data OrWarningᴮ {Γ B T} (H : Heap yes) (D : Γ ⊢ᴮ B T) A : Set where
ok : A OrWarningᴮ H D A
warning : Warningᴮ H D OrWarningᴮ H D A
<:-refl : T (T <: T)
<:-refl T = {!!}
data OrWarningᴴᴱ {Γ M T} H (D : Γ ⊢ᴴᴱ H M T) A : Set where
ok : A OrWarningᴴᴱ H D A
warning : Warningᴴᴱ H D OrWarningᴴᴱ H D A
<:-any : T (T <: any)
<:-any = {!!}
data OrWarningᴴᴮ {Γ B T} H (D : Γ ⊢ᴴᴮ H B T) A : Set where
ok : A OrWarningᴴᴮ H D A
warning : Warningᴴᴮ H D OrWarningᴴᴮ H D A
≮:-antirefl : T ¬(T ≮: T)
:-antirefl = {!!}
heap-weakeningᴱ : H M {H Γ} (H H) OrWarningᴱ H (typeCheckᴱ H Γ M) (typeOfᴱ H Γ M typeOfᴱ H Γ M)
heap-weakeningᴮ : H B {H Γ} (H H) OrWarningᴮ H (typeCheckᴮ H Γ B) (typeOfᴮ H Γ B typeOfᴮ H Γ B)
≮:-antitrans : {S T U} (S ≮: U) Either (S ≮: T) (T ≮: U)
:-antitrans = {!!}
heap-weakeningᴱ H (var x) h = ok refl
heap-weakeningᴱ H (val nil) h = ok refl
heap-weakeningᴱ H (val (addr a)) refl = ok refl
heap-weakeningᴱ H (val (addr a)) (snoc {a = b} defn) with a ≡ᴬ b
heap-weakeningᴱ H (val (addr a)) (snoc {a = a} defn) | yes refl = warning (UnallocatedAddress refl)
heap-weakeningᴱ H (val (addr a)) (snoc {a = b} p) | no q = ok (cong orNone (cong typeOfᴹᴼ (lookup-not-allocated p q)))
heap-weakeningᴱ H (val (number n)) h = ok refl
heap-weakeningᴱ H (val (bool b)) h = ok refl
heap-weakeningᴱ H (val (string x)) h = ok refl
heap-weakeningᴱ H (binexp M op N) h = ok refl
heap-weakeningᴱ H (M $ N) h with heap-weakeningᴱ H M h
heap-weakeningᴱ H (M $ N) h | ok p = ok (cong tgt p)
heap-weakeningᴱ H (M $ N) h | warning W = warning (app₁ W)
heap-weakeningᴱ H (function f var x T ⟩∈ U is B end) h = ok refl
heap-weakeningᴱ H (block var b T is B end) h = ok refl
heap-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h with heap-weakeningᴮ H B h
heap-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h | ok p = ok p
heap-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h | warning W = warning (function₂ W)
heap-weakeningᴮ H (local var x T M B) h with heap-weakeningᴮ H B h
heap-weakeningᴮ H (local var x T M B) h | ok p = ok p
heap-weakeningᴮ H (local var x T M B) h | warning W = warning (local₂ W)
heap-weakeningᴮ H (return M B) h with heap-weakeningᴱ H M h
heap-weakeningᴮ H (return M B) h | ok p = ok p
heap-weakeningᴮ H (return M B) h | warning W = warning (return W)
heap-weakeningᴮ H (done) h = ok refl
<:-trans-≮: : {S T U} (S <: T) (S ≮: U) (T ≮: U)
<:-trans-≮: = {!!}
none-not-obj : O none typeOfᴼ O
none-not-obj (function f var x T ⟩∈ U is B end) ()
≮:-trans-<: : {S T U} (S ≮: U) (T <: U) (S ≮: T)
≮:-trans-<: = {!!}
typeOf-val-not-none : {H Γ} v OrWarningᴱ H (typeCheckᴱ H Γ (val v)) (none typeOfᴱ H Γ (val v))
typeOf-val-not-none nil = ok (λ ())
typeOf-val-not-none (number n) = ok (λ ())
typeOf-val-not-none (bool b) = ok (λ ())
typeOf-val-not-none (string x) = ok (λ ())
typeOf-val-not-none {H = H} (addr a) with remember (H [ a ]ᴴ)
typeOf-val-not-none {H = H} (addr a) | (just O , p) = ok (λ q none-not-obj O (trans q (cong orNone (cong typeOfᴹᴼ p))))
typeOf-val-not-none {H = H} (addr a) | (nothing , p) = warning (UnallocatedAddress p)
src-contravariant : {T U} (T <: U) (src U <: src T)
src-contravariant = {!!}
substitutivityᴱ : {Γ T} H M v x (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) M typeOfᴱ H Γ (M [ v / x ]ᴱ))
substitutivityᴱ-whenever-yes : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) (var y) typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (yes p)))
substitutivityᴱ-whenever-no : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) (var y) typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (no p)))
substitutivityᴮ : {Γ T} H B v x (just T typeOfⱽ H v) (typeOfᴮ H (Γ x T) B typeOfᴮ H Γ (B [ v / x ]ᴮ))
substitutivityᴮ-unless-yes : {Γ Γ′ T} H B v x y (p : x y) (just T typeOfⱽ H v) (Γ′ Γ) (typeOfᴮ H Γ′ B typeOfᴮ H Γ (B [ v / x ]ᴮunless (yes p)))
substitutivityᴮ-unless-no : {Γ Γ′ T} H B v x y (p : x y) (just T typeOfⱽ H v) (Γ′ Γ x T) (typeOfᴮ H Γ′ B typeOfᴮ H Γ (B [ v / x ]ᴮunless (no p)))
tgt-covariant : {T U} (T <: U) (tgt T <: tgt U)
tgt-covariant = {!!}
substitutivityᴱ H (var y) v x p with x ≡ⱽ y
substitutivityᴱ H (var y) v x p | yes q = substitutivityᴱ-whenever-yes H v x y q p
substitutivityᴱ H (var y) v x p | no q = substitutivityᴱ-whenever-no H v x y q p
substitutivityᴱ H (val w) v x p = refl
substitutivityᴱ H (binexp M op N) v x p = refl
substitutivityᴱ H (M $ N) v x p = cong tgt (substitutivityᴱ H M v x p)
substitutivityᴱ H (function f var y T ⟩∈ U is B end) v x p = refl
substitutivityᴱ H (block var b T is B end) v x p = refl
substitutivityᴱ-whenever-yes H v x x refl q = cong orNone q
substitutivityᴱ-whenever-no H v x y p q = cong orNone ( sym (⊕-lookup-miss x y _ _ p))
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p with x ≡ⱽ f
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p | yes q = substitutivityᴮ-unless-yes H B v x f q p (⊕-over q)
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p | no q = substitutivityᴮ-unless-no H B v x f q p (⊕-swap q)
substitutivityᴮ H (local var y T M B) v x p with x ≡ⱽ y
substitutivityᴮ H (local var y T M B) v x p | yes q = substitutivityᴮ-unless-yes H B v x y q p (⊕-over q)
substitutivityᴮ H (local var y T M B) v x p | no q = substitutivityᴮ-unless-no H B v x y q p (⊕-swap q)
tgt-≮: : {T U} (tgt T ≮: tgt U) (T ≮: U)
tgt-≮: = {!!}
none-tgt-≮: : {T U} (T ≮: (none U)) (tgt T ≮: U)
none-tgt-≮: = {!!}
src-≮: : {T U} (src T ≮: src U) (U ≮: T)
src-≮: = {!!}
any-src-≮: : {T U} (T ≮: (U any)) (U ≮: src T)
any-src-≮: = {!!}
-- The rest of the proof just depends on those properties
≮:-trans-≡ : {S T U} (S ≮: T) (T U) (S ≮: U)
:-trans-≡ p refl = p
≡-trans-≮: : {S T U} (S T) (T ≮: U) (S ≮: U)
≡-trans-≮: refl p = p
≡-impl-<: : {T U} (T U) (T <: U)
≡-impl-<: {T} refl = <:-refl T
heap-weakeningᴱ : Γ H M {H} (H H) (typeOfᴱ H Γ M <: typeOfᴱ H Γ M)
heap-weakeningᴮ : Γ H B {H} (H H) (typeOfᴮ H Γ B <: typeOfᴮ H Γ B)
heap-weakeningᴱ Γ H (var x) h = <:-refl (typeOfᴱ H Γ (var x))
heap-weakeningᴱ Γ H (val nil) h = <:-refl nil
heap-weakeningᴱ Γ H (val (addr a)) refl = <:-refl (typeOfᴱ H Γ (val (addr a)))
heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} defn) with a ≡ᴬ b
heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = a} {O = O} defn) | yes refl = <:-any (typeOfᴼ O)
heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} p) | no q = ≡-impl-<: (cong orAny (cong typeOfᴹᴼ (sym (lookup-not-allocated p q))))
heap-weakeningᴱ Γ H (val (number n)) h = <:-refl number
heap-weakeningᴱ Γ H (val (bool b)) h = <:-refl boolean
heap-weakeningᴱ Γ H (val (string x)) h = <:-refl string
heap-weakeningᴱ Γ H (binexp M op N) h = <:-refl (typeOfᴱ H Γ (binexp M op N))
heap-weakeningᴱ Γ H (M $ N) h = tgt-covariant (heap-weakeningᴱ Γ H M h)
heap-weakeningᴱ Γ H (function f var x T ⟩∈ U is B end) h = <:-refl (T U)
heap-weakeningᴱ Γ H (block var b T is B end) h = <:-refl T
heap-weakeningᴮ Γ H (function f var x T ⟩∈ U is C end B) h = heap-weakeningᴮ (Γ f (T U)) H B h
heap-weakeningᴮ Γ H (local var x T M B) h = heap-weakeningᴮ (Γ x T) H B h
heap-weakeningᴮ Γ H (return M B) h = heap-weakeningᴱ Γ H M h
heap-weakeningᴮ Γ H (done) h = <:-refl nil
heap-weakening-≮:ᴱ : Γ H M {H U} (H H) (typeOfᴱ H Γ M ≮: U) (typeOfᴱ H Γ M ≮: U)
heap-weakening-≮: Γ H M h p = <:-trans-≮: (heap-weakeningᴱ Γ H M h) p
heap-weakening-≮:ᴮ : Γ H B {H U} (H H) (typeOfᴮ H Γ B ≮: U) (typeOfᴮ H Γ B ≮: U)
heap-weakening-≮: Γ H B h p = <:-trans-≮: (heap-weakeningᴮ Γ H B h) p
-- none-not-obj : ∀ O → none ≢ typeOfᴼ O
-- none-not-obj (function f ⟨ var x ∈ T ⟩∈ U is B end) ()
-- typeOf-val-not-none : ∀ {H Γ} v → OrWarningᴱ H (typeCheckᴱ H Γ (val v)) (typeOfᴱ H Γ (val v) ≮: none)
-- typeOf-val-not-none nil = ok {!!}
-- typeOf-val-not-none (number n) = ok {!!}
-- typeOf-val-not-none (bool b) = ok {!!}
-- typeOf-val-not-none (string x) = ok {!!}
-- typeOf-val-not-none {H = H} (addr a) with remember (H [ a ]ᴴ)
-- typeOf-val-not-none {H = H} (addr a) | (just O , p) = ok {!!}
-- typeOf-val-not-none {H = H} (addr a) | (nothing , p) = warning (UnallocatedAddress p)
substitutivityᴱ : {Γ T U} H M v x (typeOfᴱ H Γ (M [ v / x ]ᴱ) ≮: U) Either (typeOfᴱ H (Γ x T) M ≮: U) (typeOfᴱ H (val v) ≮: T)
substitutivityᴱ-whenever : {Γ T U} H v x y (r : Dec(x y)) (typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever r) ≮: U) Either (typeOfᴱ H (Γ x T) (var y) ≮: U) (typeOfᴱ H (val v) ≮: T)
substitutivityᴮ : {Γ T U} H B v x (typeOfᴮ H Γ (B [ v / x ]ᴮ) ≮: U) Either (typeOfᴮ H (Γ x T) B ≮: U) (typeOfᴱ H (val v) ≮: T)
substitutivityᴮ-unless : {Γ T U V} H B v x y (r : Dec(x y)) (typeOfᴮ H (Γ y U) (B [ v / x ]ᴮunless r) ≮: V) Either (typeOfᴮ H ((Γ x T) y U) B ≮: V) (typeOfᴱ H (val v) ≮: T)
substitutivityᴮ-unless-yes : {Γ Γ′ T V} H B v x y (r : x y) (Γ′ Γ) (typeOfᴮ H Γ (B [ v / x ]ᴮunless yes r) ≮: V) Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H (val v) ≮: T)
substitutivityᴮ-unless-no : {Γ Γ′ T V} H B v x y (r : x y) (Γ′ Γ x T) (typeOfᴮ H Γ (B [ v / x ]ᴮunless no r) ≮: V) Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H (val v) ≮: T)
substitutivityᴱ H (var y) v x p = substitutivityᴱ-whenever H v x y (x ≡ⱽ y) p
substitutivityᴱ H (val w) v x p = Left p
substitutivityᴱ H (binexp M op N) v x p = Left p
substitutivityᴱ H (M $ N) v x p = mapL none-tgt-≮: (substitutivityᴱ H M v x (tgt-≮: p))
substitutivityᴱ H (function f var y T ⟩∈ U is B end) v x p = Left p
substitutivityᴱ H (block var b T is B end) v x p = Left p
substitutivityᴱ-whenever H v x x (yes refl) q = swapLR (≮:-antitrans q)
substitutivityᴱ-whenever H v x y (no p) q = Left (≡-trans-≮: (cong orAny (sym (⊕-lookup-miss x y _ _ p))) q)
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p = substitutivityᴮ-unless H B v x f (x ≡ⱽ f) p
substitutivityᴮ H (local var y T M B) v x p = substitutivityᴮ-unless H B v x y (x ≡ⱽ y) p
substitutivityᴮ H (return M B) v x p = substitutivityᴱ H M v x p
substitutivityᴮ H done v x p = refl
substitutivityᴮ-unless-yes H B v x x refl q refl = refl
substitutivityᴮ-unless-no H B v x y p q refl = substitutivityᴮ H B v x q
substitutivityᴮ H done v x p = Left p
substitutivityᴮ-unless H B v x y (yes p) q = substitutivityᴮ-unless-yes H B v x y p (⊕-over p) q
substitutivityᴮ-unless H B v x y (no p) q = substitutivityᴮ-unless-no H B v x y p (⊕-swap p) q
substitutivityᴮ-unless-yes H B v x y refl refl p = Left p
substitutivityᴮ-unless-no H B v x y p refl q = substitutivityᴮ H B v x q
binOpPreservation : H {op v w x} (v op w x) (tgtBinOp op typeOfᴱ H (val x))
binOpPreservation H (+ m n) = refl
binOpPreservation H (- m n) = refl
binOpPreservation H (/ m n) = refl
binOpPreservation H (* m n) = refl
binOpPreservation H (< m n) = refl
binOpPreservation H (> m n) = refl
binOpPreservation H (<= m n) = refl
binOpPreservation H (>= m n) = refl
binOpPreservation H (== v w) = refl
binOpPreservation H (~= v w) = refl
binOpPreservation H (·· v w) = refl
-- substitutivityᴱ-src : ∀ {Γ T} H M N v x → (typeOfᴱ H Γ (N [ v / x ]ᴱ) ≮: src(typeOfᴱ H Γ (M [ v / x ]ᴱ))) → Either (typeOfᴱ H (Γ ⊕ x ↦ T) N ≮: src(typeOfᴱ H (Γ ⊕ x ↦ T) M)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T))
-- substitutivityᴱ-src = {!!}
preservationᴱ : H M {H M} (H M ⟶ᴱ M H) OrWarningᴴᴱ H (typeCheckᴴᴱ H M) (typeOfᴱ H M typeOfᴱ H M)
preservationᴮ : H B {H B} (H B ⟶ᴮ B H) OrWarningᴴᴮ H (typeCheckᴴᴮ H B) (typeOfᴮ H B typeOfᴮ H B)
preservationᴱ H (function f var x T ⟩∈ U is B end) (function a defn) = ok refl
preservationᴱ H (M $ N) (app₁ s) with preservationᴱ H M s
preservationᴱ H (M $ N) (app₁ s) | ok p = ok (cong tgt p)
preservationᴱ H (M $ N) (app₁ s) | warning (expr W) = warning (expr (app₁ W))
preservationᴱ H (M $ N) (app₁ s) | warning (heap W) = warning (heap W)
preservationᴱ H (M $ N) (app₂ p s) with heap-weakeningᴱ H M (rednᴱ⊑ s)
preservationᴱ H (M $ N) (app₂ p s) | ok q = ok (cong tgt q)
preservationᴱ H (M $ N) (app₂ p s) | warning W = warning (expr (app₁ W))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) with remember (typeOfⱽ H v)
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) with S ≡ᵀ U | T ≡ᵀ typeOfᴮ H (x S) B
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | yes refl = ok (cong tgt (cong orNone (cong typeOfᴹᴼ p)))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | no r = warning (heap (addr a p (FunctionDefnMismatch r)))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | no r | _ = warning (expr (FunctionCallMismatch (λ s r (trans (trans (sym (cong src (cong orNone (cong typeOfᴹᴼ p)))) s) (cong orNone q)))))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) with typeOf-val-not-none v
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | ok r = CONTRADICTION (r (sym (cong orNone q)))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | warning W = warning (expr (app₂ W))
preservationᴱ H (block var b T is B end) (block s) = ok refl
preservationᴱ H (block var b T is return M B end) (return v) with T ≡ᵀ typeOfᴱ H (val v)
preservationᴱ H (block var b T is return M B end) (return v) | yes p = ok p
preservationᴱ H (block var b T is return M B end) (return v) | no p = warning (expr (BlockMismatch p))
preservationᴱ H (block var b T is done end) (done) with T ≡ᵀ nil
preservationᴱ H (block var b T is done end) (done) | yes p = ok p
preservationᴱ H (block var b T is done end) (done) | no p = warning (expr (BlockMismatch p))
preservationᴱ H (binexp M op N) (binOp₀ s) = ok (binOpPreservation H s)
preservationᴱ H (binexp M op N) (binOp₁ s) = ok refl
preservationᴱ H (binexp M op N) (binOp₂ s) = ok refl
-- substitutivityᴱ H (var y) v x p with x ≡ⱽ y
-- substitutivityᴱ H (var y) v x p | yes q = substitutivityᴱ-whenever-yes H v x y q p
-- substitutivityᴱ H (var y) v x p | no q = substitutivityᴱ-whenever-no H v x y q p
-- substitutivityᴱ H (val w) v x p = refl
-- substitutivityᴱ H (binexp M op N) v x p = refl
-- substitutivityᴱ H (M $ N) v x p = cong tgt (substitutivityᴱ H M v x p)
-- substitutivityᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = refl
-- substitutivityᴱ H (block var b ∈ T is B end) v x p = refl
-- substitutivityᴱ-whenever-yes H v x x refl q = cong orAny q
-- substitutivityᴱ-whenever-no H v x y p q = cong orAny ( sym (⊕-lookup-miss x y _ _ p))
-- substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p with x ≡ⱽ f
-- substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | yes q = substitutivityᴮ-unless-yes H B v x f q p (⊕-over q)
-- substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | no q = substitutivityᴮ-unless-no H B v x f q p (⊕-swap q)
-- substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p with x ≡ⱽ y
-- substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p | yes q = substitutivityᴮ-unless-yes H B v x y q p (⊕-over q)
-- substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p | no q = substitutivityᴮ-unless-no H B v x y q p (⊕-swap q)
-- substitutivityᴮ H (return M ∙ B) v x p = substitutivityᴱ H M v x p
-- substitutivityᴮ H done v x p = refl
-- substitutivityᴮ-unless-yes H B v x x refl q refl = refl
-- substitutivityᴮ-unless-no H B v x y p q refl = substitutivityᴮ H B v x q
preservationᴮ H (local var x T M B) (local s) with heap-weakeningᴮ H B (rednᴱ⊑ s)
preservationᴮ H (local var x T M B) (local s) | ok p = ok p
preservationᴮ H (local var x T M B) (local s) | warning W = warning (block (local₂ W))
preservationᴮ H (local var x T M B) (subst v) with remember (typeOfⱽ H v)
preservationᴮ H (local var x T M B) (subst v) | (just U , p) with T ≡ᵀ U
preservationᴮ H (local var x T M B) (subst v) | (just T , p) | yes refl = ok (substitutivityᴮ H B v x (sym p))
preservationᴮ H (local var x T M B) (subst v) | (just U , p) | no q = warning (block (LocalVarMismatch (λ r q (trans r (cong orNone p)))))
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) with typeOf-val-not-none v
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) | ok q = CONTRADICTION (q (sym (cong orNone p)))
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) | warning W = warning (block (local₁ W))
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) with heap-weakeningᴮ H B (snoc defn)
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) | ok r = ok (trans r (substitutivityᴮ _ B (addr a) f refl))
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) | warning W = warning (block (function₂ W))
preservationᴮ H (return M B) (return s) with preservationᴱ H M s
preservationᴮ H (return M B) (return s) | ok p = ok p
preservationᴮ H (return M B) (return s) | warning (expr W) = warning (block (return W))
preservationᴮ H (return M B) (return s) | warning (heap W) = warning (heap W)
-- binOpPreservation : ∀ H {op v w x} → (v ⟦ op ⟧ w ⟶ x) → (tgtBinOp op ≡ typeOfᴱ H ∅ (val x))
-- binOpPreservation H (+ m n) = refl
-- binOpPreservation H (- m n) = refl
-- binOpPreservation H (/ m n) = refl
-- binOpPreservation H (* m n) = refl
-- binOpPreservation H (< m n) = refl
-- binOpPreservation H (> m n) = refl
-- binOpPreservation H (<= m n) = refl
-- binOpPreservation H (>= m n) = refl
-- binOpPreservation H (== v w) = refl
-- binOpPreservation H (~= v w) = refl
-- binOpPreservation H (·· v w) = refl
reflect-substitutionᴱ : {Γ T} H M v x (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) Warningᴱ H (typeCheckᴱ H (Γ x T) M)
reflect-substitutionᴱ-whenever-yes : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever yes p)) Warningᴱ H (typeCheckᴱ H (Γ x T) (var y))
reflect-substitutionᴱ-whenever-no : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever no p)) Warningᴱ H (typeCheckᴱ H (Γ x T) (var y))
reflect-substitutionᴮ : {Γ T} H B v x (just T typeOfⱽ H v) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) Warningᴮ H (typeCheckᴮ H (Γ x T) B)
reflect-substitutionᴮ-unless-yes : {Γ Γ′ T} H B v x y (r : x y) (just T typeOfⱽ H v) (Γ′ Γ) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) Warningᴮ H (typeCheckᴮ H Γ′ B)
reflect-substitutionᴮ-unless-no : {Γ Γ′ T} H B v x y (r : x y) (just T typeOfⱽ H v) (Γ′ Γ x T) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) Warningᴮ H (typeCheckᴮ H Γ′ B)
-- <:-BinOpWarning : ∀ op {T U} → (T <: U) → BinOpWarning op T → BinOpWarning op U
-- <:-BinOpWarning = {!!}
reflect-substitutionᴱ H (var y) v x p W with x ≡ⱽ y
reflect-substitutionᴱ H (var y) v x p W | yes r = reflect-substitutionᴱ-whenever-yes H v x y r p W
reflect-substitutionᴱ H (var y) v x p W | no r = reflect-substitutionᴱ-whenever-no H v x y r p W
reflect-substitutionᴱ H (val (addr a)) v x p (UnallocatedAddress r) = UnallocatedAddress r
reflect-substitutionᴱ H (M $ N) v x p (FunctionCallMismatch q) = FunctionCallMismatch (λ s q (trans (cong src (sym (substitutivityᴱ H M v x p))) (trans s (substitutivityᴱ H N v x p))))
reflect-substitutionᴱ H (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ H M v x p W)
reflect-substitutionᴱ H (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ H N v x p W)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (FunctionDefnMismatch q) with (x ≡ⱽ y)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (FunctionDefnMismatch q) | yes r = FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ-unless-yes H B v x y r p (⊕-over r))))
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (FunctionDefnMismatch q) | no r = FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ-unless-no H B v x y r p (⊕-swap r))))
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₁ W) with (x ≡ⱽ y)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₁ W) | yes r = function₁ (reflect-substitutionᴮ-unless-yes H B v x y r p (⊕-over r) W)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₁ W) | no r = function₁ (reflect-substitutionᴮ-unless-no H B v x y r p (⊕-swap r) W)
reflect-substitutionᴱ H (block var b T is B end) v x p (BlockMismatch q) = BlockMismatch (λ r q (trans r (substitutivityᴮ H B v x p)))
reflect-substitutionᴱ H (block var b T is B end) v x p (block₁ W) = block₁ (reflect-substitutionᴮ H B v x p W)
reflect-substitutionᴱ H (binexp M op N) x v p (BinOpMismatch₁ q) = BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym (substitutivityᴱ H M x v p)) q)
reflect-substitutionᴱ H (binexp M op N) x v p (BinOpMismatch₂ q) = BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym (substitutivityᴱ H N x v p)) q)
reflect-substitutionᴱ H (binexp M op N) x v p (bin₁ W) = bin₁ (reflect-substitutionᴱ H M x v p W)
reflect-substitutionᴱ H (binexp M op N) x v p (bin₂ W) = bin₂ (reflect-substitutionᴱ H N x v p W)
-- preservationᴱ : ∀ H M {H M} → (H ⊢ M ⟶ᴱ M ⊣ H) → Either (typeOfᴱ H ∅ M <: typeOfᴱ H ∅ M) (Either (Warningᴱ H (typeCheckᴱ H ∅ M)) (Warningᴴ H (typeCheckᴴ H)))
-- preservationᴮ : ∀ H B {H B} → (H ⊢ B ⟶ᴮ B ⊣ H) → Either (typeOfᴮ H ∅ B <: typeOfᴮ H ∅ B) (Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H)))
reflect-substitutionᴱ-whenever-no H v x y p q (UnboundVariable r) = UnboundVariable (trans (sym (⊕-lookup-miss x y _ _ p)) r)
reflect-substitutionᴱ-whenever-yes H (addr a) x x refl p (UnallocatedAddress q) with trans p (cong typeOfᴹᴼ q)
reflect-substitutionᴱ-whenever-yes H (addr a) x x refl p (UnallocatedAddress q) | ()
-- preservationᴱ = {!!}
-- preservationᴮ = {!!}
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (FunctionDefnMismatch q) with (x ≡ⱽ y)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (FunctionDefnMismatch q) | yes r = FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ-unless-yes H C v x y r p (⊕-over r))))
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (FunctionDefnMismatch q) | no r = FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ-unless-no H C v x y r p (⊕-swap r))))
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₁ W) with (x ≡ⱽ y)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₁ W) | yes r = function₁ (reflect-substitutionᴮ-unless-yes H C v x y r p (⊕-over r) W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₁ W) | no r = function₁ (reflect-substitutionᴮ-unless-no H C v x y r p (⊕-swap r) W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₂ W) with (x ≡ⱽ f)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₂ W)| yes r = function₂ (reflect-substitutionᴮ-unless-yes H B v x f r p (⊕-over r) W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₂ W)| no r = function₂ (reflect-substitutionᴮ-unless-no H B v x f r p (⊕-swap r) W)
reflect-substitutionᴮ H (local var y T M B) v x p (LocalVarMismatch q) = LocalVarMismatch (λ r q (trans r (substitutivityᴱ H M v x p)))
reflect-substitutionᴮ H (local var y T M B) v x p (local₁ W) = local₁ (reflect-substitutionᴱ H M v x p W)
reflect-substitutionᴮ H (local var y T M B) v x p (local₂ W) with (x ≡ⱽ y)
reflect-substitutionᴮ H (local var y T M B) v x p (local₂ W) | yes r = local₂ (reflect-substitutionᴮ-unless-yes H B v x y r p (⊕-over r) W)
reflect-substitutionᴮ H (local var y T M B) v x p (local₂ W) | no r = local₂ (reflect-substitutionᴮ-unless-no H B v x y r p (⊕-swap r) W)
reflect-substitutionᴮ H (return M B) v x p (return W) = return (reflect-substitutionᴱ H M v x p W)
-- preservationᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) = ok refl
-- preservationᴱ H (M $ N) (app₁ s) with preservationᴱ H M s
-- preservationᴱ H (M $ N) (app₁ s) | ok p = ok (cong tgt p)
-- preservationᴱ H (M $ N) (app₁ s) | warning (expr W) = warning (expr (app₁ W))
-- preservationᴱ H (M $ N) (app₁ s) | warning (heap W) = warning (heap W)
-- preservationᴱ H (M $ N) (app₂ p s) with heap-weakeningᴱ H M (rednᴱ⊑ s)
-- preservationᴱ H (M $ N) (app₂ p s) | ok q = ok (cong tgt q)
-- preservationᴱ H (M $ N) (app₂ p s) | warning W = warning (expr (app₁ W))
-- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) with remember (typeOfⱽ H v)
-- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) with S ≡ᵀ U | T ≡ᵀ typeOfᴮ H (x ↦ S) B
-- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | yes refl = ok (cong tgt (cong orAny (cong typeOfᴹᴼ p)))
-- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | no r = warning (heap (addr a p (FunctionDefnMismatch {!!})))
-- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | no r | _ = warning (expr (FunctionCallMismatch {!!}))
-- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) with typeOf-val-not-none v
-- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) | ok r = {!!}
-- preservationᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) | warning W = warning (expr (app₂ W))
-- preservationᴱ H (block var b ∈ T is B end) (block s) = ok refl
-- preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) with T ≡ᵀ typeOfᴱ H ∅ (val v)
-- preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) | yes p = ok p
-- preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) | no p = warning (expr (BlockMismatch p))
-- preservationᴱ H (block var b ∈ T is done end) (done) with T ≡ᵀ nil
-- preservationᴱ H (block var b ∈ T is done end) (done) | yes p = ok p
-- preservationᴱ H (block var b ∈ T is done end) (done) | no p = warning (expr (BlockMismatch p))
-- preservationᴱ H (binexp M op N) (binOp₀ s) = ok (binOpPreservation H s)
-- preservationᴱ H (binexp M op N) (binOp₁ s) = ok refl
-- preservationᴱ H (binexp M op N) (binOp₂ s) = ok refl
reflect-substitutionᴮ-unless-yes H B v x y r p refl W = W
reflect-substitutionᴮ-unless-no H B v x y r p refl W = reflect-substitutionᴮ H B v x p W
-- preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) with heap-weakeningᴮ H B (rednᴱ⊑ s)
-- preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) | ok p = ok p
-- preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) | warning W = warning (block (local₂ W))
-- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) with remember (typeOfⱽ H v)
-- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just U , p) with T ≡ᵀ U
-- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just T , p) | yes refl = ok (substitutivityᴮ H B v x (sym p))
-- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just U , p) | no q = warning (block (LocalVarMismatch {!!}))
-- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) with typeOf-val-not-none v
-- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) | ok q = {!!}
-- preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) | warning W = warning (block (local₁ W))
-- preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) with heap-weakeningᴮ H B (snoc defn)
-- preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) | ok r = ok (trans r (substitutivityᴮ _ B (addr a) f refl))
-- preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) | warning W = warning (block (function₂ W))
-- preservationᴮ H (return M ∙ B) (return s) with preservationᴱ H M s
-- preservationᴮ H (return M ∙ B) (return s) | ok p = ok p
-- preservationᴮ H (return M ∙ B) (return s) | warning (expr W) = warning (block (return W))
-- preservationᴮ H (return M ∙ B) (return s) | warning (heap W) = warning (heap W)
reflect-weakeningᴱ : H M {H Γ} (H H) Warningᴱ H (typeCheckᴱ H Γ M) Warningᴱ H (typeCheckᴱ H Γ M)
reflect-weakeningᴮ : H B {H Γ} (H H) Warningᴮ H (typeCheckᴮ H Γ B) Warningᴮ H (typeCheckᴮ H Γ B)
reflect-subtypingᴱ : H M {H M T} (H M ⟶ᴱ M H) (typeOfᴱ H M ≮: T) Either (typeOfᴱ H M ≮: T) (Warningᴱ H (typeCheckᴱ H M))
reflect-subtypingᴮ : H B {H B T} (H B ⟶ᴮ B H) (typeOfᴮ H B ≮: T) Either (typeOfᴮ H B ≮: T) (Warningᴮ H (typeCheckᴮ H B))
reflect-weakeningᴱ H (var x) h (UnboundVariable p) = (UnboundVariable p)
reflect-weakeningᴱ H (val (addr a)) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p)
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) with heap-weakeningᴱ H M h | heap-weakeningᴱ H N h
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | ok q₁ | ok q₂ = FunctionCallMismatch (λ r p (trans (cong src (sym q₁)) (trans r q₂)))
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | warning W | _ = app₁ W
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | _ | warning W = app₂ W
reflect-weakeningᴱ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ H M h W)
reflect-weakeningᴱ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ H N h W)
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) with heap-weakeningᴱ H M h
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) | ok q = BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p)
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) | warning W = bin₁ W
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) with heap-weakeningᴱ H N h
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) | ok q = BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym q) p)
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) | warning W = bin₂ W
reflect-weakeningᴱ H (binexp M op N) h (bin₁ W) = bin₁ (reflect-weakeningᴱ H M h W)
reflect-weakeningᴱ H (binexp M op N) h (bin₂ W) = bin₂ (reflect-weakeningᴱ H N h W)
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (FunctionDefnMismatch p) with heap-weakeningᴮ H B h
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (FunctionDefnMismatch p) | ok q = FunctionDefnMismatch (λ r p (trans r q))
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (FunctionDefnMismatch p) | warning W = function₁ W
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ H B h W)
reflect-weakeningᴱ H (block var b T is B end) h (BlockMismatch p) with heap-weakeningᴮ H B h
reflect-weakeningᴱ H (block var b T is B end) h (BlockMismatch p) | ok q = BlockMismatch (λ r p (trans r q))
reflect-weakeningᴱ H (block var b T is B end) h (BlockMismatch p) | warning W = block₁ W
reflect-weakeningᴱ H (block var b T is B end) h (block₁ W) = block₁ (reflect-weakeningᴮ H B h W)
reflect-subtypingᴱ H (M $ N) (app₁ s) p = mapLR none-tgt-≮: app₁ (reflect-subtypingᴱ H M s (tgt-≮: p))
reflect-subtypingᴱ H (M $ N) (app₂ v s) p = Left (none-tgt-≮: (heap-weakening-≮:ᴱ H M (rednᴱ⊑ s) (tgt-≮: p)))
reflect-subtypingᴱ H (M $ N) (beta (function f var y T ⟩∈ U is B end) v refl q) p = Left (≡-trans-≮: (cong tgt (cong orAny (cong typeOfᴹᴼ q))) p)
reflect-subtypingᴱ H (function f var x T ⟩∈ U is B end) (function a defn) p = Left p
reflect-subtypingᴱ H (block var b T is B end) (block s) p = Left p
reflect-subtypingᴱ H (block var b T is return (val v) B end) (return v) p = mapR BlockMismatch (swapLR (≮:-antitrans p))
reflect-subtypingᴱ H (block var b T is done end) done p = mapR BlockMismatch (swapLR (≮:-antitrans p))
reflect-subtypingᴱ H (binexp M op N) (binOp₀ s) p = {!!}
reflect-subtypingᴱ H (binexp M op N) (binOp₁ s) p = Left p
reflect-subtypingᴱ H (binexp M op N) (binOp₂ s) p = Left p
reflect-weakeningᴮ H (return M B) h (return W) = return (reflect-weakeningᴱ H M h W)
reflect-weakeningᴮ H (local var y T M B) h (LocalVarMismatch p) with heap-weakeningᴱ H M h
reflect-weakeningᴮ H (local var y T M B) h (LocalVarMismatch p) | ok q = LocalVarMismatch (λ r p (trans r q))
reflect-weakeningᴮ H (local var y T M B) h (LocalVarMismatch p) | warning W = local₁ W
reflect-weakeningᴮ H (local var y T M B) h (local₁ W) = local₁ (reflect-weakeningᴱ H M h W)
reflect-weakeningᴮ H (local var y T M B) h (local₂ W) = local₂ (reflect-weakeningᴮ H B h W)
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (FunctionDefnMismatch p) with heap-weakeningᴮ H C h
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (FunctionDefnMismatch p) | ok q = FunctionDefnMismatch (λ r p (trans r q))
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (FunctionDefnMismatch p) | warning W = function₁ W
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₁ W) = function₁ (reflect-weakeningᴮ H C h W)
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₂ W) = function₂ (reflect-weakeningᴮ H B h W)
reflect-subtypingᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) p = mapLR (heap-weakening-≮:ᴮ _ _ B (snoc defn)) (CONTRADICTION (≮:-antirefl (T U))) (substitutivityᴮ _ B (addr a) f p)
reflect-subtypingᴮ H (local var x T M B) (local s) p = Left (heap-weakening-≮:ᴮ (x T) H B (rednᴱ⊑ s) p)
reflect-subtypingᴮ H (local var x T M B) (subst v) p = mapR LocalVarMismatch (substitutivityᴮ H B v x p)
reflect-subtypingᴮ H (return M B) (return s) p = mapR return (reflect-subtypingᴱ H M s p)
reflect-substitutionᴱ : {Γ T} H M v x Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) Either (Warningᴱ H (typeCheckᴱ H (Γ x T) M)) (Either (Warningᴱ H (typeCheckᴱ H (val v))) (typeOfᴱ H (val v) ≮: T))
reflect-substitutionᴱ-whenever : {Γ T} H v x y (p : Dec(x y)) Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever p)) Either (Warningᴱ H (typeCheckᴱ H (Γ x T) (var y))) (Either (Warningᴱ H (typeCheckᴱ H (val v))) (typeOfᴱ H (val v) ≮: T))
reflect-substitutionᴮ : {Γ T} H B v x Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) Either (Warningᴮ H (typeCheckᴮ H (Γ x T) B)) (Either (Warningᴱ H (typeCheckᴱ H (val v))) (typeOfᴱ H (val v) ≮: T))
reflect-substitutionᴮ-unless : {Γ T U} H B v x y (r : Dec(x y)) Warningᴮ H (typeCheckᴮ H (Γ y U) (B [ v / x ]ᴮunless r)) Either (Warningᴮ H (typeCheckᴮ H ((Γ x T) y U) B)) (Either (Warningᴱ H (typeCheckᴱ H (val v))) (typeOfᴱ H (val v) ≮: T))
reflect-substitutionᴮ-unless-yes : {Γ Γ′ T} H B v x y (r : x y) (Γ′ Γ) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) Either (Warningᴮ H (typeCheckᴮ H Γ′ B)) (Either (Warningᴱ H (typeCheckᴱ H (val v))) (typeOfᴱ H (val v) ≮: T))
reflect-substitutionᴮ-unless-no : {Γ Γ′ T} H B v x y (r : x y) (Γ′ Γ x T) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) Either (Warningᴮ H (typeCheckᴮ H Γ′ B)) (Either (Warningᴱ H (typeCheckᴱ H (val v))) (typeOfᴱ H (val v) ≮: T))
reflect-substitutionᴱ H (var y) v x W = reflect-substitutionᴱ-whenever H v x y (x ≡ⱽ y) W
reflect-substitutionᴱ H (val (addr a)) v x (UnallocatedAddress r) = Left (UnallocatedAddress r)
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) with substitutivityᴱ H N v x p
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Right W = Right (Right W)
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q with substitutivityᴱ H M v x (src-≮: q)
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Right W = Right (Right W)
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Left r = Left ((FunctionCallMismatch any-src-≮:) r)
reflect-substitutionᴱ H (M $ N) v x (app₁ W) = mapL app₁ (reflect-substitutionᴱ H M v x W)
reflect-substitutionᴱ H (M $ N) v x (app₂ W) = mapL app₂ (reflect-substitutionᴱ H N v x W)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H B v x y (x ≡ⱽ y) q)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W)
reflect-substitutionᴱ H (block var b T is B end) v x (BlockMismatch q) = mapLR BlockMismatch Right (substitutivityᴮ H B v x q)
reflect-substitutionᴱ H (block var b T is B end) v x (block₁ W) = mapL block₁ (reflect-substitutionᴮ H B v x W)
reflect-substitutionᴱ H (binexp M op N) x v (BinOpMismatch₁ q) = {!!}
reflect-substitutionᴱ H (binexp M op N) x v (BinOpMismatch₂ q) = {!!}
reflect-substitutionᴱ H (binexp M op N) x v (bin₁ W) = mapL bin₁ (reflect-substitutionᴱ H M x v W)
reflect-substitutionᴱ H (binexp M op N) x v (bin₂ W) = mapL bin₂ (reflect-substitutionᴱ H N x v W)
reflect-substitutionᴱ-whenever H a x x (yes refl) (UnallocatedAddress p) = Right (Left (UnallocatedAddress p))
reflect-substitutionᴱ-whenever H v x y (no p) (UnboundVariable q) = Left (UnboundVariable (trans (sym (⊕-lookup-miss x y _ _ p)) q))
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H C v x y (x ≡ⱽ y) q)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H C v x y (x ≡ⱽ y) W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x (function₂ W) = mapL function₂ (reflect-substitutionᴮ-unless H B v x f (x ≡ⱽ f) W)
reflect-substitutionᴮ H (local var y T M B) v x (LocalVarMismatch q) = mapLR LocalVarMismatch Right (substitutivityᴱ H M v x q)
reflect-substitutionᴮ H (local var y T M B) v x (local₁ W) = mapL local₁ (reflect-substitutionᴱ H M v x W)
reflect-substitutionᴮ H (local var y T M B) v x (local₂ W) = mapL local₂ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W)
reflect-substitutionᴮ H (return M B) v x (return W) = mapL return (reflect-substitutionᴱ H M v x W)
reflect-substitutionᴮ-unless H B v x y (yes p) W = reflect-substitutionᴮ-unless-yes H B v x y p (⊕-over p) W
reflect-substitutionᴮ-unless H B v x y (no p) W = reflect-substitutionᴮ-unless-no H B v x y p (⊕-swap p) W
reflect-substitutionᴮ-unless-yes H B v x x refl refl W = Left W
reflect-substitutionᴮ-unless-no H B v x y p refl W = reflect-substitutionᴮ H B v x W
reflect-weakeningᴱ : Γ H M {H} (H H) Warningᴱ H (typeCheckᴱ H Γ M) Warningᴱ H (typeCheckᴱ H Γ M)
reflect-weakeningᴮ : Γ H B {H} (H H) Warningᴮ H (typeCheckᴮ H Γ B) Warningᴮ H (typeCheckᴮ H Γ B)
reflect-weakeningᴱ Γ H (var x) h (UnboundVariable p) = (UnboundVariable p)
reflect-weakeningᴱ Γ H (val (addr a)) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p)
reflect-weakeningᴱ Γ H (M $ N) h (FunctionCallMismatch p) = FunctionCallMismatch (heap-weakening-≮:ᴱ Γ H N h (any-src-≮: (heap-weakening-≮:ᴱ Γ H M h (src-≮: p))))
reflect-weakeningᴱ Γ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ Γ H M h W)
reflect-weakeningᴱ Γ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ Γ H N h W)
reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₁ p) = BinOpMismatch₁ {!!} -- (<:-BinOpWarning op (heap-weakeningᴱ Γ H M h) p)
reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₂ p) = BinOpMismatch₂ {!!} -- (<:-BinOpWarning op (heap-weakeningᴱ Γ H N h) p)
reflect-weakeningᴱ Γ H (binexp M op N) h (bin₁ W) = bin₁ (reflect-weakeningᴱ Γ H M h W)
reflect-weakeningᴱ Γ H (binexp M op N) h (bin₂ W) = bin₂ (reflect-weakeningᴱ Γ H N h W)
reflect-weakeningᴱ Γ H (function f var y T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch {!!} -- (<:-trans-≮: (heap-weakeningᴮ (Γ ⊕ y ↦ T) H B h) p)
reflect-weakeningᴱ Γ H (function f var y T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ y T) H B h W)
reflect-weakeningᴱ Γ H (block var b T is B end) h (BlockMismatch p) = BlockMismatch {!!} -- (<:-trans-≮: (heap-weakeningᴮ Γ H B h) p)
reflect-weakeningᴱ Γ H (block var b T is B end) h (block₁ W) = block₁ (reflect-weakeningᴮ Γ H B h W)
reflect-weakeningᴮ Γ H (return M B) h (return W) = return (reflect-weakeningᴱ Γ H M h W)
reflect-weakeningᴮ Γ H (local var y T M B) h (LocalVarMismatch p) = LocalVarMismatch (heap-weakening-≮:ᴱ Γ H M h p)
reflect-weakeningᴮ Γ H (local var y T M B) h (local₁ W) = local₁ (reflect-weakeningᴱ Γ H M h W)
reflect-weakeningᴮ Γ H (local var y T M B) h (local₂ W) = local₂ (reflect-weakeningᴮ (Γ y T) H B h W)
reflect-weakeningᴮ Γ H (function f var x T ⟩∈ U is C end B) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakening-≮:ᴮ (Γ x T) H C h p)
reflect-weakeningᴮ Γ H (function f var x T ⟩∈ U is C end B) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ x T) H C h W)
reflect-weakeningᴮ Γ H (function f var x T ⟩∈ U is C end B) h (function₂ W) = function₂ (reflect-weakeningᴮ (Γ f (T U)) H B h W)
reflect-weakeningᴼ : H O {H} (H H) Warningᴼ H (typeCheckᴼ H O) Warningᴼ H (typeCheckᴼ H O)
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (FunctionDefnMismatch p) with heap-weakeningᴮ H B h
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (FunctionDefnMismatch p) | ok q = FunctionDefnMismatch (λ r p (trans r q))
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (FunctionDefnMismatch p) | warning W = function₁ W
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (function₁ W) = function₁ (reflect-weakeningᴮ H B h W)
reflect-weakeningᴼ H (just function f var x T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakening-≮:ᴮ (x T) H B h p)
reflect-weakeningᴼ H (just function f var x T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (x T) H B h W)
reflectᴱ : H M {H M} (H M ⟶ᴱ M H) Warningᴱ H (typeCheckᴱ H M) Warningᴴᴱ H (typeCheckᴴᴱ H M)
reflectᴮ : H B {H B} (H B ⟶ᴮ B H) Warningᴮ H (typeCheckᴮ H B) Warningᴴᴮ H (typeCheckᴴᴮ H B)
reflectᴱ : H M {H M} (H M ⟶ᴱ M H) Warningᴱ H (typeCheckᴱ H M) Either (Warningᴱ H (typeCheckᴱ H M)) (Warningᴴ H (typeCheckᴴ H))
reflectᴮ : H B {H B} (H B ⟶ᴮ B H) Warningᴮ H (typeCheckᴮ H B) Either (Warningᴮ H (typeCheckᴮ H B)) (Warningᴴ H (typeCheckᴴ H))
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) with preservationᴱ H M s | heap-weakeningᴱ H N (rednᴱ⊑ s)
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | ok q | ok q = expr (FunctionCallMismatch (λ r p (trans (trans (cong src (sym q)) r) q)))
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | warning (expr W) | _ = expr (app₁ W)
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | warning (heap W) | _ = heap W
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | _ | warning W = expr (app₂ W)
reflectᴱ H (M $ N) (app₁ s) (app₁ W) with reflectᴱ H M s W
reflectᴱ H (M $ N) (app₁ s) (app₁ W) | heap W = heap W
reflectᴱ H (M $ N) (app₁ s) (app₁ W) | expr W = expr (app₁ W)
reflectᴱ H (M $ N) (app₁ s) (app₂ W) = expr (app₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W))
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p) with heap-weakeningᴱ H (val p) (rednᴱ⊑ s) | preservationᴱ H N s
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p) | ok q | ok q = expr (FunctionCallMismatch (λ r p (trans (trans (cong src (sym q)) r) q)))
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p) | warning W | _ = expr (app₁ W)
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p) | _ | warning (expr W) = expr (app₂ W)
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p) | _ | warning (heap W) = heap W
reflectᴱ H (M $ N) (app₂ p s) (app₁ W) = expr (app₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W))
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) with reflectᴱ H N s W
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) | heap W = heap W
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) | expr W = expr (app₂ W)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) with remember (typeOfⱽ H v)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just S , r) with S ≡ᵀ T
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just T , r) | yes refl = heap (addr a p (FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ H B v x (sym r))))))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just S , r) | no s = expr (FunctionCallMismatch (λ t s (trans (cong orNone (sym r)) (trans (sym t) (cong src (cong orNone (cong typeOfᴹᴼ p)))))))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) with typeOf-val-not-none v
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) | ok s = CONTRADICTION (s (cong orNone (sym r)))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) | warning W = expr (app₂ W)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) with remember (typeOfⱽ H v)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just S , q) with S ≡ᵀ T
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just T , q) | yes refl = heap (addr a p (function₁ (reflect-substitutionᴮ H B v x (sym q) W)))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just S , q) | no r = expr (FunctionCallMismatch (λ s r (trans (cong orNone (sym q)) (trans (sym s) (cong src (cong orNone (cong typeOfᴹᴼ p)))))))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) with typeOf-val-not-none v
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) | ok r = CONTRADICTION (r (cong orNone (sym q)))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) | warning W = expr (app₂ W)
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) with preservationᴮ H B s
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) | ok q = expr (BlockMismatch (λ r p (trans r q)))
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) | warning (heap W) = heap W
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) | warning (block W) = expr (block₁ W)
reflectᴱ H (block var b T is B end) (block s) (block₁ W) with reflectᴮ H B s W
reflectᴱ H (block var b T is B end) (block s) (block₁ W) | heap W = heap W
reflectᴱ H (block var b T is B end) (block s) (block₁ W) | block W = expr (block₁ W)
reflectᴱ H (block var b T is B end) (return v) W = expr (block₁ (return W))
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) = cond (Left FunctionCallMismatch heap-weakening-≮:ᴱ H N (rednᴱ⊑ s) any-src-≮:) (Left app₁) (reflect-subtypingᴱ H M s (src-≮: p))
reflectᴱ H (M $ N) (app₁ s) (app₁ W) = mapL app₁ (reflectᴱ H M s W)
reflectᴱ H (M $ N) (app₁ s) (app₂ W) = Left (app₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W))
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch q) = cond (Left FunctionCallMismatch any-src-≮: heap-weakening-≮:ᴱ H M (rednᴱ⊑ s) src-≮:) (Left app₂) (reflect-subtypingᴱ H N s q)
reflectᴱ H (M $ N) (app₂ p s) (app₁ W) = Left (app₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W))
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) = mapL app₂ (reflectᴱ H N s W)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) with substitutivityᴮ H B v x q
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Left r = Right (addr a p (FunctionDefnMismatch r))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Right r = Left (FunctionCallMismatch (≮:-trans-≡ r ((cong src (cong orAny (cong typeOfᴹᴼ (sym p)))))))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) with reflect-substitutionᴮ _ B v x W
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | Left W = Right (addr a p (function₁ W))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | Right (Left W) = Left (app₂ W)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | Right (Right q) = Left (FunctionCallMismatch (≮:-trans-≡ q (cong src (cong orAny (cong typeOfᴹᴼ (sym p))))))
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) = Left (cond BlockMismatch block₁ (reflect-subtypingᴮ H B s p))
reflectᴱ H (block var b T is B end) (block s) (block₁ W) = mapL block₁ (reflectᴮ H B s W)
reflectᴱ H (block var b T is B end) (return v) W = Left (block₁ (return W))
reflectᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (UnallocatedAddress ())
reflectᴱ H (binexp M op N) (binOp₀ ()) (UnallocatedAddress p)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) with preservationᴱ H M s
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | ok q = expr (BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | warning (heap W) = heap W
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | warning (expr W) = expr (bin₁ W)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) with heap-weakeningᴱ H N (rednᴱ⊑ s)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) | ok q = expr (BinOpMismatch₂ ((subst₁ (BinOpWarning op) (sym q) p)))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) | warning W = expr (bin₂ W)
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W) with reflectᴱ H M s W
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W) | heap W = heap W
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W) | expr W = expr (bin₁ W)
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₂ W) = expr (bin₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) with heap-weakeningᴱ H M (rednᴱ⊑ s)
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) | ok q = expr (BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) | warning W = expr (bin₁ W)
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) with preservationᴱ H N s
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | ok q = expr (BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym q) p))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | warning (heap W) = heap W
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | warning (expr W) = expr (bin₂ W)
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₁ W) = expr (bin₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W))
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W) with reflectᴱ H N s W
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W) | heap W = heap W
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W) | expr W = expr (bin₂ W)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) = Left (BinOpMismatch₁ {!!}) -- (<:-BinOpWarning op (preservationᴱ H M s) p))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) = Left (BinOpMismatch₂ {!!}) -- (<:-BinOpWarning op (heap-weakeningᴱ ∅ H N (rednᴱ⊑ s)) p))
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W) = mapL bin₁ (reflectᴱ H M s W)
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₂ W) = Left (bin₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) = Left (BinOpMismatch₁ {!!}) -- (<:-BinOpWarning op (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s)) p))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) = Left (BinOpMismatch₂ {!!}) -- (<:-BinOpWarning op (preservationᴱ H N s) p))
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₁ W) = Left (bin₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W))
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W) = mapL bin₂ (reflectᴱ H N s W)
reflectᴮ H (local var x T M B) (local s) (LocalVarMismatch p) with preservationᴱ H M s
reflectᴮ H (local var x T M B) (local s) (LocalVarMismatch p) | ok q = block (LocalVarMismatch (λ r p (trans r q)))
reflectᴮ H (local var x T M B) (local s) (LocalVarMismatch p) | warning (expr W) = block (local₁ W)
reflectᴮ H (local var x T M B) (local s) (LocalVarMismatch p) | warning (heap W) = heap W
reflectᴮ H (local var x T M B) (local s) (local₁ W) with reflectᴱ H M s W
reflectᴮ H (local var x T M B) (local s) (local₁ W) | heap W = heap W
reflectᴮ H (local var x T M B) (local s) (local₁ W) | expr W = block (local₁ W)
reflectᴮ H (local var x T M B) (local s) (local₂ W) = block (local₂ (reflect-weakeningᴮ H B (rednᴱ⊑ s) W))
reflectᴮ H (local var x T M B) (subst v) W with remember (typeOfⱽ H v)
reflectᴮ H (local var x T M B) (subst v) W | (just S , p) with S ≡ᵀ T
reflectᴮ H (local var x T M B) (subst v) W | (just T , p) | yes refl = block (local₂ (reflect-substitutionᴮ H B v x (sym p) W))
reflectᴮ H (local var x T M B) (subst v) W | (just S , p) | no q = block (LocalVarMismatch (λ r q (trans (cong orNone (sym p)) (sym r))))
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) with typeOf-val-not-none v
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) | ok r = CONTRADICTION (r (cong orNone (sym p)))
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) | warning W = block (local₁ W)
reflectᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) W = block (function₂ (reflect-weakeningᴮ H B (snoc defn) (reflect-substitutionᴮ _ B (addr a) f refl W)))
reflectᴮ H (return M B) (return s) (return W) with reflectᴱ H M s W
reflectᴮ H (return M B) (return s) (return W) | heap W = heap W
reflectᴮ H (return M B) (return s) (return W) | expr W = block (return W)
reflectᴮ H (local var x T M B) (local s) (LocalVarMismatch p) = Left (cond LocalVarMismatch local₁ (reflect-subtypingᴱ H M s p))
reflectᴮ H (local var x T M B) (local s) (local₁ W) = mapL local₁ (reflectᴱ H M s W)
reflectᴮ H (local var x T M B) (local s) (local₂ W) = Left (local₂ (reflect-weakeningᴮ (x T) H B (rednᴱ⊑ s) W))
reflectᴮ H (local var x T M B) (subst v) W = Left (cond local₂ (cond local₁ LocalVarMismatch) (reflect-substitutionᴮ H B v x W))
reflectᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) W with reflect-substitutionᴮ _ B (addr a) f W
reflectᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) W | Left W = Left (function₂ (reflect-weakeningᴮ (f (T U)) H B (snoc defn) W))
reflectᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) W | Right (Left (UnallocatedAddress ()))
reflectᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) W | Right (Right p) = CONTRADICTION (≮:-antirefl (T U) p)
reflectᴮ H (return M B) (return s) (return W) = mapL return (reflectᴱ H M s W)
reflectᴴᴱ : H M {H M} (H M ⟶ᴱ M H) Warningᴴ H (typeCheckᴴ H M) Warning H (typeCheck H M)
reflectᴴᴮ : H B {H B} (H B ⟶ᴮ B H) Warningᴴ H (typeCheckᴴ H B) Warning H (typeCheck H B)
reflectᴴᴱ : H M {H M} (H M ⟶ᴱ M H) Warningᴴ H (typeCheckᴴ H) Either (Warningᴱ H (typeCheckᴱ H M)) (Warningᴴ H (typeCheckᴴ H))
reflectᴴᴮ : H B {H B} (H B ⟶ᴮ B H) Warningᴴ H (typeCheckᴴ H) Either (Warningᴮ H (typeCheckᴮ H B)) (Warningᴴ H (typeCheckᴴ H))
reflectᴴᴱ H M s (expr W) = reflectᴱ H M s W
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a p) (heap (addr b refl W)) with b ≡ᴬ a
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl with heap-weakeningᴮ H B (snoc defn)
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | ok r = expr (FunctionDefnMismatch λ q p (trans q r))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | warning W = expr (function₁ W)
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₁ W))) | yes refl = expr (function₁ (reflect-weakeningᴮ H B (snoc defn) W))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a p) (heap (addr b refl W)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ H _ (snoc p) W))
reflectᴴᴱ H (M $ N) (app₁ s) (heap W) with reflectᴴᴱ H M s (heap W)
reflectᴴᴱ H (M $ N) (app₁ s) (heap W) | heap W = heap W
reflectᴴᴱ H (M $ N) (app₁ s) (heap W) | expr W = expr (app₁ W)
reflectᴴᴱ H (M $ N) (app₂ p s) (heap W) with reflectᴴᴱ H N s (heap W)
reflectᴴᴱ H (M $ N) (app₂ p s) (heap W) | heap W = heap W
reflectᴴᴱ H (M $ N) (app₂ p s) (heap W) | expr W = expr (app₂ W)
reflectᴴᴱ H (M $ N) (beta O v p q) (heap W) = heap W
reflectᴴᴱ H (block var b T is B end) (block s) (heap W) with reflectᴴᴮ H B s (heap W)
reflectᴴᴱ H (block var b T is B end) (block s) (heap W) | heap W = heap W
reflectᴴᴱ H (block var b T is B end) (block s) (heap W) | block W = expr (block₁ W)
reflectᴴᴱ H (block var b T is return N B end) (return v) (heap W) = heap W
reflectᴴᴱ H (block var b T is done end) done (heap W) = heap W
reflectᴴᴱ H (binexp M op N) (binOp₀ s) (heap W) = heap W
reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W) with reflectᴴᴱ H M s (heap W)
reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W) | heap W = heap W
reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W) | expr W = expr (bin₁ W)
reflectᴴᴱ H (binexp M op N) (binOp₂ s) (heap W) with reflectᴴᴱ H N s (heap W)
reflectᴴᴱ H (binexp M op N) (binOp₂ s) (heap W) | heap W = heap W
reflectᴴᴱ H (binexp M op N) (binOp₂ s) (heap W) | expr W = expr (bin₂ W)
reflectᴴᴱ H (M $ N) (app₁ s) W = mapL app₁ (reflectᴴᴱ H M s W)
reflectᴴᴱ H (M $ N) (app₂ v s) W = mapL app₂ (reflectᴴᴱ H N s W)
reflectᴴᴱ H (M $ N) (beta O v refl p) W = Right W
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a p) (addr b refl W) with b ≡ᴬ a
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakening-≮:ᴮ (x T) H B (snoc defn) p))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x T) H B (snoc defn) W))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W))
reflectᴴᴱ H (block var b T is B end) (block s) W = mapL block₁ (reflectᴴᴮ H B s W)
reflectᴴᴱ H (block var b T is return (val v) B end) (return v) W = Right W
reflectᴴᴱ H (block var b T is done end) done W = Right W
reflectᴴᴱ H (binexp M op N) (binOp₀ s) W = Right W
reflectᴴᴱ H (binexp M op N) (binOp₁ s) W = mapL bin₁ (reflectᴴᴱ H M s W)
reflectᴴᴱ H (binexp M op N) (binOp₂ s) W = mapL bin₂ (reflectᴴᴱ H N s W)
reflectᴴᴮ H B s (block W) = reflectᴮ H B s W
reflectᴴᴮ H (local var x T M B) (local s) (heap W) with reflectᴴᴱ H M s (heap W)
reflectᴴᴮ H (local var x T M B) (local s) (heap W) | heap W = heap W
reflectᴴᴮ H (local var x T M B) (local s) (heap W) | expr W = block (local₁ W)
reflectᴴᴮ H (local var x T M B) (subst v) (heap W) = heap W
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a p) (heap (addr b refl W)) with b ≡ᴬ a
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl with heap-weakeningᴮ H C (snoc defn)
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | ok r = block (FunctionDefnMismatch (λ q p (trans q r)))
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | warning W = block (function₁ W)
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (function₁ W))) | yes refl = block (function₁ (reflect-weakeningᴮ H C (snoc defn) W))
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a p) (heap (addr b refl W)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ H _ (snoc p) W))
reflectᴴᴮ H (return M B) (return s) (heap W) with reflectᴴᴱ H M s (heap W)
reflectᴴᴮ H (return M B) (return s) (heap W) | heap W = heap W
reflectᴴᴮ H (return M B) (return s) (heap W) | expr W = block (return W)
reflectᴴᴮ H (function f var x T ⟩∈ U is C end B) (function a p) (addr b refl W) with b ≡ᴬ a
reflectᴴᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakening-≮:ᴮ (x T) H C (snoc defn) p))
reflectᴴᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x T) H C (snoc defn) W))
reflectᴴᴮ H (function f var x T ⟩∈ U is C end B) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W))
reflectᴴᴮ H (local var x T M B) (local s) W = mapL local₁ (reflectᴴᴱ H M s W)
reflectᴴᴮ H (local var x T M B) (subst v) W = Right W
reflectᴴᴮ H (return M B) (return s) W = mapL return (reflectᴴᴱ H M s W)
reflect* : H B {H B} (H B ⟶* B H) Warning H (typeCheck H B) Warningᴴᴮ H (typeCheckᴴᴮ H B)
reflect* : H B {H B} (H B ⟶* B H) Either (Warningᴮ H (typeCheckᴮ H B)) (Warningᴴ H (typeCheckᴴ H)) Either (Warningᴮ H (typeCheckᴮ H B)) (Warningᴴ H (typeCheckᴴ H))
reflect* H B refl W = W
reflect* H B (step s t) W = reflectᴴᴮ H B s (reflect* _ _ t W)
reflect* H B (step s t) W = cond (reflectᴮ H B s) (reflectᴴᴮ H B s) (reflect* _ _ t W)
runtimeBinOpWarning : H {op} v BinOpError op (valueType v) BinOpWarning op (orNone (typeOfⱽ H v))
runtimeBinOpWarning H v (+ p) = + (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (- p) = - (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (* p) = * (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (/ p) = / (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (< p) = < (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (> p) = > (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (<= p) = <= (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (>= p) = >= (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (·· p) = ·· (λ q p (mustBeString H v q))
isntNumber : H v (valueType v number) (typeOfᴱ H (val v) ≮: number)
isntNumber = {!!}
isntString : H v (valueType v string) (typeOfᴱ H (val v) ≮: string)
isntString = {!!}
isntFunction : H v {T U} (valueType v function) (typeOfᴱ H (val v) ≮: (T U))
isntFunction = {!!}
runtimeBinOpWarning : H {op} v BinOpError op (valueType v) BinOpWarning op (orAny (typeOfⱽ H v))
runtimeBinOpWarning H v (+ p) = + (isntNumber H v p)
runtimeBinOpWarning H v (- p) = - (isntNumber H v p)
runtimeBinOpWarning H v (* p) = * (isntNumber H v p)
runtimeBinOpWarning H v (/ p) = / (isntNumber H v p)
runtimeBinOpWarning H v (< p) = < (isntNumber H v p)
runtimeBinOpWarning H v (> p) = > (isntNumber H v p)
runtimeBinOpWarning H v (<= p) = <= (isntNumber H v p)
runtimeBinOpWarning H v (>= p) = >= (isntNumber H v p)
runtimeBinOpWarning H v (·· p) = ·· (isntString H v p)
runtimeWarningᴱ : H M RuntimeErrorᴱ H M Warningᴱ H (typeCheckᴱ H M)
runtimeWarningᴮ : H B RuntimeErrorᴮ H B Warningᴮ H (typeCheckᴮ H B)
runtimeWarningᴱ H (var x) UnboundVariable = UnboundVariable refl
runtimeWarningᴱ H (val (addr a)) (SEGV p) = UnallocatedAddress p
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) with typeOf-val-not-none w
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | ok q = FunctionCallMismatch (λ r p (mustBeFunction H v (λ r q (trans r r))))
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | warning W = app₂ W
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) = FunctionCallMismatch (any-src-≮: (isntFunction H v p))
runtimeWarningᴱ H (M $ N) (app₁ err) = app₁ (runtimeWarningᴱ H M err)
runtimeWarningᴱ H (M $ N) (app₂ err) = app₂ (runtimeWarningᴱ H N err)
runtimeWarningᴱ H (block var b T is B end) (block err) = block₁ (runtimeWarningᴮ H B err)
@ -469,6 +487,6 @@ runtimeWarningᴮ H (local var x ∈ T ← M ∙ B) (local err) = local₁ (runt
runtimeWarningᴮ H (return M B) (return err) = return (runtimeWarningᴱ H M err)
wellTypedProgramsDontGoWrong : H B B (∅ᴴ B ⟶* B H) (RuntimeErrorᴮ H B) Warningᴮ ∅ᴴ (typeCheckᴮ ∅ᴴ B)
wellTypedProgramsDontGoWrong H B B t err with reflect* ∅ᴴ B t (block (runtimeWarningᴮ H B err))
wellTypedProgramsDontGoWrong H B B t err | heap (addr a refl ())
wellTypedProgramsDontGoWrong H B B t err | block W = W
wellTypedProgramsDontGoWrong H B B t err with reflect* ∅ᴴ B t {!!}
wellTypedProgramsDontGoWrong H B B t err | Right (addr a refl ())
wellTypedProgramsDontGoWrong H B B t err | Left W = W

View file

@ -8,7 +8,7 @@ open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Bool using (Bool; true; false)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import FFI.Data.Either using (Either)
open import Luau.TypeCheck(m) using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; ⊢ᴼ_; ⊢ᴴ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; nil; var; addr; number; bool; string; app; function; block; binexp; done; return; local; nothing; orNone; tgtBinOp)
open import Luau.TypeCheck(m) using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; ⊢ᴼ_; ⊢ᴴ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; nil; var; addr; number; bool; string; app; function; block; binexp; done; return; local; nothing; orAny; tgtBinOp)
open import Luau.Syntax using (Block; Expr; Value; BinaryOperator; yes; nil; addr; number; bool; string; val; var; binexp; _$_; function_is_end; block_is_end; _∙_; return; done; local_←_; _⟨_⟩; _⟨_⟩∈_; var_∈_; name; fun; arg; +; -; *; /; <; >; ==; ~=; <=; >=)
open import Luau.Type using (Type; nil; any; none; number; boolean; string; _⇒_; tgt)
open import Luau.RuntimeType using (RuntimeType; nil; number; function; string; valueType)
@ -42,8 +42,8 @@ typeOfⱽ H (string x) = just string
typeOfᴱ : Heap yes VarCtxt (Expr yes) Type
typeOfᴮ : Heap yes VarCtxt (Block yes) Type
typeOfᴱ H Γ (var x) = orNone(Γ [ x ]ⱽ)
typeOfᴱ H Γ (val v) = orNone(typeOfⱽ H v)
typeOfᴱ H Γ (var x) = orAny(Γ [ x ]ⱽ)
typeOfᴱ H Γ (val v) = orAny(typeOfⱽ H v)
typeOfᴱ H Γ (M $ N) = tgt(typeOfᴱ H Γ M)
typeOfᴱ H Γ (function f var x S ⟩∈ T is B end) = S T
typeOfᴱ H Γ (block var b T is B end) = T
@ -64,17 +64,17 @@ mustBeFunction H Γ (string x) p = CONTRADICTION (p refl)
mustBeNumber : H Γ v (typeOfᴱ H Γ (val v) number) (valueType(v) number)
mustBeNumber H Γ (addr a) p with remember (H [ a ]ᴴ)
mustBeNumber H Γ (addr a) p | (just O , q) with trans (cong orNone (cong typeOfᴹᴼ (sym q))) p
mustBeNumber H Γ (addr a) p | (just O , q) with trans (cong orAny (cong typeOfᴹᴼ (sym q))) p
mustBeNumber H Γ (addr a) p | (just function f var x T ⟩∈ U is B end , q) | ()
mustBeNumber H Γ (addr a) p | (nothing , q) with trans (cong orNone (cong typeOfᴹᴼ (sym q))) p
mustBeNumber H Γ (addr a) p | (nothing , q) with trans (cong orAny (cong typeOfᴹᴼ (sym q))) p
mustBeNumber H Γ (addr a) p | nothing , q | ()
mustBeNumber H Γ (number n) p = refl
mustBeString : H Γ v (typeOfᴱ H Γ (val v) string) (valueType(v) string)
mustBeString H Γ (addr a) p with remember (H [ a ]ᴴ)
mustBeString H Γ (addr a) p | (just O , q) with trans (cong orNone (cong typeOfᴹᴼ (sym q))) p
mustBeString H Γ (addr a) p | (just O , q) with trans (cong orAny (cong typeOfᴹᴼ (sym q))) p
mustBeString H Γ (addr a) p | (just function f var x T ⟩∈ U is B end , q) | ()
mustBeString H Γ (addr a) p | (nothing , q) with trans (cong orNone (cong typeOfᴹᴼ (sym q))) p
mustBeString H Γ (addr a) p | (nothing , q) with trans (cong orAny (cong typeOfᴹᴼ (sym q))) p
mustBeString H Γ (addr a) p | (nothing , q) | ()
mustBeString H Γ (string x) p = refl
@ -83,7 +83,7 @@ typeCheckᴮ : ∀ H Γ B → (Γ ⊢ᴮ B ∈ (typeOfᴮ H Γ B))
typeCheckᴱ H Γ (var x) = var refl
typeCheckᴱ H Γ (val nil) = nil
typeCheckᴱ H Γ (val (addr a)) = addr (orNone (typeOfᴹᴼ (H [ a ]ᴴ)))
typeCheckᴱ H Γ (val (addr a)) = addr (orAny (typeOfᴹᴼ (H [ a ]ᴴ)))
typeCheckᴱ H Γ (val (number n)) = number
typeCheckᴱ H Γ (val (bool b)) = bool
typeCheckᴱ H Γ (val (string x)) = string
@ -109,4 +109,4 @@ typeCheckᴴᴱ H Γ M = (typeCheckᴴ H , typeCheckᴱ H Γ M)
typeCheckᴴᴮ : H Γ M (Γ ⊢ᴴᴮ H M typeOfᴮ H Γ M)
typeCheckᴴᴮ H Γ M = (typeCheckᴴ H , typeCheckᴮ H Γ M)