Merge branch 'upstream' into merge

This commit is contained in:
Vyacheslav Egorov 2023-03-03 15:53:22 +02:00
commit ac9718e31a
99 changed files with 3382 additions and 1580 deletions

View file

@ -0,0 +1,75 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Def.h"
#include "Luau/NotNull.h"
#include "Luau/Variant.h"
#include <string>
#include <optional>
namespace Luau
{
using NullableBreadcrumbId = const struct Breadcrumb*;
using BreadcrumbId = NotNull<const struct Breadcrumb>;
struct FieldMetadata
{
std::string prop;
};
struct SubscriptMetadata
{
BreadcrumbId key;
};
using Metadata = Variant<FieldMetadata, SubscriptMetadata>;
struct Breadcrumb
{
NullableBreadcrumbId previous;
DefId def;
std::optional<Metadata> metadata;
std::vector<BreadcrumbId> children;
};
inline Breadcrumb* asMutable(NullableBreadcrumbId breadcrumb)
{
LUAU_ASSERT(breadcrumb);
return const_cast<Breadcrumb*>(breadcrumb);
}
template<typename T>
const T* getMetadata(NullableBreadcrumbId breadcrumb)
{
if (!breadcrumb || !breadcrumb->metadata)
return nullptr;
return get_if<T>(&*breadcrumb->metadata);
}
struct BreadcrumbArena
{
TypedAllocator<Breadcrumb> allocator;
template<typename... Args>
BreadcrumbId add(NullableBreadcrumbId previous, DefId def, Args&&... args)
{
Breadcrumb* bc = allocator.allocate(Breadcrumb{previous, def, std::forward<Args>(args)...});
if (previous)
asMutable(previous)->children.push_back(NotNull{bc});
return NotNull{bc};
}
template<typename T, typename... Args>
BreadcrumbId emplace(NullableBreadcrumbId previous, DefId def, Args&&... args)
{
Breadcrumb* bc = allocator.allocate(Breadcrumb{previous, def, Metadata{T{std::forward<Args>(args)...}}});
if (previous)
asMutable(previous)->children.push_back(NotNull{bc});
return NotNull{bc};
}
};
} // namespace Luau

View file

@ -2,7 +2,6 @@
#pragma once
#include "Luau/Ast.h" // Used for some of the enumerations
#include "Luau/Def.h"
#include "Luau/DenseHash.h"
#include "Luau/NotNull.h"
#include "Luau/Type.h"

View file

@ -224,7 +224,7 @@ struct ConstraintGraphBuilder
* @param inTypeArguments whether we are resolving a type that's contained within type arguments, `<...>`.
* @return the type of the AST annotation.
**/
TypeId resolveType(const ScopePtr& scope, AstType* ty, bool inTypeArguments);
TypeId resolveType(const ScopePtr& scope, AstType* ty, bool inTypeArguments, bool replaceErrorWithFresh = false);
/**
* Resolves a type pack from its AST annotation.
@ -233,7 +233,7 @@ struct ConstraintGraphBuilder
* @param inTypeArguments whether we are resolving a type that's contained within type arguments, `<...>`.
* @return the type pack of the AST annotation.
**/
TypePackId resolveTypePack(const ScopePtr& scope, AstTypePack* tp, bool inTypeArguments);
TypePackId resolveTypePack(const ScopePtr& scope, AstTypePack* tp, bool inTypeArguments, bool replaceErrorWithFresh = false);
/**
* Resolves a type pack from its AST annotation.
@ -242,7 +242,7 @@ struct ConstraintGraphBuilder
* @param inTypeArguments whether we are resolving a type that's contained within type arguments, `<...>`.
* @return the type pack of the AST annotation.
**/
TypePackId resolveTypePack(const ScopePtr& scope, const AstTypeList& list, bool inTypeArguments);
TypePackId resolveTypePack(const ScopePtr& scope, const AstTypeList& list, bool inTypeArguments, bool replaceErrorWithFresh = false);
/**
* Creates generic types given a list of AST definitions, resolving default
@ -282,10 +282,17 @@ struct ConstraintGraphBuilder
* initial scan of the AST and note what globals are defined.
*/
void prepopulateGlobalScope(const ScopePtr& globalScope, AstStatBlock* program);
/** Given a function type annotation, return a vector describing the expected types of the calls to the function
* For example, calling a function with annotation ((number) -> string & ((string) -> number))
* yields a vector of size 1, with value: [number | string]
*/
std::vector<std::optional<TypeId>> getExpectedCallTypesForFunctionOverloads(const TypeId fnType);
};
/** Borrow a vector of pointers from a vector of owning pointers to constraints.
*/
std::vector<NotNull<Constraint>> borrowConstraints(const std::vector<ConstraintPtr>& constraints);
} // namespace Luau

View file

@ -132,8 +132,8 @@ struct ConstraintSolver
bool tryDispatchIterableFunction(
TypeId nextTy, TypeId tableTy, TypeId firstIndexTy, const IterableConstraint& c, NotNull<const Constraint> constraint, bool force);
std::optional<TypeId> lookupTableProp(TypeId subjectType, const std::string& propName);
std::optional<TypeId> lookupTableProp(TypeId subjectType, const std::string& propName, std::unordered_set<TypeId>& seen);
std::pair<std::vector<TypeId>, std::optional<TypeId>> lookupTableProp(TypeId subjectType, const std::string& propName);
std::pair<std::vector<TypeId>, std::optional<TypeId>> lookupTableProp(TypeId subjectType, const std::string& propName, std::unordered_set<TypeId>& seen);
void block(NotNull<const Constraint> target, NotNull<const Constraint> constraint);
/**

View file

@ -3,6 +3,7 @@
// Do not include LValue. It should never be used here.
#include "Luau/Ast.h"
#include "Luau/Breadcrumb.h"
#include "Luau/DenseHash.h"
#include "Luau/Def.h"
#include "Luau/Symbol.h"
@ -17,16 +18,14 @@ struct DataFlowGraph
DataFlowGraph(DataFlowGraph&&) = default;
DataFlowGraph& operator=(DataFlowGraph&&) = default;
// TODO: AstExprLocal, AstExprGlobal, and AstLocal* are guaranteed never to return nullopt.
// We leave them to return an optional as we build it out, but the end state is for them to return a non-optional DefId.
std::optional<DefId> getDef(const AstExpr* expr) const;
std::optional<DefId> getDef(const AstLocal* local) const;
NullableBreadcrumbId getBreadcrumb(const AstExpr* expr) const;
/// Retrieve the Def that corresponds to the given Symbol.
///
/// We do not perform dataflow analysis on globals, so this function always
/// yields nullopt when passed a global Symbol.
std::optional<DefId> getDef(const Symbol& symbol) const;
BreadcrumbId getBreadcrumb(const AstLocal* local) const;
BreadcrumbId getBreadcrumb(const AstExprLocal* local) const;
BreadcrumbId getBreadcrumb(const AstExprGlobal* global) const;
BreadcrumbId getBreadcrumb(const AstStatDeclareGlobal* global) const;
BreadcrumbId getBreadcrumb(const AstStatDeclareFunction* func) const;
private:
DataFlowGraph() = default;
@ -34,9 +33,17 @@ private:
DataFlowGraph(const DataFlowGraph&) = delete;
DataFlowGraph& operator=(const DataFlowGraph&) = delete;
DefArena arena;
DenseHashMap<const AstExpr*, const Def*> astDefs{nullptr};
DenseHashMap<const AstLocal*, const Def*> localDefs{nullptr};
DefArena defs;
BreadcrumbArena breadcrumbs;
DenseHashMap<const AstExpr*, NullableBreadcrumbId> astBreadcrumbs{nullptr};
// Sometimes we don't have the AstExprLocal* but we have AstLocal*, and sometimes we need to extract that DefId.
DenseHashMap<const AstLocal*, NullableBreadcrumbId> localBreadcrumbs{nullptr};
// There's no AstStatDeclaration, and it feels useless to introduce it just to enforce an invariant in one place.
// All keys in this maps are really only statements that ambiently declares a symbol.
DenseHashMap<const AstStat*, NullableBreadcrumbId> declaredBreadcrumbs{nullptr};
friend struct DataFlowGraphBuilder;
};
@ -44,12 +51,11 @@ private:
struct DfgScope
{
DfgScope* parent;
DenseHashMap<Symbol, const Def*> bindings{Symbol{}};
};
DenseHashMap<Symbol, NullableBreadcrumbId> bindings{Symbol{}};
DenseHashMap<const Def*, std::unordered_map<std::string, NullableBreadcrumbId>> props{nullptr};
struct ExpressionFlowGraph
{
std::optional<DefId> def;
NullableBreadcrumbId lookup(Symbol symbol) const;
NullableBreadcrumbId lookup(DefId def, const std::string& key) const;
};
// Currently unsound. We do not presently track the control flow of the program.
@ -65,23 +71,19 @@ private:
DataFlowGraphBuilder& operator=(const DataFlowGraphBuilder&) = delete;
DataFlowGraph graph;
NotNull<DefArena> arena{&graph.arena};
struct InternalErrorReporter* handle;
NotNull<DefArena> defs{&graph.defs};
NotNull<BreadcrumbArena> breadcrumbs{&graph.breadcrumbs};
struct InternalErrorReporter* handle = nullptr;
DfgScope* moduleScope = nullptr;
std::vector<std::unique_ptr<DfgScope>> scopes;
// Does not belong in DataFlowGraphBuilder, but the old solver allows properties to escape the scope they were defined in,
// so we will need to be able to emulate this same behavior here too. We can kill this once we have better flow sensitivity.
DenseHashMap<const Def*, std::unordered_map<std::string, const Def*>> props{nullptr};
DfgScope* childScope(DfgScope* scope);
std::optional<DefId> use(DfgScope* scope, Symbol symbol, AstExpr* e);
DefId use(DefId def, AstExprIndexName* e);
void visit(DfgScope* scope, AstStatBlock* b);
void visitBlockWithoutChildScope(DfgScope* scope, AstStatBlock* b);
// TODO: visit type aliases
void visit(DfgScope* scope, AstStat* s);
void visit(DfgScope* scope, AstStatIf* i);
void visit(DfgScope* scope, AstStatWhile* w);
@ -97,24 +99,52 @@ private:
void visit(DfgScope* scope, AstStatCompoundAssign* c);
void visit(DfgScope* scope, AstStatFunction* f);
void visit(DfgScope* scope, AstStatLocalFunction* l);
void visit(DfgScope* scope, AstStatTypeAlias* t);
void visit(DfgScope* scope, AstStatDeclareGlobal* d);
void visit(DfgScope* scope, AstStatDeclareFunction* d);
void visit(DfgScope* scope, AstStatDeclareClass* d);
void visit(DfgScope* scope, AstStatError* error);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExpr* e);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprLocal* l);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprGlobal* g);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprCall* c);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprIndexName* i);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprIndexExpr* i);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprFunction* f);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprTable* t);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprUnary* u);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprBinary* b);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprTypeAssertion* t);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprIfElse* i);
ExpressionFlowGraph visitExpr(DfgScope* scope, AstExprInterpString* i);
BreadcrumbId visitExpr(DfgScope* scope, AstExpr* e);
BreadcrumbId visitExpr(DfgScope* scope, AstExprLocal* l);
BreadcrumbId visitExpr(DfgScope* scope, AstExprGlobal* g);
BreadcrumbId visitExpr(DfgScope* scope, AstExprCall* c);
BreadcrumbId visitExpr(DfgScope* scope, AstExprIndexName* i);
BreadcrumbId visitExpr(DfgScope* scope, AstExprIndexExpr* i);
BreadcrumbId visitExpr(DfgScope* scope, AstExprFunction* f);
BreadcrumbId visitExpr(DfgScope* scope, AstExprTable* t);
BreadcrumbId visitExpr(DfgScope* scope, AstExprUnary* u);
BreadcrumbId visitExpr(DfgScope* scope, AstExprBinary* b);
BreadcrumbId visitExpr(DfgScope* scope, AstExprTypeAssertion* t);
BreadcrumbId visitExpr(DfgScope* scope, AstExprIfElse* i);
BreadcrumbId visitExpr(DfgScope* scope, AstExprInterpString* i);
BreadcrumbId visitExpr(DfgScope* scope, AstExprError* error);
// TODO: visitLValue
// TODO: visitTypes (because of typeof which has access to values namespace, needs unreachable scope)
// TODO: visitTypePacks (because of typeof which has access to values namespace, needs unreachable scope)
void visitLValue(DfgScope* scope, AstExpr* e);
void visitLValue(DfgScope* scope, AstExprLocal* l);
void visitLValue(DfgScope* scope, AstExprGlobal* g);
void visitLValue(DfgScope* scope, AstExprIndexName* i);
void visitLValue(DfgScope* scope, AstExprIndexExpr* i);
void visitLValue(DfgScope* scope, AstExprError* e);
void visitType(DfgScope* scope, AstType* t);
void visitType(DfgScope* scope, AstTypeReference* r);
void visitType(DfgScope* scope, AstTypeTable* t);
void visitType(DfgScope* scope, AstTypeFunction* f);
void visitType(DfgScope* scope, AstTypeTypeof* t);
void visitType(DfgScope* scope, AstTypeUnion* u);
void visitType(DfgScope* scope, AstTypeIntersection* i);
void visitType(DfgScope* scope, AstTypeError* error);
void visitTypePack(DfgScope* scope, AstTypePack* p);
void visitTypePack(DfgScope* scope, AstTypePackExplicit* e);
void visitTypePack(DfgScope* scope, AstTypePackVariadic* v);
void visitTypePack(DfgScope* scope, AstTypePackGeneric* g);
void visitTypeList(DfgScope* scope, AstTypeList l);
void visitGenerics(DfgScope* scope, AstArray<AstGenericType> g);
void visitGenericPacks(DfgScope* scope, AstArray<AstGenericTypePack> g);
};
} // namespace Luau

View file

@ -14,12 +14,6 @@ namespace Luau
struct Def;
using DefId = NotNull<const Def>;
struct FieldMetadata
{
DefId parent;
std::string propName;
};
/**
* A cell is a "single-object" value.
*
@ -29,7 +23,6 @@ struct FieldMetadata
*/
struct Cell
{
std::optional<struct FieldMetadata> field;
};
/**
@ -83,7 +76,6 @@ struct DefArena
TypedAllocator<Def> allocator;
DefId freshCell();
DefId freshCell(DefId parent, const std::string& prop);
// TODO: implement once we have cases where we need to merge in definitions
// DefId phi(const std::vector<DefId>& defs);
};

View file

@ -162,8 +162,7 @@ struct Frontend
ScopePtr getGlobalScope();
private:
ModulePtr check(const SourceModule& sourceModule, Mode mode, std::vector<RequireCycle> requireCycles,
bool forAutocomplete = false);
ModulePtr check(const SourceModule& sourceModule, Mode mode, std::vector<RequireCycle> requireCycles, bool forAutocomplete = false, bool recordJsonLog = false);
std::pair<SourceNode*, SourceModule*> getSourceNode(const ModuleName& name);
SourceModule parse(const ModuleName& name, std::string_view src, const ParseOptions& parseOptions);
@ -202,16 +201,12 @@ private:
ScopePtr globalScope;
};
ModulePtr check(
const SourceModule& sourceModule,
const std::vector<RequireCycle>& requireCycles,
NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler,
NotNull<ModuleResolver> moduleResolver,
NotNull<FileResolver> fileResolver,
const ScopePtr& globalScope,
NotNull<UnifierSharedState> unifierState,
FrontendOptions options
);
ModulePtr check(const SourceModule& sourceModule, const std::vector<RequireCycle>& requireCycles, NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler, NotNull<ModuleResolver> moduleResolver, NotNull<FileResolver> fileResolver,
const ScopePtr& globalScope, FrontendOptions options);
ModulePtr check(const SourceModule& sourceModule, const std::vector<RequireCycle>& requireCycles, NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler, NotNull<ModuleResolver> moduleResolver, NotNull<FileResolver> fileResolver,
const ScopePtr& globalScope, FrontendOptions options, bool recordJsonLog);
} // namespace Luau

View file

@ -1,13 +1,15 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Def.h"
#include "Luau/NotNull.h"
#include "Luau/TypedAllocator.h"
#include "Luau/Variant.h"
namespace Luau
{
using BreadcrumbId = NotNull<const struct Breadcrumb>;
struct Type;
using TypeId = const Type*;
@ -50,7 +52,7 @@ struct Equivalence
struct Proposition
{
DefId def;
BreadcrumbId breadcrumb;
TypeId discriminantTy;
};
@ -67,7 +69,7 @@ struct RefinementArena
RefinementId conjunction(RefinementId lhs, RefinementId rhs);
RefinementId disjunction(RefinementId lhs, RefinementId rhs);
RefinementId equivalence(RefinementId lhs, RefinementId rhs);
RefinementId proposition(DefId def, TypeId discriminantTy);
RefinementId proposition(BreadcrumbId breadcrumb, TypeId discriminantTy);
private:
TypedAllocator<Refinement> allocator;

View file

@ -1,6 +1,7 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Def.h"
#include "Luau/Location.h"
#include "Luau/NotNull.h"
#include "Luau/Type.h"

View file

@ -4,9 +4,7 @@
#include "Luau/Ast.h"
#include "Luau/Common.h"
#include "Luau/Refinement.h"
#include "Luau/DataFlowGraph.h"
#include "Luau/DenseHash.h"
#include "Luau/Def.h"
#include "Luau/NotNull.h"
#include "Luau/Predicate.h"
#include "Luau/Unifiable.h"
@ -662,6 +660,7 @@ public:
const TypeId functionType;
const TypeId classType;
const TypeId tableType;
const TypeId emptyTableType;
const TypeId trueType;
const TypeId falseType;
const TypeId anyType;

View file

@ -54,8 +54,8 @@ struct TypeReductionOptions
struct TypeReduction
{
explicit TypeReduction(
NotNull<TypeArena> arena, NotNull<BuiltinTypes> builtinTypes, NotNull<InternalErrorReporter> handle, const TypeReductionOptions& opts = {});
explicit TypeReduction(NotNull<TypeArena> arena, NotNull<BuiltinTypes> builtinTypes, NotNull<struct InternalErrorReporter> handle,
const TypeReductionOptions& opts = {});
TypeReduction(const TypeReduction&) = delete;
TypeReduction& operator=(const TypeReduction&) = delete;

View file

@ -27,7 +27,8 @@ std::pair<size_t, std::optional<size_t>> getParameterExtents(const TxnLog* log,
// Extend the provided pack to at least `length` types.
// Returns a temporary TypePack that contains those types plus a tail.
TypePack extendTypePack(TypeArena& arena, NotNull<BuiltinTypes> builtinTypes, TypePackId pack, size_t length);
TypePack extendTypePack(
TypeArena& arena, NotNull<BuiltinTypes> builtinTypes, TypePackId pack, size_t length, std::vector<std::optional<TypeId>> overrides = {});
/**
* Reduces a union by decomposing to the any/error type if it appears in the

View file

@ -61,8 +61,9 @@ struct Unifier
ErrorVec errors;
Location location;
Variance variance = Covariant;
bool normalize; // Normalize unions and intersections if necessary
bool useScopes = false; // If true, we use the scope hierarchy rather than TypeLevels
bool normalize = true; // Normalize unions and intersections if necessary
bool checkInhabited = true; // Normalize types to check if they are inhabited
bool useScopes = false; // If true, we use the scope hierarchy rather than TypeLevels
CountMismatch::Context ctx = CountMismatch::Arg;
UnifierSharedState& sharedState;
@ -155,5 +156,6 @@ private:
};
void promoteTypeLevels(TxnLog& log, const TypeArena* arena, TypeLevel minLevel, Scope* outerScope, bool useScope, TypePackId tp);
std::optional<TypeError> hasUnificationTooComplex(const ErrorVec& errors);
} // namespace Luau

View file

@ -16,6 +16,7 @@
LUAU_FASTFLAGVARIABLE(LuauCompleteTableKeysBetter, false);
LUAU_FASTFLAGVARIABLE(LuauFixAutocompleteInWhile, false);
LUAU_FASTFLAGVARIABLE(LuauFixAutocompleteInFor, false);
LUAU_FASTFLAGVARIABLE(LuauAutocompleteSkipNormalization, false);
static const std::unordered_set<std::string> kStatementStartingKeywords = {
"while", "if", "local", "repeat", "function", "do", "for", "return", "break", "continue", "type", "export"};
@ -145,6 +146,13 @@ static bool checkTypeMatch(TypeId subTy, TypeId superTy, NotNull<Scope> scope, T
Normalizer normalizer{typeArena, builtinTypes, NotNull{&unifierState}};
Unifier unifier(NotNull<Normalizer>{&normalizer}, Mode::Strict, scope, Location(), Variance::Covariant);
if (FFlag::LuauAutocompleteSkipNormalization)
{
// Cost of normalization can be too high for autocomplete response time requirements
unifier.normalize = false;
unifier.checkInhabited = false;
}
return unifier.canUnify(subTy, superTy).empty();
}
@ -314,7 +322,7 @@ static void autocompleteProps(const Module& module, TypeArena* typeArena, NotNul
{
autocompleteProps(module, typeArena, builtinTypes, rootTy, mt->table, indexType, nodes, result, seen);
if (auto mtable = get<TableType>(mt->metatable))
if (auto mtable = get<TableType>(follow(mt->metatable)))
fillMetatableProps(mtable);
}
else if (auto i = get<IntersectionType>(ty))
@ -1528,9 +1536,9 @@ static AutocompleteResult autocomplete(const SourceModule& sourceModule, const M
else if (!statIf->thenLocation || statIf->thenLocation->containsClosed(position))
return {{{"then", AutocompleteEntry{AutocompleteEntryKind::Keyword}}}, ancestry, AutocompleteContext::Keyword};
}
else if (AstStatIf* statIf = extractStat<AstStatIf>(ancestry);
statIf && (!statIf->thenLocation || statIf->thenLocation->containsClosed(position)) &&
(statIf->condition && !statIf->condition->location.containsClosed(position)))
else if (AstStatIf* statIf = extractStat<AstStatIf>(ancestry); statIf &&
(!statIf->thenLocation || statIf->thenLocation->containsClosed(position)) &&
(statIf->condition && !statIf->condition->location.containsClosed(position)))
{
AutocompleteEntryMap ret;
ret["then"] = {AutocompleteEntryKind::Keyword};

View file

@ -15,6 +15,8 @@
#include <algorithm>
LUAU_FASTFLAGVARIABLE(LuauDeprecateTableGetnForeach, false)
/** FIXME: Many of these type definitions are not quite completely accurate.
*
* Some of them require richer generics than we have. For instance, we do not yet have a way to talk
@ -335,6 +337,14 @@ void registerBuiltinGlobals(TypeChecker& typeChecker)
ttv->props["freeze"] = makeProperty(makeFunction(arena, std::nullopt, {tabTy}, {tabTy}), "@luau/global/table.freeze");
ttv->props["clone"] = makeProperty(makeFunction(arena, std::nullopt, {tabTy}, {tabTy}), "@luau/global/table.clone");
if (FFlag::LuauDeprecateTableGetnForeach)
{
ttv->props["getn"].deprecated = true;
ttv->props["getn"].deprecatedSuggestion = "#";
ttv->props["foreach"].deprecated = true;
ttv->props["foreachi"].deprecated = true;
}
attachMagicFunction(ttv->props["pack"].type, magicFunctionPack);
attachDcrMagicFunction(ttv->props["pack"].type, dcrMagicFunctionPack);
}
@ -428,6 +438,14 @@ void registerBuiltinGlobals(Frontend& frontend)
ttv->props["freeze"] = makeProperty(makeFunction(arena, std::nullopt, {tabTy}, {tabTy}), "@luau/global/table.freeze");
ttv->props["clone"] = makeProperty(makeFunction(arena, std::nullopt, {tabTy}, {tabTy}), "@luau/global/table.clone");
if (FFlag::LuauDeprecateTableGetnForeach)
{
ttv->props["getn"].deprecated = true;
ttv->props["getn"].deprecatedSuggestion = "#";
ttv->props["foreach"].deprecated = true;
ttv->props["foreachi"].deprecated = true;
}
attachMagicFunction(ttv->props["pack"].type, magicFunctionPack);
}

View file

@ -2,11 +2,13 @@
#include "Luau/ConstraintGraphBuilder.h"
#include "Luau/Ast.h"
#include "Luau/Breadcrumb.h"
#include "Luau/Common.h"
#include "Luau/Constraint.h"
#include "Luau/DcrLogger.h"
#include "Luau/ModuleResolver.h"
#include "Luau/RecursionCounter.h"
#include "Luau/Refinement.h"
#include "Luau/Scope.h"
#include "Luau/TypeUtils.h"
#include "Luau/Type.h"
@ -14,7 +16,6 @@
#include <algorithm>
LUAU_FASTINT(LuauCheckRecursionLimit);
LUAU_FASTFLAG(DebugLuauLogSolverToJson);
LUAU_FASTFLAG(DebugLuauMagicTypes);
LUAU_FASTFLAG(LuauNegatedClassTypes);
LUAU_FASTFLAG(SupportTypeAliasGoToDeclaration);
@ -145,9 +146,6 @@ ConstraintGraphBuilder::ConstraintGraphBuilder(const ModuleName& moduleName, Mod
, globalScope(globalScope)
, logger(logger)
{
if (FFlag::DebugLuauLogSolverToJson)
LUAU_ASSERT(logger);
LUAU_ASSERT(module);
}
@ -186,29 +184,42 @@ NotNull<Constraint> ConstraintGraphBuilder::addConstraint(const ScopePtr& scope,
return NotNull{constraints.emplace_back(std::move(c)).get()};
}
static void unionRefinements(const std::unordered_map<DefId, TypeId>& lhs, const std::unordered_map<DefId, TypeId>& rhs,
std::unordered_map<DefId, TypeId>& dest, NotNull<TypeArena> arena)
struct RefinementPartition
{
for (auto [def, ty] : lhs)
// Types that we want to intersect against the type of the expression.
std::vector<TypeId> discriminantTypes;
// Sometimes the type we're discriminating against is implicitly nil.
bool shouldAppendNilType = false;
};
using RefinementContext = std::unordered_map<DefId, RefinementPartition>;
static void unionRefinements(const RefinementContext& lhs, const RefinementContext& rhs, RefinementContext& dest, NotNull<TypeArena> arena)
{
for (auto& [def, partition] : lhs)
{
auto rhsIt = rhs.find(def);
if (rhsIt == rhs.end())
continue;
std::vector<TypeId> discriminants{{ty, rhsIt->second}};
LUAU_ASSERT(!partition.discriminantTypes.empty());
LUAU_ASSERT(!rhsIt->second.discriminantTypes.empty());
if (auto destIt = dest.find(def); destIt != dest.end())
discriminants.push_back(destIt->second);
TypeId leftDiscriminantTy =
partition.discriminantTypes.size() == 1 ? partition.discriminantTypes[0] : arena->addType(IntersectionType{partition.discriminantTypes});
dest[def] = arena->addType(UnionType{std::move(discriminants)});
TypeId rightDiscriminantTy = rhsIt->second.discriminantTypes.size() == 1 ? rhsIt->second.discriminantTypes[0]
: arena->addType(IntersectionType{rhsIt->second.discriminantTypes});
dest[def].discriminantTypes.push_back(arena->addType(UnionType{{leftDiscriminantTy, rightDiscriminantTy}}));
dest[def].shouldAppendNilType |= partition.shouldAppendNilType || rhsIt->second.shouldAppendNilType;
}
}
static void computeRefinement(const ScopePtr& scope, RefinementId refinement, std::unordered_map<DefId, TypeId>* refis, bool sense,
NotNull<TypeArena> arena, bool eq, std::vector<ConstraintV>* constraints)
static void computeRefinement(const ScopePtr& scope, RefinementId refinement, RefinementContext* refis, bool sense, NotNull<TypeArena> arena, bool eq,
std::vector<ConstraintV>* constraints)
{
using RefinementMap = std::unordered_map<DefId, TypeId>;
if (!refinement)
return;
else if (auto variadic = get<Variadic>(refinement))
@ -220,8 +231,8 @@ static void computeRefinement(const ScopePtr& scope, RefinementId refinement, st
return computeRefinement(scope, negation->refinement, refis, !sense, arena, eq, constraints);
else if (auto conjunction = get<Conjunction>(refinement))
{
RefinementMap lhsRefis;
RefinementMap rhsRefis;
RefinementContext lhsRefis;
RefinementContext rhsRefis;
computeRefinement(scope, conjunction->lhs, sense ? refis : &lhsRefis, sense, arena, eq, constraints);
computeRefinement(scope, conjunction->rhs, sense ? refis : &rhsRefis, sense, arena, eq, constraints);
@ -231,8 +242,8 @@ static void computeRefinement(const ScopePtr& scope, RefinementId refinement, st
}
else if (auto disjunction = get<Disjunction>(refinement))
{
RefinementMap lhsRefis;
RefinementMap rhsRefis;
RefinementContext lhsRefis;
RefinementContext rhsRefis;
computeRefinement(scope, disjunction->lhs, sense ? &lhsRefis : refis, sense, arena, eq, constraints);
computeRefinement(scope, disjunction->rhs, sense ? &rhsRefis : refis, sense, arena, eq, constraints);
@ -256,50 +267,59 @@ static void computeRefinement(const ScopePtr& scope, RefinementId refinement, st
constraints->push_back(SingletonOrTopTypeConstraint{discriminantTy, proposition->discriminantTy, !sense});
}
if (auto it = refis->find(proposition->def); it != refis->end())
(*refis)[proposition->def] = arena->addType(IntersectionType{{discriminantTy, it->second}});
else
(*refis)[proposition->def] = discriminantTy;
RefinementContext uncommittedRefis;
uncommittedRefis[proposition->breadcrumb->def].discriminantTypes.push_back(discriminantTy);
// When the top-level expression is `t[x]`, we want to refine it into `nil`, not `never`.
if ((sense || !eq) && getMetadata<SubscriptMetadata>(proposition->breadcrumb))
uncommittedRefis[proposition->breadcrumb->def].shouldAppendNilType = true;
for (NullableBreadcrumbId current = proposition->breadcrumb; current && current->previous; current = current->previous)
{
LUAU_ASSERT(get<Cell>(current->def));
// If this current breadcrumb has no metadata, it's no-op for the purpose of building a discriminant type.
if (!current->metadata)
continue;
else if (auto field = getMetadata<FieldMetadata>(current))
{
TableType::Props props{{field->prop, Property{discriminantTy}}};
discriminantTy = arena->addType(TableType{std::move(props), std::nullopt, TypeLevel{}, scope.get(), TableState::Sealed});
uncommittedRefis[current->previous->def].discriminantTypes.push_back(discriminantTy);
}
}
// And now it's time to commit it.
for (auto& [def, partition] : uncommittedRefis)
{
for (TypeId discriminantTy : partition.discriminantTypes)
(*refis)[def].discriminantTypes.push_back(discriminantTy);
(*refis)[def].shouldAppendNilType |= partition.shouldAppendNilType;
}
}
}
static std::pair<DefId, TypeId> computeDiscriminantType(NotNull<TypeArena> arena, const ScopePtr& scope, DefId def, TypeId discriminantTy)
{
LUAU_ASSERT(get<Cell>(def));
while (const Cell* current = get<Cell>(def))
{
if (!current->field)
break;
TableType::Props props{{current->field->propName, Property{discriminantTy}}};
discriminantTy = arena->addType(TableType{std::move(props), std::nullopt, TypeLevel{}, scope.get(), TableState::Sealed});
def = current->field->parent;
current = get<Cell>(def);
}
return {def, discriminantTy};
}
void ConstraintGraphBuilder::applyRefinements(const ScopePtr& scope, Location location, RefinementId refinement)
{
if (!refinement)
return;
std::unordered_map<DefId, TypeId> refinements;
RefinementContext refinements;
std::vector<ConstraintV> constraints;
computeRefinement(scope, refinement, &refinements, /*sense*/ true, arena, /*eq*/ false, &constraints);
for (auto [def, discriminantTy] : refinements)
for (auto& [def, partition] : refinements)
{
auto [def2, discriminantTy2] = computeDiscriminantType(arena, scope, def, discriminantTy);
std::optional<TypeId> defTy = scope->lookup(def2);
if (!defTy)
ice->ice("Every DefId must map to a type!");
if (std::optional<TypeId> defTy = scope->lookup(def))
{
TypeId ty = *defTy;
if (partition.shouldAppendNilType)
ty = arena->addType(UnionType{{ty, builtinTypes->nilType}});
TypeId resultTy = arena->addType(IntersectionType{{*defTy, discriminantTy2}});
scope->dcrRefinements[def2] = resultTy;
partition.discriminantTypes.push_back(ty);
scope->dcrRefinements[def] = arena->addType(IntersectionType{std::move(partition.discriminantTypes)});
}
}
for (auto& c : constraints)
@ -321,7 +341,7 @@ void ConstraintGraphBuilder::visit(AstStatBlock* block)
visitBlockWithoutChildScope(scope, block);
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
logger->captureGenerationModule(module);
}
@ -543,8 +563,8 @@ void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatLocal* local)
// HACK: In the greedy solver, we say the type state of a variable is the type annotation itself, but
// the actual type state is the corresponding initializer expression (if it exists) or nil otherwise.
if (auto def = dfg->getDef(l))
scope->dcrRefinements[*def] = varTypes[i];
BreadcrumbId bc = dfg->getBreadcrumb(l);
scope->dcrRefinements[bc->def] = varTypes[i];
}
if (local->values.size > 0)
@ -578,8 +598,9 @@ void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatLocal* local)
void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatFor* for_)
{
TypeId annotationTy = builtinTypes->numberType;
if (for_->var->annotation)
resolveType(scope, for_->var->annotation, /* inTypeArguments */ false);
annotationTy = resolveType(scope, for_->var->annotation, /* inTypeArguments */ false);
auto inferNumber = [&](AstExpr* expr) {
if (!expr)
@ -594,7 +615,10 @@ void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatFor* for_)
inferNumber(for_->step);
ScopePtr forScope = childScope(for_, scope);
forScope->bindings[for_->var] = Binding{builtinTypes->numberType, for_->var->location};
forScope->bindings[for_->var] = Binding{annotationTy, for_->var->location};
BreadcrumbId bc = dfg->getBreadcrumb(for_->var);
forScope->dcrRefinements[bc->def] = annotationTy;
visit(forScope, for_->body);
}
@ -613,8 +637,8 @@ void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatForIn* forIn)
loopScope->bindings[var] = Binding{ty, var->location};
variableTypes.push_back(ty);
if (auto def = dfg->getDef(var))
loopScope->dcrRefinements[*def] = ty;
BreadcrumbId bc = dfg->getBreadcrumb(var);
loopScope->dcrRefinements[bc->def] = ty;
}
// It is always ok to provide too few variables, so we give this pack a free tail.
@ -638,10 +662,8 @@ void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatRepeat* repeat)
{
ScopePtr repeatScope = childScope(repeat, scope);
visit(repeatScope, repeat->body);
visitBlockWithoutChildScope(repeatScope, repeat->body);
// The condition does indeed have access to bindings from within the body of
// the loop.
check(repeatScope, repeat->condition);
}
@ -662,6 +684,10 @@ void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatLocalFunction*
FunctionSignature sig = checkFunctionSignature(scope, function->func);
sig.bodyScope->bindings[function->name] = Binding{sig.signature, function->func->location};
BreadcrumbId bc = dfg->getBreadcrumb(function->name);
scope->dcrRefinements[bc->def] = functionType;
sig.bodyScope->dcrRefinements[bc->def] = sig.signature;
Checkpoint start = checkpoint(this);
checkFunctionBody(sig.bodyScope, function->func);
Checkpoint end = checkpoint(this);
@ -697,10 +723,7 @@ void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatFunction* funct
addConstraint(scope, function->name->location, SubtypeConstraint{generalizedType, *existingFunctionTy});
Symbol sym{localName->local};
std::optional<DefId> def = dfg->getDef(sym);
LUAU_ASSERT(def);
scope->bindings[sym].typeId = generalizedType;
scope->dcrRefinements[*def] = generalizedType;
}
else
scope->bindings[localName->local] = Binding{generalizedType, localName->location};
@ -742,6 +765,9 @@ void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatFunction* funct
if (generalizedType == nullptr)
ice->ice("generalizedType == nullptr", function->location);
if (NullableBreadcrumbId bc = dfg->getBreadcrumb(function->name))
scope->dcrRefinements[bc->def] = generalizedType;
checkFunctionBody(sig.bodyScope, function->func);
Checkpoint end = checkpoint(this);
@ -821,19 +847,19 @@ void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatCompoundAssign*
{
// We need to tweak the BinaryConstraint that we emit, so we cannot use the
// strategy of falsifying an AST fragment.
TypeId varId = checkLValue(scope, assign->var);
Inference valueInf = check(scope, assign->value);
TypeId varTy = checkLValue(scope, assign->var);
TypeId valueTy = check(scope, assign->value).ty;
TypeId resultType = arena->addType(BlockedType{});
addConstraint(scope, assign->location,
BinaryConstraint{assign->op, varId, valueInf.ty, resultType, assign, &module->astOriginalCallTypes, &module->astOverloadResolvedTypes});
addConstraint(scope, assign->location, SubtypeConstraint{resultType, varId});
BinaryConstraint{assign->op, varTy, valueTy, resultType, assign, &module->astOriginalCallTypes, &module->astOverloadResolvedTypes});
addConstraint(scope, assign->location, SubtypeConstraint{resultType, varTy});
}
void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatIf* ifStatement)
{
ScopePtr condScope = childScope(ifStatement->condition, scope);
auto [_, refinement] = check(condScope, ifStatement->condition, std::nullopt);
RefinementId refinement = check(condScope, ifStatement->condition, std::nullopt).refinement;
ScopePtr thenScope = childScope(ifStatement->thenbody, scope);
applyRefinements(thenScope, ifStatement->condition->location, refinement);
@ -921,7 +947,10 @@ void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatDeclareGlobal*
Name globalName(global->name.value);
module->declaredGlobals[globalName] = globalTy;
scope->bindings[global->name] = Binding{globalTy, global->location};
rootScope->bindings[global->name] = Binding{globalTy, global->location};
BreadcrumbId bc = dfg->getBreadcrumb(global);
rootScope->dcrRefinements[bc->def] = globalTy;
}
static bool isMetamethod(const Name& name)
@ -1067,6 +1096,9 @@ void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatDeclareFunction
module->declaredGlobals[fnName] = fnType;
scope->bindings[global->name] = Binding{fnType, global->location};
BreadcrumbId bc = dfg->getBreadcrumb(global);
rootScope->dcrRefinements[bc->def] = fnType;
}
void ConstraintGraphBuilder::visit(const ScopePtr& scope, AstStatError* error)
@ -1158,10 +1190,10 @@ InferencePack ConstraintGraphBuilder::checkPack(const ScopePtr& scope, AstExprCa
exprArgs.push_back(indexExpr->expr);
if (auto def = dfg->getDef(indexExpr->expr))
if (auto bc = dfg->getBreadcrumb(indexExpr->expr))
{
TypeId discriminantTy = arena->addType(BlockedType{});
returnRefinements.push_back(refinementArena.proposition(*def, discriminantTy));
returnRefinements.push_back(refinementArena.proposition(NotNull{bc}, discriminantTy));
discriminantTypes.push_back(discriminantTy);
}
else
@ -1172,10 +1204,10 @@ InferencePack ConstraintGraphBuilder::checkPack(const ScopePtr& scope, AstExprCa
{
exprArgs.push_back(arg);
if (auto def = dfg->getDef(arg))
if (auto bc = dfg->getBreadcrumb(arg))
{
TypeId discriminantTy = arena->addType(BlockedType{});
returnRefinements.push_back(refinementArena.proposition(*def, discriminantTy));
returnRefinements.push_back(refinementArena.proposition(NotNull{bc}, discriminantTy));
discriminantTypes.push_back(discriminantTy);
}
else
@ -1186,6 +1218,8 @@ InferencePack ConstraintGraphBuilder::checkPack(const ScopePtr& scope, AstExprCa
TypeId fnType = check(scope, call->func).ty;
Checkpoint fnEndCheckpoint = checkpoint(this);
std::vector<std::optional<TypeId>> expectedTypesForCall = getExpectedCallTypesForFunctionOverloads(fnType);
module->astOriginalCallTypes[call->func] = fnType;
TypePackId expectedArgPack = arena->freshTypePack(scope.get());
@ -1208,9 +1242,9 @@ InferencePack ConstraintGraphBuilder::checkPack(const ScopePtr& scope, AstExprCa
TypePack expectedArgs;
if (!needTail)
expectedArgs = extendTypePack(*arena, builtinTypes, expectedArgPack, exprArgs.size());
expectedArgs = extendTypePack(*arena, builtinTypes, expectedArgPack, exprArgs.size(), expectedTypesForCall);
else
expectedArgs = extendTypePack(*arena, builtinTypes, expectedArgPack, exprArgs.size() - 1);
expectedArgs = extendTypePack(*arena, builtinTypes, expectedArgPack, exprArgs.size() - 1, expectedTypesForCall);
std::vector<TypeId> args;
std::optional<TypePackId> argTail;
@ -1278,9 +1312,9 @@ InferencePack ConstraintGraphBuilder::checkPack(const ScopePtr& scope, AstExprCa
if (AstExprLocal* targetLocal = targetExpr->as<AstExprLocal>())
{
scope->bindings[targetLocal->local].typeId = resultTy;
auto def = dfg->getDef(targetLocal->local);
if (def)
scope->dcrRefinements[*def] = resultTy; // TODO: typestates: track this as an assignment
BreadcrumbId bc = dfg->getBreadcrumb(targetLocal);
scope->dcrRefinements[bc->def] = resultTy; // TODO: typestates: track this as an assignment
}
return InferencePack{arena->addTypePack({resultTy}), {refinementArena.variadic(returnRefinements)}};
@ -1451,36 +1485,35 @@ Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprConstantBo
Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprLocal* local)
{
std::optional<TypeId> resultTy;
auto def = dfg->getDef(local);
if (def)
resultTy = scope->lookup(*def);
BreadcrumbId bc = dfg->getBreadcrumb(local);
if (!resultTy)
{
if (auto ty = scope->lookup(local->local))
resultTy = *ty;
}
if (!resultTy)
return Inference{builtinTypes->errorRecoveryType()}; // TODO: replace with ice, locals should never exist before its definition.
if (def)
return Inference{*resultTy, refinementArena.proposition(*def, builtinTypes->truthyType)};
if (auto ty = scope->lookup(bc->def))
return Inference{*ty, refinementArena.proposition(bc, builtinTypes->truthyType)};
else if (auto ty = scope->lookup(local->local))
return Inference{*ty, refinementArena.proposition(bc, builtinTypes->truthyType)};
else
return Inference{*resultTy};
ice->ice("AstExprLocal came before its declaration?");
}
Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprGlobal* global)
{
if (std::optional<TypeId> ty = scope->lookup(global->name))
return Inference{*ty};
BreadcrumbId bc = dfg->getBreadcrumb(global);
/* prepopulateGlobalScope() has already added all global functions to the environment by this point, so any
* global that is not already in-scope is definitely an unknown symbol.
*/
reportError(global->location, UnknownSymbol{global->name.value});
return Inference{builtinTypes->errorRecoveryType()};
if (auto ty = scope->lookup(bc->def))
return Inference{*ty, refinementArena.proposition(bc, builtinTypes->truthyType)};
else if (auto ty = scope->lookup(global->name))
{
rootScope->dcrRefinements[bc->def] = *ty;
return Inference{*ty, refinementArena.proposition(bc, builtinTypes->truthyType)};
}
else
{
reportError(global->location, UnknownSymbol{global->name.value});
return Inference{builtinTypes->errorRecoveryType()};
}
}
Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprIndexName* indexName)
@ -1488,19 +1521,19 @@ Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprIndexName*
TypeId obj = check(scope, indexName->expr).ty;
TypeId result = arena->addType(BlockedType{});
std::optional<DefId> def = dfg->getDef(indexName);
if (def)
NullableBreadcrumbId bc = dfg->getBreadcrumb(indexName);
if (bc)
{
if (auto ty = scope->lookup(*def))
return Inference{*ty, refinementArena.proposition(*def, builtinTypes->truthyType)};
else
scope->dcrRefinements[*def] = result;
if (auto ty = scope->lookup(bc->def))
return Inference{*ty, refinementArena.proposition(NotNull{bc}, builtinTypes->truthyType)};
scope->dcrRefinements[bc->def] = result;
}
addConstraint(scope, indexName->expr->location, HasPropConstraint{result, obj, indexName->index.value});
if (def)
return Inference{result, refinementArena.proposition(*def, builtinTypes->truthyType)};
if (bc)
return Inference{result, refinementArena.proposition(NotNull{bc}, builtinTypes->truthyType)};
else
return Inference{result};
}
@ -1509,15 +1542,26 @@ Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprIndexExpr*
{
TypeId obj = check(scope, indexExpr->expr).ty;
TypeId indexType = check(scope, indexExpr->index).ty;
TypeId result = freshType(scope);
NullableBreadcrumbId bc = dfg->getBreadcrumb(indexExpr);
if (bc)
{
if (auto ty = scope->lookup(bc->def))
return Inference{*ty, refinementArena.proposition(NotNull{bc}, builtinTypes->truthyType)};
scope->dcrRefinements[bc->def] = result;
}
TableIndexer indexer{indexType, result};
TypeId tableType = arena->addType(TableType{TableType::Props{}, TableIndexer{indexType, result}, TypeLevel{}, scope.get(), TableState::Free});
addConstraint(scope, indexExpr->expr->location, SubtypeConstraint{obj, tableType});
return Inference{result};
if (bc)
return Inference{result, refinementArena.proposition(NotNull{bc}, builtinTypes->truthyType)};
else
return Inference{result};
}
Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprUnary* unary)
@ -1545,7 +1589,7 @@ Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprBinary* bi
Inference ConstraintGraphBuilder::check(const ScopePtr& scope, AstExprIfElse* ifElse, std::optional<TypeId> expectedType)
{
ScopePtr condScope = childScope(ifElse->condition, scope);
auto [_, refinement] = check(scope, ifElse->condition);
RefinementId refinement = check(condScope, ifElse->condition).refinement;
ScopePtr thenScope = childScope(ifElse->trueExpr, scope);
applyRefinements(thenScope, ifElse->trueExpr->location, refinement);
@ -1600,8 +1644,8 @@ std::tuple<TypeId, TypeId, RefinementId> ConstraintGraphBuilder::checkBinary(
TypeId leftType = check(scope, binary->left).ty;
TypeId rightType = check(scope, binary->right).ty;
std::optional<DefId> def = dfg->getDef(typeguard->target);
if (!def)
NullableBreadcrumbId bc = dfg->getBreadcrumb(typeguard->target);
if (!bc)
return {leftType, rightType, nullptr};
TypeId discriminantTy = builtinTypes->neverType;
@ -1637,7 +1681,7 @@ std::tuple<TypeId, TypeId, RefinementId> ConstraintGraphBuilder::checkBinary(
discriminantTy = ty;
}
RefinementId proposition = refinementArena.proposition(*def, discriminantTy);
RefinementId proposition = refinementArena.proposition(NotNull{bc}, discriminantTy);
if (binary->op == AstExprBinary::CompareEq)
return {leftType, rightType, proposition};
else if (binary->op == AstExprBinary::CompareNe)
@ -1651,12 +1695,12 @@ std::tuple<TypeId, TypeId, RefinementId> ConstraintGraphBuilder::checkBinary(
TypeId rightType = check(scope, binary->right, expectedType, true).ty;
RefinementId leftRefinement = nullptr;
if (auto def = dfg->getDef(binary->left))
leftRefinement = refinementArena.proposition(*def, rightType);
if (auto bc = dfg->getBreadcrumb(binary->left))
leftRefinement = refinementArena.proposition(NotNull{bc}, rightType);
RefinementId rightRefinement = nullptr;
if (auto def = dfg->getDef(binary->right))
rightRefinement = refinementArena.proposition(*def, leftType);
if (auto bc = dfg->getBreadcrumb(binary->right))
rightRefinement = refinementArena.proposition(NotNull{bc}, leftType);
if (binary->op == AstExprBinary::CompareNe)
{
@ -1685,6 +1729,21 @@ std::vector<TypeId> ConstraintGraphBuilder::checkLValues(const ScopePtr& scope,
return types;
}
static bool isIndexNameEquivalent(AstExpr* expr)
{
if (expr->is<AstExprIndexName>())
return true;
AstExprIndexExpr* e = expr->as<AstExprIndexExpr>();
if (e == nullptr)
return false;
if (!e->index->is<AstExprConstantString>())
return false;
return true;
}
/**
* This function is mostly about identifying properties that are being inserted into unsealed tables.
*
@ -1692,16 +1751,8 @@ std::vector<TypeId> ConstraintGraphBuilder::checkLValues(const ScopePtr& scope,
*/
TypeId ConstraintGraphBuilder::checkLValue(const ScopePtr& scope, AstExpr* expr)
{
if (auto indexExpr = expr->as<AstExprIndexExpr>())
if (auto indexExpr = expr->as<AstExprIndexExpr>(); indexExpr && !indexExpr->index->is<AstExprConstantString>())
{
if (auto constantString = indexExpr->index->as<AstExprConstantString>())
{
AstName syntheticIndex{constantString->value.data};
AstExprIndexName synthetic{
indexExpr->location, indexExpr->expr, syntheticIndex, constantString->location, indexExpr->expr->location.end, '.'};
return checkLValue(scope, &synthetic);
}
// An indexer is only interesting in an lvalue-ey way if it is at the
// tail of an expression.
//
@ -1724,7 +1775,7 @@ TypeId ConstraintGraphBuilder::checkLValue(const ScopePtr& scope, AstExpr* expr)
return propType;
}
else if (!expr->is<AstExprIndexName>())
else if (!isIndexNameEquivalent(expr))
return check(scope, expr).ty;
Symbol sym;
@ -1750,6 +1801,19 @@ TypeId ConstraintGraphBuilder::checkLValue(const ScopePtr& scope, AstExpr* expr)
exprs.push_back(e);
e = indexName->expr;
}
else if (auto indexExpr = e->as<AstExprIndexExpr>())
{
if (auto strIndex = indexExpr->index->as<AstExprConstantString>())
{
segments.push_back(std::string(strIndex->value.data, strIndex->value.size));
exprs.push_back(e);
e = indexExpr->expr;
}
else
{
return check(scope, expr).ty;
}
}
else
return check(scope, expr).ty;
}
@ -1788,13 +1852,10 @@ TypeId ConstraintGraphBuilder::checkLValue(const ScopePtr& scope, AstExpr* expr)
{
symbolScope->bindings[sym].typeId = updatedType;
std::optional<DefId> def = dfg->getDef(sym);
if (def)
{
// This can fail if the user is erroneously trying to augment a builtin
// table like os or string.
symbolScope->dcrRefinements[*def] = updatedType;
}
// This can fail if the user is erroneously trying to augment a builtin
// table like os or string.
if (auto bc = dfg->getBreadcrumb(e))
symbolScope->dcrRefinements[bc->def] = updatedType;
}
return propTy;
@ -1984,36 +2045,32 @@ ConstraintGraphBuilder::FunctionSignature ConstraintGraphBuilder::checkFunctionS
argTypes.push_back(selfType);
argNames.emplace_back(FunctionArgument{fn->self->name.value, fn->self->location});
signatureScope->bindings[fn->self] = Binding{selfType, fn->self->location};
BreadcrumbId bc = dfg->getBreadcrumb(fn->self);
signatureScope->dcrRefinements[bc->def] = selfType;
}
for (size_t i = 0; i < fn->args.size; ++i)
{
AstLocal* local = fn->args.data[i];
TypeId t = freshType(signatureScope);
argTypes.push_back(t);
argNames.emplace_back(FunctionArgument{local->name.value, local->location});
signatureScope->bindings[local] = Binding{t, local->location};
auto def = dfg->getDef(local);
LUAU_ASSERT(def);
signatureScope->dcrRefinements[*def] = t;
TypeId annotationTy = t;
TypeId argTy = nullptr;
if (local->annotation)
argTy = resolveType(signatureScope, local->annotation, /* inTypeArguments */ false, /* replaceErrorWithFresh*/ true);
else
{
annotationTy = resolveType(signatureScope, local->annotation, /* inTypeArguments */ false);
// If we provide an annotation that is wrong, type inference should ignore the annotation
// and try to infer a fresh type, like in the old solver
if (get<ErrorType>(follow(annotationTy)))
annotationTy = freshType(signatureScope);
addConstraint(signatureScope, local->annotation->location, SubtypeConstraint{t, annotationTy});
}
else if (i < expectedArgPack.head.size())
{
addConstraint(signatureScope, local->location, SubtypeConstraint{t, expectedArgPack.head[i]});
argTy = freshType(signatureScope);
if (i < expectedArgPack.head.size())
addConstraint(signatureScope, local->location, SubtypeConstraint{argTy, expectedArgPack.head[i]});
}
argTypes.push_back(argTy);
argNames.emplace_back(FunctionArgument{local->name.value, local->location});
signatureScope->bindings[local] = Binding{argTy, local->location};
BreadcrumbId bc = dfg->getBreadcrumb(local);
signatureScope->dcrRefinements[bc->def] = argTy;
}
TypePackId varargPack = nullptr;
@ -2022,7 +2079,8 @@ ConstraintGraphBuilder::FunctionSignature ConstraintGraphBuilder::checkFunctionS
{
if (fn->varargAnnotation)
{
TypePackId annotationType = resolveTypePack(signatureScope, fn->varargAnnotation, /* inTypeArguments */ false);
TypePackId annotationType =
resolveTypePack(signatureScope, fn->varargAnnotation, /* inTypeArguments */ false, /* replaceErrorWithFresh */ true);
varargPack = annotationType;
}
else if (expectedArgPack.tail && get<VariadicTypePack>(*expectedArgPack.tail))
@ -2049,8 +2107,8 @@ ConstraintGraphBuilder::FunctionSignature ConstraintGraphBuilder::checkFunctionS
// Type checking will sort out any discrepancies later.
if (fn->returnAnnotation)
{
TypePackId annotatedRetType = resolveTypePack(signatureScope, *fn->returnAnnotation, /* inTypeArguments */ false);
TypePackId annotatedRetType =
resolveTypePack(signatureScope, *fn->returnAnnotation, /* inTypeArguments */ false, /* replaceErrorWithFresh*/ true);
// We bind the annotated type directly here so that, when we need to
// generate constraints for return types, we have a guarantee that we
// know the annotated return type already, if one was provided.
@ -2098,7 +2156,7 @@ void ConstraintGraphBuilder::checkFunctionBody(const ScopePtr& scope, AstExprFun
}
}
TypeId ConstraintGraphBuilder::resolveType(const ScopePtr& scope, AstType* ty, bool inTypeArguments)
TypeId ConstraintGraphBuilder::resolveType(const ScopePtr& scope, AstType* ty, bool inTypeArguments, bool replaceErrorWithFresh)
{
TypeId result = nullptr;
@ -2176,6 +2234,8 @@ TypeId ConstraintGraphBuilder::resolveType(const ScopePtr& scope, AstType* ty, b
else
{
result = builtinTypes->errorRecoveryType();
if (replaceErrorWithFresh)
result = freshType(scope);
}
}
else if (auto tab = ty->as<AstTypeTable>())
@ -2239,8 +2299,8 @@ TypeId ConstraintGraphBuilder::resolveType(const ScopePtr& scope, AstType* ty, b
signatureScope = scope;
}
TypePackId argTypes = resolveTypePack(signatureScope, fn->argTypes, inTypeArguments);
TypePackId returnTypes = resolveTypePack(signatureScope, fn->returnTypes, inTypeArguments);
TypePackId argTypes = resolveTypePack(signatureScope, fn->argTypes, inTypeArguments, replaceErrorWithFresh);
TypePackId returnTypes = resolveTypePack(signatureScope, fn->returnTypes, inTypeArguments, replaceErrorWithFresh);
// TODO: FunctionType needs a pointer to the scope so that we know
// how to quantify/instantiate it.
@ -2307,6 +2367,8 @@ TypeId ConstraintGraphBuilder::resolveType(const ScopePtr& scope, AstType* ty, b
else if (ty->is<AstTypeError>())
{
result = builtinTypes->errorRecoveryType();
if (replaceErrorWithFresh)
result = freshType(scope);
}
else
{
@ -2318,18 +2380,16 @@ TypeId ConstraintGraphBuilder::resolveType(const ScopePtr& scope, AstType* ty, b
return result;
}
TypePackId ConstraintGraphBuilder::resolveTypePack(const ScopePtr& scope, AstTypePack* tp, bool inTypeArgument)
TypePackId ConstraintGraphBuilder::resolveTypePack(const ScopePtr& scope, AstTypePack* tp, bool inTypeArgument, bool replaceErrorWithFresh)
{
TypePackId result;
if (auto expl = tp->as<AstTypePackExplicit>())
{
result = resolveTypePack(scope, expl->typeList, inTypeArgument);
result = resolveTypePack(scope, expl->typeList, inTypeArgument, replaceErrorWithFresh);
}
else if (auto var = tp->as<AstTypePackVariadic>())
{
TypeId ty = resolveType(scope, var->variadicType, inTypeArgument);
if (get<ErrorType>(follow(ty)))
ty = freshType(scope);
TypeId ty = resolveType(scope, var->variadicType, inTypeArgument, replaceErrorWithFresh);
result = arena->addTypePack(TypePackVar{VariadicTypePack{ty}});
}
else if (auto gen = tp->as<AstTypePackGeneric>())
@ -2354,19 +2414,19 @@ TypePackId ConstraintGraphBuilder::resolveTypePack(const ScopePtr& scope, AstTyp
return result;
}
TypePackId ConstraintGraphBuilder::resolveTypePack(const ScopePtr& scope, const AstTypeList& list, bool inTypeArguments)
TypePackId ConstraintGraphBuilder::resolveTypePack(const ScopePtr& scope, const AstTypeList& list, bool inTypeArguments, bool replaceErrorWithFresh)
{
std::vector<TypeId> head;
for (AstType* headTy : list.types)
{
head.push_back(resolveType(scope, headTy, inTypeArguments));
head.push_back(resolveType(scope, headTy, inTypeArguments, replaceErrorWithFresh));
}
std::optional<TypePackId> tail = std::nullopt;
if (list.tailType)
{
tail = resolveTypePack(scope, list.tailType, inTypeArguments);
tail = resolveTypePack(scope, list.tailType, inTypeArguments, replaceErrorWithFresh);
}
return arena->addTypePack(TypePack{head, tail});
@ -2454,7 +2514,7 @@ void ConstraintGraphBuilder::reportError(Location location, TypeErrorData err)
{
errors.push_back(TypeError{location, moduleName, std::move(err)});
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
logger->captureGenerationError(errors.back());
}
@ -2462,7 +2522,7 @@ void ConstraintGraphBuilder::reportCodeTooComplex(Location location)
{
errors.push_back(TypeError{location, moduleName, CodeTooComplex{}});
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
logger->captureGenerationError(errors.back());
}
@ -2493,6 +2553,69 @@ void ConstraintGraphBuilder::prepopulateGlobalScope(const ScopePtr& globalScope,
program->visit(&gp);
}
std::vector<std::optional<TypeId>> ConstraintGraphBuilder::getExpectedCallTypesForFunctionOverloads(const TypeId fnType)
{
std::vector<TypeId> funTys;
if (auto it = get<IntersectionType>(follow(fnType)))
{
for (TypeId intersectionComponent : it)
{
funTys.push_back(intersectionComponent);
}
}
std::vector<std::optional<TypeId>> expectedTypes;
// For a list of functions f_0 : e_0 -> r_0, ... f_n : e_n -> r_n,
// emit a list of arguments that the function could take at each position
// by unioning the arguments at each place
auto assignOption = [this, &expectedTypes](size_t index, TypeId ty) {
if (index == expectedTypes.size())
expectedTypes.push_back(ty);
else if (ty)
{
auto& el = expectedTypes[index];
if (!el)
el = ty;
else
{
std::vector<TypeId> result = reduceUnion({*el, ty});
if (result.empty())
el = builtinTypes->neverType;
else if (result.size() == 1)
el = result[0];
else
el = module->internalTypes.addType(UnionType{std::move(result)});
}
}
};
for (const TypeId overload : funTys)
{
if (const FunctionType* ftv = get<FunctionType>(follow(overload)))
{
auto [argsHead, argsTail] = flatten(ftv->argTypes);
size_t start = ftv->hasSelf ? 1 : 0;
size_t index = 0;
for (size_t i = start; i < argsHead.size(); ++i)
assignOption(index++, argsHead[i]);
if (argsTail)
{
argsTail = follow(*argsTail);
if (const VariadicTypePack* vtp = get<VariadicTypePack>(*argsTail))
{
while (index < funTys.size())
assignOption(index++, vtp->ty);
}
}
}
}
// TODO vvijay Feb 24, 2023 apparently we have to demote the types here?
return expectedTypes;
}
std::vector<NotNull<Constraint>> borrowConstraints(const std::vector<ConstraintPtr>& constraints)
{
std::vector<NotNull<Constraint>> result;

View file

@ -17,7 +17,6 @@
#include "Luau/VisitType.h"
LUAU_FASTFLAGVARIABLE(DebugLuauLogSolver, false);
LUAU_FASTFLAGVARIABLE(DebugLuauLogSolverToJson, false);
namespace Luau
{
@ -261,9 +260,6 @@ ConstraintSolver::ConstraintSolver(NotNull<Normalizer> normalizer, NotNull<Scope
block(dep, c);
}
}
if (FFlag::DebugLuauLogSolverToJson)
LUAU_ASSERT(logger);
}
void ConstraintSolver::randomize(unsigned seed)
@ -299,7 +295,7 @@ void ConstraintSolver::run()
dumpBindings(rootScope, opts);
}
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
{
logger->captureInitialSolverState(rootScope, unsolvedConstraints);
}
@ -320,7 +316,7 @@ void ConstraintSolver::run()
std::string saveMe = FFlag::DebugLuauLogSolver ? toString(*c, opts) : std::string{};
StepSnapshot snapshot;
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
{
snapshot = logger->prepareStepSnapshot(rootScope, c, force, unsolvedConstraints);
}
@ -334,7 +330,7 @@ void ConstraintSolver::run()
unblock(c);
unsolvedConstraints.erase(unsolvedConstraints.begin() + i);
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
{
logger->commitStepSnapshot(snapshot);
}
@ -393,7 +389,7 @@ void ConstraintSolver::run()
dumpBindings(rootScope, opts);
}
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
{
logger->captureFinalSolverState(rootScope, unsolvedConstraints);
}
@ -486,6 +482,9 @@ bool ConstraintSolver::tryDispatch(const SubtypeConstraint& c, NotNull<const Con
return false;
}
if (const auto& e = hasUnificationTooComplex(u.errors))
reportError(*e);
if (!u.errors.empty())
{
TypeId errorType = errorRecoveryType();
@ -1315,21 +1314,17 @@ bool ConstraintSolver::tryDispatch(const HasPropConstraint& c, NotNull<const Con
subjectType = reducer->reduce(subjectType).value_or(subjectType);
std::optional<TypeId> resultType = lookupTableProp(subjectType, c.prop);
if (!resultType)
auto [blocked, result] = lookupTableProp(subjectType, c.prop);
if (!blocked.empty())
{
asMutable(c.resultType)->ty.emplace<BoundType>(builtinTypes->errorRecoveryType());
unblock(c.resultType);
return true;
}
for (TypeId blocked : blocked)
block(blocked, constraint);
if (isBlocked(*resultType))
{
block(*resultType, constraint);
return false;
}
asMutable(c.resultType)->ty.emplace<BoundType>(*resultType);
asMutable(c.resultType)->ty.emplace<BoundType>(result.value_or(builtinTypes->errorRecoveryType()));
unblock(c.resultType);
return true;
}
@ -1426,17 +1421,18 @@ bool ConstraintSolver::tryDispatch(const SetPropConstraint& c, NotNull<const Con
std::optional<TypeId> existingPropType = subjectType;
for (const std::string& segment : c.path)
{
ErrorVec e;
std::optional<TypeId> propTy = lookupTableProp(*existingPropType, segment);
if (!propTy)
{
existingPropType = std::nullopt;
if (!existingPropType)
break;
auto [blocked, result] = lookupTableProp(*existingPropType, segment);
if (!blocked.empty())
{
for (TypeId blocked : blocked)
block(blocked, constraint);
return false;
}
else if (isBlocked(*propTy))
return block(*propTy, constraint);
else
existingPropType = follow(*propTy);
existingPropType = result;
}
auto bind = [](TypeId a, TypeId b) {
@ -1451,6 +1447,9 @@ bool ConstraintSolver::tryDispatch(const SetPropConstraint& c, NotNull<const Con
return true;
}
if (auto mt = get<MetatableType>(subjectType))
subjectType = follow(mt->table);
if (get<AnyType>(subjectType) || get<ErrorType>(subjectType) || get<NeverType>(subjectType))
{
bind(c.resultType, subjectType);
@ -1504,8 +1503,8 @@ bool ConstraintSolver::tryDispatch(const SetPropConstraint& c, NotNull<const Con
}
else if (get<ClassType>(subjectType))
{
// Classes never change shape as a result of property assignments.
// The result is always the subject.
// Classes and intersections never change shape as a result of property
// assignments. The result is always the subject.
bind(c.resultType, subjectType);
return true;
}
@ -1833,122 +1832,68 @@ bool ConstraintSolver::tryDispatchIterableFunction(
return true;
}
std::optional<TypeId> ConstraintSolver::lookupTableProp(TypeId subjectType, const std::string& propName)
std::pair<std::vector<TypeId>, std::optional<TypeId>> ConstraintSolver::lookupTableProp(TypeId subjectType, const std::string& propName)
{
std::unordered_set<TypeId> seen;
return lookupTableProp(subjectType, propName, seen);
}
std::optional<TypeId> ConstraintSolver::lookupTableProp(TypeId subjectType, const std::string& propName, std::unordered_set<TypeId>& seen)
std::pair<std::vector<TypeId>, std::optional<TypeId>> ConstraintSolver::lookupTableProp(TypeId subjectType, const std::string& propName, std::unordered_set<TypeId>& seen)
{
if (!seen.insert(subjectType).second)
return std::nullopt;
return {};
auto collectParts = [&](auto&& unionOrIntersection) -> std::pair<std::optional<TypeId>, std::vector<TypeId>> {
std::optional<TypeId> blocked;
subjectType = follow(subjectType);
std::vector<TypeId> parts;
std::vector<TypeId> freeParts;
for (TypeId expectedPart : unionOrIntersection)
{
expectedPart = follow(expectedPart);
if (isBlocked(expectedPart) || get<PendingExpansionType>(expectedPart))
blocked = expectedPart;
else if (const TableType* ttv = get<TableType>(follow(expectedPart)))
{
if (auto prop = ttv->props.find(propName); prop != ttv->props.end())
parts.push_back(prop->second.type);
else if (ttv->indexer && maybeString(ttv->indexer->indexType))
parts.push_back(ttv->indexer->indexResultType);
}
else if (get<FreeType>(expectedPart))
{
freeParts.push_back(expectedPart);
}
}
// If the only thing resembling a match is a single fresh type, we can
// confidently tablify it. If other types match or if there are more
// than one free type, we can't do anything.
if (parts.empty() && 1 == freeParts.size())
{
TypeId freePart = freeParts.front();
const FreeType* ft = get<FreeType>(freePart);
LUAU_ASSERT(ft);
Scope* scope = ft->scope;
TableType* tt = &asMutable(freePart)->ty.emplace<TableType>();
tt->state = TableState::Free;
tt->scope = scope;
TypeId propType = arena->freshType(scope);
tt->props[propName] = Property{propType};
parts.push_back(propType);
}
return {blocked, parts};
};
std::optional<TypeId> resultType;
if (get<AnyType>(subjectType) || get<NeverType>(subjectType))
if (isBlocked(subjectType))
return {{subjectType}, std::nullopt};
else if (get<AnyType>(subjectType) || get<NeverType>(subjectType))
{
return subjectType;
return {{}, subjectType};
}
else if (auto ttv = getMutable<TableType>(subjectType))
{
if (auto prop = ttv->props.find(propName); prop != ttv->props.end())
resultType = prop->second.type;
return {{}, prop->second.type};
else if (ttv->indexer && maybeString(ttv->indexer->indexType))
resultType = ttv->indexer->indexResultType;
return {{}, ttv->indexer->indexResultType};
else if (ttv->state == TableState::Free)
{
resultType = arena->addType(FreeType{ttv->scope});
ttv->props[propName] = Property{*resultType};
TypeId result = arena->freshType(ttv->scope);
ttv->props[propName] = Property{result};
return {{}, result};
}
}
else if (auto mt = get<MetatableType>(subjectType))
{
if (auto p = lookupTableProp(mt->table, propName, seen))
return p;
auto [blocked, result] = lookupTableProp(mt->table, propName, seen);
if (!blocked.empty() || result)
return {blocked, result};
TypeId mtt = follow(mt->metatable);
if (get<BlockedType>(mtt))
return mtt;
return {{mtt}, std::nullopt};
else if (auto metatable = get<TableType>(mtt))
{
auto indexProp = metatable->props.find("__index");
if (indexProp == metatable->props.end())
return std::nullopt;
return {{}, result};
// TODO: __index can be an overloaded function.
TypeId indexType = follow(indexProp->second.type);
if (auto ft = get<FunctionType>(indexType))
{
std::optional<TypeId> ret = first(ft->retTypes);
if (ret)
return *ret;
else
return std::nullopt;
}
return lookupTableProp(indexType, propName, seen);
return {{}, first(ft->retTypes)};
else
return lookupTableProp(indexType, propName, seen);
}
}
else if (auto ct = get<ClassType>(subjectType))
{
while (ct)
{
if (auto prop = ct->props.find(propName); prop != ct->props.end())
return prop->second.type;
else if (ct->parent)
ct = get<ClassType>(follow(*ct->parent));
else
break;
}
if (auto p = lookupClassProp(ct, propName))
return {{}, p->type};
}
else if (auto pt = get<PrimitiveType>(subjectType); pt && pt->metatable)
{
@ -1957,38 +1902,70 @@ std::optional<TypeId> ConstraintSolver::lookupTableProp(TypeId subjectType, cons
auto indexProp = metatable->props.find("__index");
if (indexProp == metatable->props.end())
return std::nullopt;
return {{}, std::nullopt};
return lookupTableProp(indexProp->second.type, propName, seen);
}
else if (auto ft = get<FreeType>(subjectType))
{
Scope* scope = ft->scope;
TableType* tt = &asMutable(subjectType)->ty.emplace<TableType>();
tt->state = TableState::Free;
tt->scope = scope;
TypeId propType = arena->freshType(scope);
tt->props[propName] = Property{propType};
return {{}, propType};
}
else if (auto utv = get<UnionType>(subjectType))
{
auto [blocked, parts] = collectParts(utv);
std::vector<TypeId> blocked;
std::vector<TypeId> options;
if (blocked)
resultType = *blocked;
else if (parts.size() == 1)
resultType = parts[0];
else if (parts.size() > 1)
resultType = arena->addType(UnionType{std::move(parts)});
for (TypeId ty : utv)
{
auto [innerBlocked, innerResult] = lookupTableProp(ty, propName, seen);
blocked.insert(blocked.end(), innerBlocked.begin(), innerBlocked.end());
if (innerResult)
options.push_back(*innerResult);
}
// otherwise, nothing: no matching property
if (!blocked.empty())
return {blocked, std::nullopt};
if (options.empty())
return {{}, std::nullopt};
else if (options.size() == 1)
return {{}, options[0]};
else
return {{}, arena->addType(UnionType{std::move(options)})};
}
else if (auto itv = get<IntersectionType>(subjectType))
{
auto [blocked, parts] = collectParts(itv);
std::vector<TypeId> blocked;
std::vector<TypeId> options;
if (blocked)
resultType = *blocked;
else if (parts.size() == 1)
resultType = parts[0];
else if (parts.size() > 1)
resultType = arena->addType(IntersectionType{std::move(parts)});
for (TypeId ty : itv)
{
auto [innerBlocked, innerResult] = lookupTableProp(ty, propName, seen);
blocked.insert(blocked.end(), innerBlocked.begin(), innerBlocked.end());
if (innerResult)
options.push_back(*innerResult);
}
// otherwise, nothing: no matching property
if (!blocked.empty())
return {blocked, std::nullopt};
if (options.empty())
return {{}, std::nullopt};
else if (options.size() == 1)
return {{}, options[0]};
else
return {{}, arena->addType(IntersectionType{std::move(options)})};
}
return resultType;
return {{}, std::nullopt};
}
void ConstraintSolver::block_(BlockedConstraintId target, NotNull<const Constraint> constraint)
@ -2001,7 +1978,7 @@ void ConstraintSolver::block_(BlockedConstraintId target, NotNull<const Constrai
void ConstraintSolver::block(NotNull<const Constraint> target, NotNull<const Constraint> constraint)
{
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
logger->pushBlock(constraint, target);
if (FFlag::DebugLuauLogSolver)
@ -2012,7 +1989,7 @@ void ConstraintSolver::block(NotNull<const Constraint> target, NotNull<const Con
bool ConstraintSolver::block(TypeId target, NotNull<const Constraint> constraint)
{
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
logger->pushBlock(constraint, target);
if (FFlag::DebugLuauLogSolver)
@ -2024,7 +2001,7 @@ bool ConstraintSolver::block(TypeId target, NotNull<const Constraint> constraint
bool ConstraintSolver::block(TypePackId target, NotNull<const Constraint> constraint)
{
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
logger->pushBlock(constraint, target);
if (FFlag::DebugLuauLogSolver)
@ -2102,7 +2079,7 @@ void ConstraintSolver::unblock_(BlockedConstraintId progressed)
void ConstraintSolver::unblock(NotNull<const Constraint> progressed)
{
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
logger->popBlock(progressed);
return unblock_(progressed.get());
@ -2110,7 +2087,7 @@ void ConstraintSolver::unblock(NotNull<const Constraint> progressed)
void ConstraintSolver::unblock(TypeId progressed)
{
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
logger->popBlock(progressed);
unblock_(progressed);
@ -2121,7 +2098,7 @@ void ConstraintSolver::unblock(TypeId progressed)
void ConstraintSolver::unblock(TypePackId progressed)
{
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
logger->popBlock(progressed);
return unblock_(progressed);

View file

@ -1,7 +1,9 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/DataFlowGraph.h"
#include "Luau/Breadcrumb.h"
#include "Luau/Error.h"
#include "Luau/Refinement.h"
LUAU_FASTFLAG(DebugLuauFreezeArena)
LUAU_FASTFLAG(DebugLuauDeferredConstraintResolution)
@ -9,29 +11,74 @@ LUAU_FASTFLAG(DebugLuauDeferredConstraintResolution)
namespace Luau
{
std::optional<DefId> DataFlowGraph::getDef(const AstExpr* expr) const
NullableBreadcrumbId DataFlowGraph::getBreadcrumb(const AstExpr* expr) const
{
// We need to skip through AstExprGroup because DFG doesn't try its best to transitively
while (auto group = expr->as<AstExprGroup>())
expr = group->expr;
if (auto def = astDefs.find(expr))
return NotNull{*def};
return std::nullopt;
if (auto bc = astBreadcrumbs.find(expr))
return *bc;
return nullptr;
}
std::optional<DefId> DataFlowGraph::getDef(const AstLocal* local) const
BreadcrumbId DataFlowGraph::getBreadcrumb(const AstLocal* local) const
{
if (auto def = localDefs.find(local))
return NotNull{*def};
return std::nullopt;
auto bc = localBreadcrumbs.find(local);
LUAU_ASSERT(bc);
return NotNull{*bc};
}
std::optional<DefId> DataFlowGraph::getDef(const Symbol& symbol) const
BreadcrumbId DataFlowGraph::getBreadcrumb(const AstExprLocal* local) const
{
if (symbol.local)
return getDef(symbol.local);
else
return std::nullopt;
auto bc = astBreadcrumbs.find(local);
LUAU_ASSERT(bc);
return NotNull{*bc};
}
BreadcrumbId DataFlowGraph::getBreadcrumb(const AstExprGlobal* global) const
{
auto bc = astBreadcrumbs.find(global);
LUAU_ASSERT(bc);
return NotNull{*bc};
}
BreadcrumbId DataFlowGraph::getBreadcrumb(const AstStatDeclareGlobal* global) const
{
auto bc = declaredBreadcrumbs.find(global);
LUAU_ASSERT(bc);
return NotNull{*bc};
}
BreadcrumbId DataFlowGraph::getBreadcrumb(const AstStatDeclareFunction* func) const
{
auto bc = declaredBreadcrumbs.find(func);
LUAU_ASSERT(bc);
return NotNull{*bc};
}
NullableBreadcrumbId DfgScope::lookup(Symbol symbol) const
{
for (const DfgScope* current = this; current; current = current->parent)
{
if (auto breadcrumb = current->bindings.find(symbol))
return *breadcrumb;
}
return nullptr;
}
NullableBreadcrumbId DfgScope::lookup(DefId def, const std::string& key) const
{
for (const DfgScope* current = this; current; current = current->parent)
{
if (auto map = props.find(def))
{
if (auto it = map->find(key); it != map->end())
return it->second;
}
}
return nullptr;
}
DataFlowGraph DataFlowGraphBuilder::build(AstStatBlock* block, NotNull<InternalErrorReporter> handle)
@ -40,9 +87,15 @@ DataFlowGraph DataFlowGraphBuilder::build(AstStatBlock* block, NotNull<InternalE
DataFlowGraphBuilder builder;
builder.handle = handle;
builder.visit(nullptr, block); // nullptr is the root DFG scope.
builder.moduleScope = builder.childScope(nullptr); // nullptr is the root DFG scope.
builder.visitBlockWithoutChildScope(builder.moduleScope, block);
if (FFlag::DebugLuauFreezeArena)
builder.arena->allocator.freeze();
{
builder.defs->allocator.freeze();
builder.breadcrumbs->allocator.freeze();
}
return std::move(builder.graph);
}
@ -51,29 +104,6 @@ DfgScope* DataFlowGraphBuilder::childScope(DfgScope* scope)
return scopes.emplace_back(new DfgScope{scope}).get();
}
std::optional<DefId> DataFlowGraphBuilder::use(DfgScope* scope, Symbol symbol, AstExpr* e)
{
for (DfgScope* current = scope; current; current = current->parent)
{
if (auto def = current->bindings.find(symbol))
{
graph.astDefs[e] = *def;
return NotNull{*def};
}
}
return std::nullopt;
}
DefId DataFlowGraphBuilder::use(DefId def, AstExprIndexName* e)
{
auto& propertyDef = props[def][e->index.value];
if (!propertyDef)
propertyDef = arena->freshCell(def, e->index.value);
graph.astDefs[e] = propertyDef;
return NotNull{propertyDef};
}
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatBlock* b)
{
DfgScope* child = childScope(scope);
@ -119,27 +149,24 @@ void DataFlowGraphBuilder::visit(DfgScope* scope, AstStat* s)
else if (auto l = s->as<AstStatLocalFunction>())
return visit(scope, l);
else if (auto t = s->as<AstStatTypeAlias>())
return; // ok
else if (auto d = s->as<AstStatDeclareFunction>())
return; // ok
return visit(scope, t);
else if (auto d = s->as<AstStatDeclareGlobal>())
return; // ok
return visit(scope, d);
else if (auto d = s->as<AstStatDeclareFunction>())
return; // ok
return visit(scope, d);
else if (auto d = s->as<AstStatDeclareClass>())
return; // ok
else if (auto _ = s->as<AstStatError>())
return; // ok
return visit(scope, d);
else if (auto error = s->as<AstStatError>())
return visit(scope, error);
else
handle->ice("Unknown AstStat in DataFlowGraphBuilder");
handle->ice("Unknown AstStat in DataFlowGraphBuilder::visit");
}
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatIf* i)
{
DfgScope* condScope = childScope(scope);
visitExpr(condScope, i->condition);
visit(condScope, i->thenbody);
// TODO: type states and control flow analysis
visitExpr(scope, i->condition);
visit(scope, i->thenbody);
if (i->elsebody)
visit(scope, i->elsebody);
}
@ -186,24 +213,41 @@ void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatExpr* e)
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatLocal* l)
{
// TODO: alias tracking
// We're gonna need a `visitExprList` and `visitVariadicExpr` (function calls and `...`)
std::vector<BreadcrumbId> bcs;
bcs.reserve(l->values.size);
for (AstExpr* e : l->values)
visitExpr(scope, e);
bcs.push_back(visitExpr(scope, e));
for (AstLocal* local : l->vars)
for (size_t i = 0; i < l->vars.size; ++i)
{
DefId def = arena->freshCell();
graph.localDefs[local] = def;
scope->bindings[local] = def;
AstLocal* local = l->vars.data[i];
if (local->annotation)
visitType(scope, local->annotation);
// We need to create a new breadcrumb with new defs to intentionally avoid alias tracking.
BreadcrumbId bc = breadcrumbs->add(nullptr, defs->freshCell(), i < bcs.size() ? bcs[i]->metadata : std::nullopt);
graph.localBreadcrumbs[local] = bc;
scope->bindings[local] = bc;
}
}
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatFor* f)
{
DfgScope* forScope = childScope(scope); // TODO: loop scope.
DefId def = arena->freshCell();
graph.localDefs[f->var] = def;
scope->bindings[f->var] = def;
visitExpr(scope, f->from);
visitExpr(scope, f->to);
if (f->step)
visitExpr(scope, f->step);
if (f->var->annotation)
visitType(forScope, f->var->annotation);
// TODO: RangeMetadata.
BreadcrumbId bc = breadcrumbs->add(nullptr, defs->freshCell());
graph.localBreadcrumbs[f->var] = bc;
scope->bindings[f->var] = bc;
// TODO(controlflow): entry point has a back edge from exit point
visit(forScope, f->body);
@ -215,12 +259,17 @@ void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatForIn* f)
for (AstLocal* local : f->vars)
{
DefId def = arena->freshCell();
graph.localDefs[local] = def;
forScope->bindings[local] = def;
if (local->annotation)
visitType(forScope, local->annotation);
// TODO: IterMetadata (different from RangeMetadata)
BreadcrumbId bc = breadcrumbs->add(nullptr, defs->freshCell());
graph.localBreadcrumbs[local] = bc;
forScope->bindings[local] = bc;
}
// TODO(controlflow): entry point has a back edge from exit point
// We're gonna need a `visitExprList` and `visitVariadicExpr` (function calls and `...`)
for (AstExpr* e : f->values)
visitExpr(forScope, e);
@ -233,87 +282,117 @@ void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatAssign* a)
visitExpr(scope, r);
for (AstExpr* l : a->vars)
{
AstExpr* root = l;
bool isUpdatable = true;
while (true)
{
if (root->is<AstExprLocal>() || root->is<AstExprGlobal>())
break;
AstExprIndexName* indexName = root->as<AstExprIndexName>();
if (!indexName)
{
isUpdatable = false;
break;
}
root = indexName->expr;
}
if (isUpdatable)
{
// TODO global?
if (auto exprLocal = root->as<AstExprLocal>())
{
DefId def = arena->freshCell();
graph.astDefs[exprLocal] = def;
// Update the def in the scope that introduced the local. Not
// the current scope.
AstLocal* local = exprLocal->local;
DfgScope* s = scope;
while (s && !s->bindings.find(local))
s = s->parent;
LUAU_ASSERT(s && s->bindings.find(local));
s->bindings[local] = def;
}
}
visitExpr(scope, l); // TODO: they point to a new def!!
}
visitLValue(scope, l);
}
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatCompoundAssign* c)
{
// TODO(typestates): The lhs is being read and written to. This might or might not be annoying.
// TODO: This needs revisiting because this is incorrect. The `c->var` part is both being read and written to,
// but the `c->var` only has one pointer address, so we need to come up with a way to store both.
// For now, it's not important because we don't have type states, but it is going to be important, e.g.
//
// local a = 5 -- a[1]
// a += 5 -- a[2] = a[1] + 5
//
// We can't just visit `c->var` as a rvalue and then separately traverse `c->var` as an lvalue, since that's O(n^2).
visitLValue(scope, c->var);
visitExpr(scope, c->value);
}
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatFunction* f)
{
visitExpr(scope, f->name);
// In the old solver, we assumed that the name of the function is always a function in the body
// but this isn't true, e.g. the following example will print `5`, not a function address.
//
// local function f() print(f) end
// local g = f
// f = 5
// g() --> 5
//
// which is evidence that references to variables must be a phi node of all possible definitions,
// but for bug compatibility, we'll assume the same thing here.
visitLValue(scope, f->name);
visitExpr(scope, f->func);
}
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatLocalFunction* l)
{
DefId def = arena->freshCell();
graph.localDefs[l->name] = def;
scope->bindings[l->name] = def;
BreadcrumbId bc = breadcrumbs->add(nullptr, defs->freshCell());
graph.localBreadcrumbs[l->name] = bc;
scope->bindings[l->name] = bc;
visitExpr(scope, l->func);
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExpr* e)
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatTypeAlias* t)
{
DfgScope* unreachable = childScope(scope);
visitGenerics(unreachable, t->generics);
visitGenericPacks(unreachable, t->genericPacks);
visitType(unreachable, t->type);
}
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatDeclareGlobal* d)
{
// TODO: AmbientDeclarationMetadata.
BreadcrumbId bc = breadcrumbs->add(nullptr, defs->freshCell());
graph.declaredBreadcrumbs[d] = bc;
scope->bindings[d->name] = bc;
visitType(scope, d->type);
}
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatDeclareFunction* d)
{
// TODO: AmbientDeclarationMetadata.
BreadcrumbId bc = breadcrumbs->add(nullptr, defs->freshCell());
graph.declaredBreadcrumbs[d] = bc;
scope->bindings[d->name] = bc;
DfgScope* unreachable = childScope(scope);
visitGenerics(unreachable, d->generics);
visitGenericPacks(unreachable, d->genericPacks);
visitTypeList(unreachable, d->params);
visitTypeList(unreachable, d->retTypes);
}
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatDeclareClass* d)
{
// This declaration does not "introduce" any bindings in value namespace,
// so there's no symbolic value to begin with. We'll traverse the properties
// because their type annotations may depend on something in the value namespace.
DfgScope* unreachable = childScope(scope);
for (AstDeclaredClassProp prop : d->props)
visitType(unreachable, prop.ty);
}
void DataFlowGraphBuilder::visit(DfgScope* scope, AstStatError* error)
{
DfgScope* unreachable = childScope(scope);
for (AstStat* s : error->statements)
visit(unreachable, s);
for (AstExpr* e : error->expressions)
visitExpr(unreachable, e);
}
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExpr* e)
{
if (auto g = e->as<AstExprGroup>())
return visitExpr(scope, g->expr);
else if (auto c = e->as<AstExprConstantNil>())
return {}; // ok
return breadcrumbs->add(nullptr, defs->freshCell()); // ok
else if (auto c = e->as<AstExprConstantBool>())
return {}; // ok
return breadcrumbs->add(nullptr, defs->freshCell()); // ok
else if (auto c = e->as<AstExprConstantNumber>())
return {}; // ok
return breadcrumbs->add(nullptr, defs->freshCell()); // ok
else if (auto c = e->as<AstExprConstantString>())
return {}; // ok
return breadcrumbs->add(nullptr, defs->freshCell()); // ok
else if (auto l = e->as<AstExprLocal>())
return visitExpr(scope, l);
else if (auto g = e->as<AstExprGlobal>())
return visitExpr(scope, g);
else if (auto v = e->as<AstExprVarargs>())
return {}; // ok
return breadcrumbs->add(nullptr, defs->freshCell()); // ok
else if (auto c = e->as<AstExprCall>())
return visitExpr(scope, c);
else if (auto i = e->as<AstExprIndexName>())
@ -334,76 +413,123 @@ ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExpr* e)
return visitExpr(scope, i);
else if (auto i = e->as<AstExprInterpString>())
return visitExpr(scope, i);
else if (auto _ = e->as<AstExprError>())
return {}; // ok
else if (auto error = e->as<AstExprError>())
return visitExpr(scope, error);
else
handle->ice("Unknown AstExpr in DataFlowGraphBuilder");
handle->ice("Unknown AstExpr in DataFlowGraphBuilder::visitExpr");
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprLocal* l)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprLocal* l)
{
return {use(scope, l->local, l)};
NullableBreadcrumbId breadcrumb = scope->lookup(l->local);
if (!breadcrumb)
handle->ice("AstExprLocal came before its declaration?");
graph.astBreadcrumbs[l] = breadcrumb;
return NotNull{breadcrumb};
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprGlobal* g)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprGlobal* g)
{
return {use(scope, g->name, g)};
NullableBreadcrumbId bc = scope->lookup(g->name);
if (!bc)
{
bc = breadcrumbs->add(nullptr, defs->freshCell());
moduleScope->bindings[g->name] = bc;
}
graph.astBreadcrumbs[g] = bc;
return NotNull{bc};
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprCall* c)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprCall* c)
{
visitExpr(scope, c->func);
for (AstExpr* arg : c->args)
visitExpr(scope, arg);
return {};
return breadcrumbs->add(nullptr, defs->freshCell());
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprIndexName* i)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprIndexName* i)
{
std::optional<DefId> def = visitExpr(scope, i->expr).def;
if (!def)
return {};
BreadcrumbId parentBreadcrumb = visitExpr(scope, i->expr);
return {use(*def, i)};
std::string key = i->index.value;
NullableBreadcrumbId& propBreadcrumb = moduleScope->props[parentBreadcrumb->def][key];
if (!propBreadcrumb)
propBreadcrumb = breadcrumbs->emplace<FieldMetadata>(parentBreadcrumb, defs->freshCell(), key);
graph.astBreadcrumbs[i] = propBreadcrumb;
return NotNull{propBreadcrumb};
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprIndexExpr* i)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprIndexExpr* i)
{
visitExpr(scope, i->expr);
visitExpr(scope, i->index);
BreadcrumbId parentBreadcrumb = visitExpr(scope, i->expr);
BreadcrumbId key = visitExpr(scope, i->index);
if (i->index->as<AstExprConstantString>())
if (auto string = i->index->as<AstExprConstantString>())
{
// TODO: properties for the def
std::string key{string->value.data, string->value.size};
NullableBreadcrumbId& propBreadcrumb = moduleScope->props[parentBreadcrumb->def][key];
if (!propBreadcrumb)
propBreadcrumb = breadcrumbs->emplace<FieldMetadata>(parentBreadcrumb, defs->freshCell(), key);
graph.astBreadcrumbs[i] = NotNull{propBreadcrumb};
return NotNull{propBreadcrumb};
}
return {};
return breadcrumbs->emplace<SubscriptMetadata>(nullptr, defs->freshCell(), key);
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprFunction* f)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprFunction* f)
{
DfgScope* signatureScope = childScope(scope);
if (AstLocal* self = f->self)
{
DefId def = arena->freshCell();
graph.localDefs[self] = def;
scope->bindings[self] = def;
// There's no syntax for `self` to have an annotation if using `function t:m()`
LUAU_ASSERT(!self->annotation);
// TODO: ParameterMetadata.
BreadcrumbId bc = breadcrumbs->add(nullptr, defs->freshCell());
graph.localBreadcrumbs[self] = bc;
signatureScope->bindings[self] = bc;
}
for (AstLocal* param : f->args)
{
DefId def = arena->freshCell();
graph.localDefs[param] = def;
scope->bindings[param] = def;
if (param->annotation)
visitType(signatureScope, param->annotation);
// TODO: ParameterMetadata.
BreadcrumbId bc = breadcrumbs->add(nullptr, defs->freshCell());
graph.localBreadcrumbs[param] = bc;
signatureScope->bindings[param] = bc;
}
visit(scope, f->body);
if (f->varargAnnotation)
visitTypePack(scope, f->varargAnnotation);
return {};
if (f->returnAnnotation)
visitTypeList(signatureScope, *f->returnAnnotation);
// TODO: function body can be re-entrant, as in mutations that occurs at the end of the function can also be
// visible to the beginning of the function, so statically speaking, the body of the function has an exit point
// that points back to itself, e.g.
//
// local function f() print(f) f = 5 end
// local g = f
// g() --> function: address
// g() --> 5
visit(signatureScope, f->body);
return breadcrumbs->add(nullptr, defs->freshCell());
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprTable* t)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprTable* t)
{
for (AstExprTable::Item item : t->items)
{
@ -412,47 +538,259 @@ ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprTabl
visitExpr(scope, item.value);
}
return {};
return breadcrumbs->add(nullptr, defs->freshCell());
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprUnary* u)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprUnary* u)
{
visitExpr(scope, u->expr);
return {};
return breadcrumbs->add(nullptr, defs->freshCell());
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprBinary* b)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprBinary* b)
{
visitExpr(scope, b->left);
visitExpr(scope, b->right);
return {};
return breadcrumbs->add(nullptr, defs->freshCell());
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprTypeAssertion* t)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprTypeAssertion* t)
{
ExpressionFlowGraph result = visitExpr(scope, t->expr);
// TODO: visit type
return result;
// TODO: TypeAssertionMetadata?
BreadcrumbId bc = visitExpr(scope, t->expr);
visitType(scope, t->annotation);
return bc;
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprIfElse* i)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprIfElse* i)
{
DfgScope* condScope = childScope(scope);
visitExpr(condScope, i->condition);
visitExpr(condScope, i->trueExpr);
visitExpr(scope, i->condition);
visitExpr(scope, i->trueExpr);
visitExpr(scope, i->falseExpr);
return {};
return breadcrumbs->add(nullptr, defs->freshCell());
}
ExpressionFlowGraph DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprInterpString* i)
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprInterpString* i)
{
for (AstExpr* e : i->expressions)
visitExpr(scope, e);
return {};
return breadcrumbs->add(nullptr, defs->freshCell());
}
BreadcrumbId DataFlowGraphBuilder::visitExpr(DfgScope* scope, AstExprError* error)
{
DfgScope* unreachable = childScope(scope);
for (AstExpr* e : error->expressions)
visitExpr(unreachable, e);
return breadcrumbs->add(nullptr, defs->freshCell());
}
void DataFlowGraphBuilder::visitLValue(DfgScope* scope, AstExpr* e)
{
if (auto l = e->as<AstExprLocal>())
return visitLValue(scope, l);
else if (auto g = e->as<AstExprGlobal>())
return visitLValue(scope, g);
else if (auto i = e->as<AstExprIndexName>())
return visitLValue(scope, i);
else if (auto i = e->as<AstExprIndexExpr>())
return visitLValue(scope, i);
else if (auto error = e->as<AstExprError>())
{
visitExpr(scope, error); // TODO: is this right?
return;
}
else
handle->ice("Unknown AstExpr in DataFlowGraphBuilder::visitLValue");
}
void DataFlowGraphBuilder::visitLValue(DfgScope* scope, AstExprLocal* l)
{
// Bug compatibility: we don't support type states yet, so we need to do this.
NullableBreadcrumbId bc = scope->lookup(l->local);
LUAU_ASSERT(bc);
graph.astBreadcrumbs[l] = bc;
scope->bindings[l->local] = bc;
}
void DataFlowGraphBuilder::visitLValue(DfgScope* scope, AstExprGlobal* g)
{
// Bug compatibility: we don't support type states yet, so we need to do this.
NullableBreadcrumbId bc = scope->lookup(g->name);
if (!bc)
bc = breadcrumbs->add(nullptr, defs->freshCell());
graph.astBreadcrumbs[g] = bc;
scope->bindings[g->name] = bc;
}
void DataFlowGraphBuilder::visitLValue(DfgScope* scope, AstExprIndexName* i)
{
// Bug compatibility: we don't support type states yet, so we need to do this.
BreadcrumbId parentBreadcrumb = visitExpr(scope, i->expr);
std::string key = i->index.value;
NullableBreadcrumbId propBreadcrumb = scope->lookup(parentBreadcrumb->def, key);
if (!propBreadcrumb)
{
propBreadcrumb = breadcrumbs->emplace<FieldMetadata>(parentBreadcrumb, defs->freshCell(), key);
moduleScope->props[parentBreadcrumb->def][key] = propBreadcrumb;
}
graph.astBreadcrumbs[i] = propBreadcrumb;
}
void DataFlowGraphBuilder::visitLValue(DfgScope* scope, AstExprIndexExpr* i)
{
BreadcrumbId parentBreadcrumb = visitExpr(scope, i->expr);
visitExpr(scope, i->index);
if (auto string = i->index->as<AstExprConstantString>())
{
std::string key{string->value.data, string->value.size};
NullableBreadcrumbId propBreadcrumb = scope->lookup(parentBreadcrumb->def, key);
if (!propBreadcrumb)
{
propBreadcrumb = breadcrumbs->add(parentBreadcrumb, parentBreadcrumb->def);
moduleScope->props[parentBreadcrumb->def][key] = propBreadcrumb;
}
graph.astBreadcrumbs[i] = propBreadcrumb;
}
}
void DataFlowGraphBuilder::visitType(DfgScope* scope, AstType* t)
{
if (auto r = t->as<AstTypeReference>())
return visitType(scope, r);
else if (auto table = t->as<AstTypeTable>())
return visitType(scope, table);
else if (auto f = t->as<AstTypeFunction>())
return visitType(scope, f);
else if (auto tyof = t->as<AstTypeTypeof>())
return visitType(scope, tyof);
else if (auto u = t->as<AstTypeUnion>())
return visitType(scope, u);
else if (auto i = t->as<AstTypeIntersection>())
return visitType(scope, i);
else if (auto e = t->as<AstTypeError>())
return visitType(scope, e);
else if (auto s = t->as<AstTypeSingletonBool>())
return; // ok
else if (auto s = t->as<AstTypeSingletonString>())
return; // ok
else
handle->ice("Unknown AstType in DataFlowGraphBuilder::visitType");
}
void DataFlowGraphBuilder::visitType(DfgScope* scope, AstTypeReference* r)
{
for (AstTypeOrPack param : r->parameters)
{
if (param.type)
visitType(scope, param.type);
else
visitTypePack(scope, param.typePack);
}
}
void DataFlowGraphBuilder::visitType(DfgScope* scope, AstTypeTable* t)
{
for (AstTableProp p : t->props)
visitType(scope, p.type);
if (t->indexer)
{
visitType(scope, t->indexer->indexType);
visitType(scope, t->indexer->resultType);
}
}
void DataFlowGraphBuilder::visitType(DfgScope* scope, AstTypeFunction* f)
{
visitGenerics(scope, f->generics);
visitGenericPacks(scope, f->genericPacks);
visitTypeList(scope, f->argTypes);
visitTypeList(scope, f->returnTypes);
}
void DataFlowGraphBuilder::visitType(DfgScope* scope, AstTypeTypeof* t)
{
visitExpr(scope, t->expr);
}
void DataFlowGraphBuilder::visitType(DfgScope* scope, AstTypeUnion* u)
{
for (AstType* t : u->types)
visitType(scope, t);
}
void DataFlowGraphBuilder::visitType(DfgScope* scope, AstTypeIntersection* i)
{
for (AstType* t : i->types)
visitType(scope, t);
}
void DataFlowGraphBuilder::visitType(DfgScope* scope, AstTypeError* error)
{
for (AstType* t : error->types)
visitType(scope, t);
}
void DataFlowGraphBuilder::visitTypePack(DfgScope* scope, AstTypePack* p)
{
if (auto e = p->as<AstTypePackExplicit>())
return visitTypePack(scope, e);
else if (auto v = p->as<AstTypePackVariadic>())
return visitTypePack(scope, v);
else if (auto g = p->as<AstTypePackGeneric>())
return; // ok
else
handle->ice("Unknown AstTypePack in DataFlowGraphBuilder::visitTypePack");
}
void DataFlowGraphBuilder::visitTypePack(DfgScope* scope, AstTypePackExplicit* e)
{
visitTypeList(scope, e->typeList);
}
void DataFlowGraphBuilder::visitTypePack(DfgScope* scope, AstTypePackVariadic* v)
{
visitType(scope, v->variadicType);
}
void DataFlowGraphBuilder::visitTypeList(DfgScope* scope, AstTypeList l)
{
for (AstType* t : l.types)
visitType(scope, t);
if (l.tailType)
visitTypePack(scope, l.tailType);
}
void DataFlowGraphBuilder::visitGenerics(DfgScope* scope, AstArray<AstGenericType> g)
{
for (AstGenericType generic : g)
{
if (generic.defaultValue)
visitType(scope, generic.defaultValue);
}
}
void DataFlowGraphBuilder::visitGenericPacks(DfgScope* scope, AstArray<AstGenericTypePack> g)
{
for (AstGenericTypePack generic : g)
{
if (generic.defaultValue)
visitTypePack(scope, generic.defaultValue);
}
}
} // namespace Luau

View file

@ -6,12 +6,7 @@ namespace Luau
DefId DefArena::freshCell()
{
return NotNull{allocator.allocate<Def>(Def{Cell{std::nullopt}})};
}
DefId DefArena::freshCell(DefId parent, const std::string& prop)
{
return NotNull{allocator.allocate<Def>(Def{Cell{FieldMetadata{parent, prop}}})};
return NotNull{allocator.allocate(Def{Cell{}})};
}
} // namespace Luau

View file

@ -25,12 +25,13 @@
#include <string>
LUAU_FASTINT(LuauTypeInferIterationLimit)
LUAU_FASTINT(LuauTypeInferRecursionLimit)
LUAU_FASTINT(LuauTarjanChildLimit)
LUAU_FASTFLAG(LuauInferInNoCheckMode)
LUAU_FASTFLAGVARIABLE(LuauKnowsTheDataModel3, false)
LUAU_FASTINTVARIABLE(LuauAutocompleteCheckTimeoutMs, 100)
LUAU_FASTFLAGVARIABLE(DebugLuauDeferredConstraintResolution, false)
LUAU_FASTFLAG(DebugLuauLogSolverToJson);
LUAU_FASTFLAGVARIABLE(DebugLuauLogSolverToJson, false);
namespace Luau
{
@ -517,7 +518,7 @@ CheckResult Frontend::check(const ModuleName& name, std::optional<FrontendOption
typeCheckerForAutocomplete.unifierIterationLimit = std::nullopt;
ModulePtr moduleForAutocomplete = FFlag::DebugLuauDeferredConstraintResolution
? check(sourceModule, mode, requireCycles, /*forAutocomplete*/ true)
? check(sourceModule, mode, requireCycles, /*forAutocomplete*/ true, /*recordJsonLog*/ false)
: typeCheckerForAutocomplete.check(sourceModule, Mode::Strict, environmentScope);
moduleResolverForAutocomplete.modules[moduleName] = moduleForAutocomplete;
@ -544,7 +545,9 @@ CheckResult Frontend::check(const ModuleName& name, std::optional<FrontendOption
typeChecker.requireCycles = requireCycles;
ModulePtr module = FFlag::DebugLuauDeferredConstraintResolution ? check(sourceModule, mode, requireCycles)
const bool recordJsonLog = FFlag::DebugLuauLogSolverToJson && moduleName == name;
ModulePtr module = FFlag::DebugLuauDeferredConstraintResolution ? check(sourceModule, mode, requireCycles, /*forAutocomplete*/ false, recordJsonLog)
: typeChecker.check(sourceModule, mode, environmentScope);
stats.timeCheck += getTimestamp() - timestamp;
@ -855,22 +858,23 @@ ScopePtr Frontend::getGlobalScope()
return globalScope;
}
ModulePtr check(
const SourceModule& sourceModule,
const std::vector<RequireCycle>& requireCycles,
NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler,
NotNull<ModuleResolver> moduleResolver,
NotNull<FileResolver> fileResolver,
const ScopePtr& globalScope,
NotNull<UnifierSharedState> unifierState,
FrontendOptions options
) {
ModulePtr check(const SourceModule& sourceModule, const std::vector<RequireCycle>& requireCycles, NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler, NotNull<ModuleResolver> moduleResolver, NotNull<FileResolver> fileResolver,
const ScopePtr& globalScope, FrontendOptions options)
{
const bool recordJsonLog = FFlag::DebugLuauLogSolverToJson;
return check(sourceModule, requireCycles, builtinTypes, iceHandler, moduleResolver, fileResolver, globalScope, options, recordJsonLog);
}
ModulePtr check(const SourceModule& sourceModule, const std::vector<RequireCycle>& requireCycles, NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler, NotNull<ModuleResolver> moduleResolver, NotNull<FileResolver> fileResolver,
const ScopePtr& globalScope, FrontendOptions options, bool recordJsonLog)
{
ModulePtr result = std::make_shared<Module>();
result->reduction = std::make_unique<TypeReduction>(NotNull{&result->internalTypes}, builtinTypes, iceHandler);
std::unique_ptr<DcrLogger> logger;
if (FFlag::DebugLuauLogSolverToJson)
if (recordJsonLog)
{
logger = std::make_unique<DcrLogger>();
std::optional<SourceCode> source = fileResolver->readSource(sourceModule.name);
@ -882,7 +886,11 @@ ModulePtr check(
DataFlowGraph dfg = DataFlowGraphBuilder::build(sourceModule.root, iceHandler);
Normalizer normalizer{&result->internalTypes, builtinTypes, unifierState};
UnifierSharedState unifierState{iceHandler};
unifierState.counters.recursionLimit = FInt::LuauTypeInferRecursionLimit;
unifierState.counters.iterationLimit = FInt::LuauTypeInferIterationLimit;
Normalizer normalizer{&result->internalTypes, builtinTypes, NotNull{&unifierState}};
ConstraintGraphBuilder cgb{
sourceModule.name,
@ -925,7 +933,7 @@ ModulePtr check(
freeze(result->internalTypes);
freeze(result->interfaceTypes);
if (FFlag::DebugLuauLogSolverToJson)
if (recordJsonLog)
{
std::string output = logger->compileOutput();
printf("%s\n", output.c_str());
@ -934,20 +942,11 @@ ModulePtr check(
return result;
}
ModulePtr Frontend::check(
const SourceModule& sourceModule, Mode mode, std::vector<RequireCycle> requireCycles, bool forAutocomplete)
ModulePtr Frontend::check(const SourceModule& sourceModule, Mode mode, std::vector<RequireCycle> requireCycles, bool forAutocomplete, bool recordJsonLog)
{
return Luau::check(
sourceModule,
requireCycles,
builtinTypes,
NotNull{&iceHandler},
NotNull{forAutocomplete ? &moduleResolverForAutocomplete : &moduleResolver},
NotNull{fileResolver},
forAutocomplete ? typeCheckerForAutocomplete.globalScope : typeChecker.globalScope,
NotNull{&typeChecker.unifierState},
options
);
return Luau::check(sourceModule, requireCycles, builtinTypes, NotNull{&iceHandler},
NotNull{forAutocomplete ? &moduleResolverForAutocomplete : &moduleResolver}, NotNull{fileResolver},
forAutocomplete ? typeCheckerForAutocomplete.globalScope : typeChecker.globalScope, options, recordJsonLog);
}
// Read AST into sourceModules if necessary. Trace require()s. Report parse errors.

View file

@ -14,6 +14,8 @@
LUAU_FASTINTVARIABLE(LuauSuggestionDistance, 4)
LUAU_FASTFLAGVARIABLE(LuauImproveDeprecatedApiLint, false)
namespace Luau
{
@ -2100,7 +2102,7 @@ class LintDeprecatedApi : AstVisitor
public:
LUAU_NOINLINE static void process(LintContext& context)
{
if (!context.module)
if (!FFlag::LuauImproveDeprecatedApiLint && !context.module)
return;
LintDeprecatedApi pass{&context};
@ -2117,26 +2119,51 @@ private:
bool visit(AstExprIndexName* node) override
{
std::optional<TypeId> ty = context->getType(node->expr);
if (!ty)
return true;
if (std::optional<TypeId> ty = context->getType(node->expr))
check(node, follow(*ty));
else if (AstExprGlobal* global = node->expr->as<AstExprGlobal>())
if (FFlag::LuauImproveDeprecatedApiLint)
check(node->location, global->name, node->index);
if (const ClassType* cty = get<ClassType>(follow(*ty)))
return true;
}
void check(AstExprIndexName* node, TypeId ty)
{
if (const ClassType* cty = get<ClassType>(ty))
{
const Property* prop = lookupClassProp(cty, node->index.value);
if (prop && prop->deprecated)
report(node->location, *prop, cty->name.c_str(), node->index.value);
}
else if (const TableType* tty = get<TableType>(follow(*ty)))
else if (const TableType* tty = get<TableType>(ty))
{
auto prop = tty->props.find(node->index.value);
if (prop != tty->props.end() && prop->second.deprecated)
report(node->location, prop->second, tty->name ? tty->name->c_str() : nullptr, node->index.value);
{
// strip synthetic typeof() for builtin tables
if (FFlag::LuauImproveDeprecatedApiLint && tty->name && tty->name->compare(0, 7, "typeof(") == 0 && tty->name->back() == ')')
report(node->location, prop->second, tty->name->substr(7, tty->name->length() - 8).c_str(), node->index.value);
else
report(node->location, prop->second, tty->name ? tty->name->c_str() : nullptr, node->index.value);
}
}
}
return true;
void check(const Location& location, AstName global, AstName index)
{
if (const LintContext::Global* gv = context->builtinGlobals.find(global))
{
if (const TableType* tty = get<TableType>(gv->type))
{
auto prop = tty->props.find(index.value);
if (prop != tty->props.end() && prop->second.deprecated)
report(location, prop->second, global.value, index.value);
}
}
}
void report(const Location& location, const Property& prop, const char* container, const char* field)

View file

@ -2653,6 +2653,14 @@ bool Normalizer::intersectNormalWithTy(NormalizedType& here, TypeId there)
intersectNormals(here, *negated);
}
}
else if (get<AnyType>(t))
{
// HACK: Refinements sometimes intersect with ~any under the
// assumption that it is the same as any.
return true;
}
else if (auto nt = get<NegationType>(t))
return intersectNormalWithTy(here, nt->ty);
else
{
// TODO negated unions, intersections, table, and function.

View file

@ -4,6 +4,11 @@
namespace Luau
{
RefinementId RefinementArena::variadic(const std::vector<RefinementId>& refis)
{
return NotNull{allocator.allocate(Variadic{refis})};
}
RefinementId RefinementArena::negation(RefinementId refinement)
{
return NotNull{allocator.allocate(Negation{refinement})};
@ -24,14 +29,9 @@ RefinementId RefinementArena::equivalence(RefinementId lhs, RefinementId rhs)
return NotNull{allocator.allocate(Equivalence{lhs, rhs})};
}
RefinementId RefinementArena::proposition(DefId def, TypeId discriminantTy)
RefinementId RefinementArena::proposition(BreadcrumbId breadcrumb, TypeId discriminantTy)
{
return NotNull{allocator.allocate(Proposition{def, discriminantTy})};
}
RefinementId RefinementArena::variadic(const std::vector<RefinementId>& refis)
{
return NotNull{allocator.allocate(Variadic{refis})};
return NotNull{allocator.allocate(Proposition{breadcrumb, discriminantTy})};
}
} // namespace Luau

View file

@ -745,6 +745,7 @@ BuiltinTypes::BuiltinTypes()
, functionType(arena->addType(Type{PrimitiveType{PrimitiveType::Function}, /*persistent*/ true}))
, classType(arena->addType(Type{ClassType{"class", {}, std::nullopt, std::nullopt, {}, {}, {}}, /*persistent*/ true}))
, tableType(arena->addType(Type{PrimitiveType{PrimitiveType::Table}, /*persistent*/ true}))
, emptyTableType(arena->addType(Type{TableType{TableState::Sealed, TypeLevel{}, nullptr}, /*persistent*/ true}))
, trueType(arena->addType(Type{SingletonType{BooleanSingleton{true}}, /*persistent*/ true}))
, falseType(arena->addType(Type{SingletonType{BooleanSingleton{false}}, /*persistent*/ true}))
, anyType(arena->addType(Type{AnyType{}, /*persistent*/ true}))

View file

@ -19,7 +19,6 @@
#include <algorithm>
LUAU_FASTFLAG(DebugLuauLogSolverToJson)
LUAU_FASTFLAG(DebugLuauMagicTypes)
LUAU_FASTFLAG(DebugLuauDontReduceTypes)
@ -105,8 +104,6 @@ struct TypeChecker2
, sourceModule(sourceModule)
, module(module)
{
if (FFlag::DebugLuauLogSolverToJson)
LUAU_ASSERT(logger);
}
std::optional<StackPusher> pushStack(AstNode* node)
@ -918,13 +915,9 @@ struct TypeChecker2
reportError(ExtraInformation{"Other overloads are also not viable: " + s}, call->func->location);
}
void visit(AstExprCall* call)
// Note: this is intentionally separated from `visit(AstExprCall*)` for stack allocation purposes.
void visitCall(AstExprCall* call)
{
visit(call->func, RValue);
for (AstExpr* arg : call->args)
visit(arg, RValue);
TypeArena* arena = &testArena;
Instantiation instantiation{TxnLog::empty(), arena, TypeLevel{}, stack.back()};
@ -1099,6 +1092,16 @@ struct TypeChecker2
reportOverloadResolutionErrors(call, overloads, expectedArgTypes, overloadsThatMatchArgCount, overloadsErrors);
}
void visit(AstExprCall* call)
{
visit(call->func, RValue);
for (AstExpr* arg : call->args)
visit(arg, RValue);
visitCall(call);
}
void visitExprName(AstExpr* expr, Location location, const std::string& propName, ValueContext context)
{
visit(expr, RValue);
@ -1169,9 +1172,9 @@ struct TypeChecker2
TypeId inferredArgTy = *argIt;
TypeId annotatedArgTy = lookupAnnotation(arg->annotation);
if (!isSubtype(annotatedArgTy, inferredArgTy, stack.back()))
if (!isSubtype(inferredArgTy, annotatedArgTy, stack.back()))
{
reportError(TypeMismatch{annotatedArgTy, inferredArgTy}, arg->location);
reportError(TypeMismatch{inferredArgTy, annotatedArgTy}, arg->location);
}
}
@ -1726,7 +1729,7 @@ struct TypeChecker2
}
}
for (size_t i = packsProvided; i < packsProvided; ++i)
for (size_t i = packsProvided; i < packsRequired; ++i)
{
if (alias->typePackParams[i].defaultValue)
{
@ -1948,7 +1951,7 @@ struct TypeChecker2
{
module->errors.emplace_back(location, sourceModule->name, std::move(data));
if (FFlag::DebugLuauLogSolverToJson)
if (logger)
logger->captureTypeCheckError(module->errors.back());
}
@ -2053,8 +2056,8 @@ struct TypeChecker2
if (findTablePropertyRespectingMeta(builtinTypes, module->errors, ty, prop, location))
return true;
else if (tt->indexer && isPrim(tt->indexer->indexResultType, PrimitiveType::String))
return tt->indexer->indexResultType;
else if (tt->indexer && isPrim(tt->indexer->indexType, PrimitiveType::String))
return true;
else
return false;

View file

@ -937,9 +937,9 @@ void TypeChecker::check(const ScopePtr& scope, const AstStatAssign& assign)
TypeId right = nullptr;
Location loc = 0 == assign.values.size
? assign.location
: i < assign.values.size ? assign.values.data[i]->location : assign.values.data[assign.values.size - 1]->location;
Location loc = 0 == assign.values.size ? assign.location
: i < assign.values.size ? assign.values.data[i]->location
: assign.values.data[assign.values.size - 1]->location;
if (valueIter != valueEnd)
{
@ -3170,7 +3170,8 @@ TypeId TypeChecker::checkLValueBinding(const ScopePtr& scope, const AstExprIndex
property.location = expr.indexLocation;
return theType;
}
else if (FFlag::LuauDontExtendUnsealedRValueTables && ((ctx == ValueContext::LValue && lhsTable->state == TableState::Unsealed) || lhsTable->state == TableState::Free))
else if (FFlag::LuauDontExtendUnsealedRValueTables &&
((ctx == ValueContext::LValue && lhsTable->state == TableState::Unsealed) || lhsTable->state == TableState::Free))
{
TypeId theType = freshType(scope);
Property& property = lhsTable->props[name];
@ -3299,7 +3300,8 @@ TypeId TypeChecker::checkLValueBinding(const ScopePtr& scope, const AstExprIndex
property.location = expr.index->location;
return resultType;
}
else if (FFlag::LuauDontExtendUnsealedRValueTables && ((ctx == ValueContext::LValue && exprTable->state == TableState::Unsealed) || exprTable->state == TableState::Free))
else if (FFlag::LuauDontExtendUnsealedRValueTables &&
((ctx == ValueContext::LValue && exprTable->state == TableState::Unsealed) || exprTable->state == TableState::Free))
{
TypeId resultType = freshType(scope);
Property& property = exprTable->props[value->value.data];
@ -3321,7 +3323,8 @@ TypeId TypeChecker::checkLValueBinding(const ScopePtr& scope, const AstExprIndex
exprTable->indexer = TableIndexer{anyIfNonstrict(indexType), anyIfNonstrict(resultType)};
return resultType;
}
else if (FFlag::LuauDontExtendUnsealedRValueTables && ((ctx == ValueContext::LValue && exprTable->state == TableState::Unsealed) || exprTable->state == TableState::Free))
else if (FFlag::LuauDontExtendUnsealedRValueTables &&
((ctx == ValueContext::LValue && exprTable->state == TableState::Unsealed) || exprTable->state == TableState::Free))
{
TypeId indexerType = freshType(exprTable->level);
unify(indexType, indexerType, scope, expr.location);

View file

@ -434,6 +434,14 @@ std::optional<TypeId> TypeReducer::intersectionType(TypeId left, TypeId right)
return std::nullopt; // error & T ~ error & T
else if (get<ErrorType>(right))
return std::nullopt; // T & error ~ T & error
else if (get<BlockedType>(left))
return std::nullopt; // *blocked* & T ~ *blocked* & T
else if (get<BlockedType>(right))
return std::nullopt; // T & *blocked* ~ T & *blocked*
else if (get<PendingExpansionType>(left))
return std::nullopt; // *pending* & T ~ *pending* & T
else if (get<PendingExpansionType>(right))
return std::nullopt; // T & *pending* ~ T & *pending*
else if (auto ut = get<UnionType>(left))
return reduce(distribute<IntersectionType>(begin(ut), end(ut), &TypeReducer::intersectionType, right)); // (A | B) & T ~ (A & T) | (B & T)
else if (get<UnionType>(right))

View file

@ -117,7 +117,8 @@ std::pair<size_t, std::optional<size_t>> getParameterExtents(const TxnLog* log,
return {minCount, minCount + optionalCount};
}
TypePack extendTypePack(TypeArena& arena, NotNull<BuiltinTypes> builtinTypes, TypePackId pack, size_t length)
TypePack extendTypePack(
TypeArena& arena, NotNull<BuiltinTypes> builtinTypes, TypePackId pack, size_t length, std::vector<std::optional<TypeId>> overrides)
{
TypePack result;
@ -179,11 +180,22 @@ TypePack extendTypePack(TypeArena& arena, NotNull<BuiltinTypes> builtinTypes, Ty
TypePack newPack;
newPack.tail = arena.freshTypePack(ftp->scope);
size_t overridesIndex = 0;
while (result.head.size() < length)
{
newPack.head.push_back(arena.freshType(ftp->scope));
TypeId t;
if (overridesIndex < overrides.size() && overrides[overridesIndex])
{
t = *overrides[overridesIndex];
}
else
{
t = arena.freshType(ftp->scope);
}
newPack.head.push_back(t);
result.head.push_back(newPack.head.back());
overridesIndex++;
}
asMutable(pack)->ty.emplace<TypePack>(std::move(newPack));

View file

@ -312,7 +312,7 @@ TypePackId Widen::operator()(TypePackId tp)
return substitute(tp).value_or(tp);
}
static std::optional<TypeError> hasUnificationTooComplex(const ErrorVec& errors)
std::optional<TypeError> hasUnificationTooComplex(const ErrorVec& errors)
{
auto isUnificationTooComplex = [](const TypeError& te) {
return nullptr != get<UnificationTooComplex>(te);
@ -375,7 +375,6 @@ Unifier::Unifier(NotNull<Normalizer> normalizer, Mode mode, NotNull<Scope> scope
, variance(variance)
, sharedState(*normalizer->sharedState)
{
normalize = true;
LUAU_ASSERT(sharedState.iceHandler);
}
@ -561,6 +560,11 @@ void Unifier::tryUnify_(TypeId subTy, TypeId superTy, bool isFunctionCall, bool
else if (log.getMutable<FunctionType>(superTy) && log.getMutable<FunctionType>(subTy))
tryUnifyFunctions(subTy, superTy, isFunctionCall);
else if (auto table = log.get<PrimitiveType>(superTy); table && table->type == PrimitiveType::Table)
tryUnify(subTy, builtinTypes->emptyTableType, isFunctionCall, isIntersection);
else if (auto table = log.get<PrimitiveType>(subTy); table && table->type == PrimitiveType::Table)
tryUnify(builtinTypes->emptyTableType, superTy, isFunctionCall, isIntersection);
else if (log.getMutable<TableType>(superTy) && log.getMutable<TableType>(subTy))
{
tryUnifyTables(subTy, superTy, isIntersection);
@ -591,7 +595,7 @@ void Unifier::tryUnify_(TypeId subTy, TypeId superTy, bool isFunctionCall, bool
else if (log.get<NegationType>(superTy) || log.get<NegationType>(subTy))
tryUnifyNegations(subTy, superTy);
else if (FFlag::LuauUninhabitedSubAnything2 && !normalizer->isInhabited(subTy))
else if (FFlag::LuauUninhabitedSubAnything2 && checkInhabited && !normalizer->isInhabited(subTy))
{
}
@ -1769,6 +1773,12 @@ struct Resetter
void Unifier::tryUnifyTables(TypeId subTy, TypeId superTy, bool isIntersection)
{
if (isPrim(log.follow(subTy), PrimitiveType::Table))
subTy = builtinTypes->emptyTableType;
if (isPrim(log.follow(superTy), PrimitiveType::Table))
superTy = builtinTypes->emptyTableType;
TypeId activeSubTy = subTy;
TableType* superTable = log.getMutable<TableType>(superTy);
TableType* subTable = log.getMutable<TableType>(subTy);
@ -2092,7 +2102,7 @@ void Unifier::tryUnifyScalarShape(TypeId subTy, TypeId superTy, bool reversed)
TypeId osubTy = subTy;
TypeId osuperTy = superTy;
if (FFlag::LuauUninhabitedSubAnything2 && !normalizer->isInhabited(subTy))
if (FFlag::LuauUninhabitedSubAnything2 && checkInhabited && !normalizer->isInhabited(subTy))
return;
if (reversed)
@ -2682,6 +2692,7 @@ Unifier Unifier::makeChildUnifier()
{
Unifier u = Unifier{normalizer, mode, scope, location, variance, &log};
u.normalize = normalize;
u.checkInhabited = checkInhabited;
u.useScopes = useScopes;
return u;
}

View file

@ -6,6 +6,8 @@
#include <limits.h>
LUAU_FASTFLAGVARIABLE(LuauFixInterpStringMid, false)
namespace Luau
{
@ -640,7 +642,8 @@ Lexeme Lexer::readInterpolatedStringSection(Position start, Lexeme::Type formatT
}
consume();
Lexeme lexemeOutput(Location(start, position()), Lexeme::InterpStringBegin, &buffer[startOffset], offset - startOffset - 1);
Lexeme lexemeOutput(Location(start, position()), FFlag::LuauFixInterpStringMid ? formatType : Lexeme::InterpStringBegin,
&buffer[startOffset], offset - startOffset - 1);
return lexemeOutput;
}

View file

@ -1248,7 +1248,11 @@ std::pair<Location, AstTypeList> Parser::parseReturnTypeAnnotation()
{
AstType* returnType = parseTypeAnnotation(result, innerBegin);
return {Location{location, returnType->location}, AstTypeList{copy(&returnType, 1), varargAnnotation}};
// If parseTypeAnnotation parses nothing, then returnType->location.end only points at the last non-type-pack
// type to successfully parse. We need the span of the whole annotation.
Position endPos = result.size() == 1 ? location.end : returnType->location.end;
return {Location{location.begin, endPos}, AstTypeList{copy(&returnType, 1), varargAnnotation}};
}
return {location, AstTypeList{copy(result), varargAnnotation}};
@ -2623,8 +2627,6 @@ AstExpr* Parser::parseInterpString()
endLocation = currentLexeme.location;
Location startOfBrace = Location(endLocation.end, 1);
scratchData.assign(currentLexeme.data, currentLexeme.length);
if (!Lexer::fixupQuotedString(scratchData))

View file

@ -14,9 +14,11 @@ option(LUAU_STATIC_CRT "Link with the static CRT (/MT)" OFF)
option(LUAU_EXTERN_C "Use extern C for all APIs" OFF)
option(LUAU_NATIVE "Enable support for native code generation" OFF)
cmake_policy(SET CMP0054 NEW)
cmake_policy(SET CMP0091 NEW)
if(LUAU_STATIC_CRT)
cmake_minimum_required(VERSION 3.15)
cmake_policy(SET CMP0091 NEW)
set(CMAKE_MSVC_RUNTIME_LIBRARY "MultiThreaded$<$<CONFIG:Debug>:Debug>")
endif()
@ -88,9 +90,15 @@ set(LUAU_OPTIONS)
if(MSVC)
list(APPEND LUAU_OPTIONS /D_CRT_SECURE_NO_WARNINGS) # We need to use the portable CRT functions.
list(APPEND LUAU_OPTIONS /MP) # Distribute single project compilation across multiple cores
list(APPEND LUAU_OPTIONS "/we4018") # Signed/unsigned mismatch
list(APPEND LUAU_OPTIONS "/we4388") # Also signed/unsigned mismatch
else()
list(APPEND LUAU_OPTIONS -Wall) # All warnings
list(APPEND LUAU_OPTIONS -Wsign-compare) # This looks to be included in -Wall for GCC but not clang
endif()
if (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
list(APPEND LUAU_OPTIONS /MP) # Distribute single project compilation across multiple cores
endif()
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
@ -115,7 +123,7 @@ endif()
set(ISOCLINE_OPTIONS)
if (NOT MSVC)
if (NOT CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
list(APPEND ISOCLINE_OPTIONS -Wno-unused-function)
endif()
@ -137,7 +145,7 @@ if(LUAU_NATIVE)
target_compile_definitions(Luau.VM PUBLIC LUA_CUSTOM_EXECUTION=1)
endif()
if (MSVC AND MSVC_VERSION GREATER_EQUAL 1924)
if (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC" AND MSVC_VERSION GREATER_EQUAL 1924)
# disable partial redundancy elimination which regresses interpreter codegen substantially in VS2022:
# https://developercommunity.visualstudio.com/t/performance-regression-on-a-complex-interpreter-lo/1631863
set_source_files_properties(VM/src/lvmexecute.cpp PROPERTIES COMPILE_FLAGS /d2ssa-pre-)

View file

@ -7,6 +7,8 @@ namespace Luau
{
namespace CodeGen
{
namespace A64
{
enum class AddressKindA64 : uint8_t
{
@ -49,5 +51,6 @@ struct AddressA64
using mem = AddressA64;
} // namespace A64
} // namespace CodeGen
} // namespace Luau

View file

@ -13,6 +13,8 @@ namespace Luau
{
namespace CodeGen
{
namespace A64
{
class AssemblyBuilderA64
{
@ -157,5 +159,6 @@ private:
uint32_t* codeEnd = nullptr;
};
} // namespace A64
} // namespace CodeGen
} // namespace Luau

View file

@ -14,6 +14,8 @@ namespace Luau
{
namespace CodeGen
{
namespace X64
{
enum class RoundingModeX64
{
@ -242,5 +244,6 @@ private:
uint8_t* codeEnd = nullptr;
};
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -5,6 +5,8 @@ namespace Luau
{
namespace CodeGen
{
namespace A64
{
enum class ConditionA64
{
@ -33,5 +35,6 @@ enum class ConditionA64
Count
};
} // namespace A64
} // namespace CodeGen
} // namespace Luau

View file

@ -1,16 +1,26 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include <utility>
#include <stdint.h>
namespace Luau
{
namespace CodeGen
{
struct IrBlock;
struct IrFunction;
void updateUseCounts(IrFunction& function);
void updateLastUseLocations(IrFunction& function);
// Returns how many values are coming into the block (live in) and how many are coming out of the block (live out)
std::pair<uint32_t, uint32_t> getLiveInOutValueCount(IrFunction& function, IrBlock& block);
uint32_t getLiveInValueCount(IrFunction& function, IrBlock& block);
uint32_t getLiveOutValueCount(IrFunction& function, IrBlock& block);
} // namespace CodeGen
} // namespace Luau

View file

@ -27,6 +27,12 @@ struct IrBuilder
bool isInternalBlock(IrOp block);
void beginBlock(IrOp block);
void loadAndCheckTag(IrOp loc, uint8_t tag, IrOp fallback);
// Clones all instructions into the current block
// Source block that is cloned cannot use values coming in from a predecessor
void clone(const IrBlock& source, bool removeCurrentTerminator);
IrOp constBool(bool value);
IrOp constInt(int value);
IrOp constUint(unsigned value);

View file

@ -108,6 +108,13 @@ enum class IrCmd : uint8_t
MOD_NUM,
POW_NUM,
// Get the minimum/maximum of two numbers
// If one of the values is NaN, 'B' is returned as the result
// A, B: double
// In final x64 lowering, B can also be Rn or Kn
MIN_NUM,
MAX_NUM,
// Negate a double number
// A: double
UNM_NUM,
@ -197,6 +204,29 @@ enum class IrCmd : uint8_t
// This is used to recover after calling a variadic function
ADJUST_STACK_TO_TOP,
// Execute fastcall builtin function in-place
// A: builtin
// B: Rn (result start)
// C: Rn (argument start)
// D: Rn or Kn or a boolean that's false (optional second argument)
// E: int (argument count or -1 to use all arguments up to stack top)
// F: int (result count or -1 to preserve all results and adjust stack top)
FASTCALL,
// Call the fastcall builtin function
// A: builtin
// B: Rn (result start)
// C: Rn (argument start)
// D: Rn or Kn or a boolean that's false (optional second argument)
// E: int (argument count or -1 to use all arguments up to stack top)
// F: int (result count or -1 to preserve all results and adjust stack top)
INVOKE_FASTCALL,
// Check that fastcall builtin function invocation was successful (negative result count jumps to fallback)
// A: int (result count)
// B: block (fallback)
CHECK_FASTCALL_RES,
// Fallback functions
// Perform an arithmetic operation on TValues of any type
@ -351,39 +381,26 @@ enum class IrCmd : uint8_t
// C: int (result count or -1 to return all values up to stack top)
LOP_RETURN,
// Perform a fast call of a built-in function
// A: unsigned int (bytecode instruction index)
// B: Rn (argument start)
// C: int (argument count or -1 use all arguments up to stack top)
// D: block (fallback)
// Note: return values are placed starting from Rn specified in 'B'
LOP_FASTCALL,
// Perform a fast call of a built-in function using 1 register argument
// A: unsigned int (bytecode instruction index)
// B: Rn (result start)
// C: Rn (arg1)
// D: block (fallback)
LOP_FASTCALL1,
// Perform a fast call of a built-in function using 2 register arguments
// A: unsigned int (bytecode instruction index)
// B: Rn (result start)
// C: Rn (arg1)
// D: Rn (arg2)
// E: block (fallback)
LOP_FASTCALL2,
// Perform a fast call of a built-in function using 1 register argument and 1 constant argument
// A: unsigned int (bytecode instruction index)
// B: Rn (result start)
// C: Rn (arg1)
// D: Kn (arg2)
// E: block (fallback)
LOP_FASTCALL2K,
// Adjust loop variables for one iteration of a generic for loop, jump back to the loop header if loop needs to continue
// A: Rn (loop variable start, updates Rn+2 Rn+3 Rn+4)
// B: int (loop variable count, is more than 2, additional registers are set to nil)
// C: block (repeat)
// D: block (exit)
LOP_FORGLOOP,
// Handle LOP_FORGLOOP fallback when variable being iterated is not a table
// A: unsigned int (bytecode instruction index)
// B: Rn (loop state start, updates Rn+2 Rn+3 Rn+4 Rn+5)
// C: int (extra variable count or -1 for ipairs-style iteration)
// D: block (repeat)
// E: block (exit)
LOP_FORGLOOP_FALLBACK,
// Fallback for generic for loop preparation when iterating over builtin pairs/ipairs
// It raises an error if 'B' register is not a function
// A: unsigned int (bytecode instruction index)
// B: Rn
// C: block (forgloop location)
LOP_FORGPREP_XNEXT_FALLBACK,
// Perform `and` or `or` operation (selecting lhs or rhs based on whether the lhs is truthy) and put the result into target register
@ -462,7 +479,7 @@ enum class IrCmd : uint8_t
// Prepare loop variables for a generic for loop, jump to the loop backedge unconditionally
// A: unsigned int (bytecode instruction index)
// B: Rn (loop state, updates Rn Rn+1 Rn+2)
// B: Rn (loop state start, updates Rn Rn+1 Rn+2)
// C: block
FALLBACK_FORGPREP,
@ -577,8 +594,8 @@ struct IrInst
uint16_t useCount = 0;
// Location of the result (optional)
RegisterX64 regX64 = noreg;
RegisterA64 regA64{KindA64::none, 0};
X64::RegisterX64 regX64 = X64::noreg;
A64::RegisterA64 regA64 = A64::noreg;
bool reusedReg = false;
};
@ -587,6 +604,7 @@ enum class IrBlockKind : uint8_t
Bytecode,
Fallback,
Internal,
Linearized,
Dead,
};

View file

@ -133,6 +133,8 @@ inline bool hasResult(IrCmd cmd)
case IrCmd::DIV_NUM:
case IrCmd::MOD_NUM:
case IrCmd::POW_NUM:
case IrCmd::MIN_NUM:
case IrCmd::MAX_NUM:
case IrCmd::UNM_NUM:
case IrCmd::NOT_ANY:
case IrCmd::TABLE_LEN:
@ -141,6 +143,7 @@ inline bool hasResult(IrCmd cmd)
case IrCmd::NUM_TO_INDEX:
case IrCmd::INT_TO_NUM:
case IrCmd::SUBSTITUTE:
case IrCmd::INVOKE_FASTCALL:
return true;
default:
break;
@ -151,6 +154,9 @@ inline bool hasResult(IrCmd cmd)
inline bool hasSideEffects(IrCmd cmd)
{
if (cmd == IrCmd::INVOKE_FASTCALL)
return true;
// Instructions that don't produce a result most likely have other side-effects to make them useful
// Right now, a full switch would mirror the 'hasResult' function, so we use this simple condition
return !hasResult(cmd);
@ -164,6 +170,10 @@ inline bool isPseudo(IrCmd cmd)
bool isGCO(uint8_t tag);
// Manually add or remove use of an operand
void addUse(IrFunction& function, IrOp op);
void removeUse(IrFunction& function, IrOp op);
// Remove a single instruction
void kill(IrFunction& function, IrInst& inst);

View file

@ -10,6 +10,8 @@ namespace Luau
{
namespace CodeGen
{
namespace X64
{
enum class CategoryX64 : uint8_t
{
@ -138,5 +140,6 @@ constexpr OperandX64 operator+(RegisterX64 base, OperandX64 op)
return op;
}
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -9,6 +9,8 @@ namespace Luau
{
namespace CodeGen
{
namespace A64
{
enum class KindA64 : uint8_t
{
@ -33,6 +35,8 @@ struct RegisterA64
}
};
constexpr RegisterA64 noreg{KindA64::none, 0};
constexpr RegisterA64 w0{KindA64::w, 0};
constexpr RegisterA64 w1{KindA64::w, 1};
constexpr RegisterA64 w2{KindA64::w, 2};
@ -101,5 +105,6 @@ constexpr RegisterA64 xzr{KindA64::x, 31};
constexpr RegisterA64 sp{KindA64::none, 31};
} // namespace A64
} // namespace CodeGen
} // namespace Luau

View file

@ -9,6 +9,8 @@ namespace Luau
{
namespace CodeGen
{
namespace X64
{
enum class SizeX64 : uint8_t
{
@ -133,5 +135,6 @@ constexpr RegisterX64 qwordReg(RegisterX64 reg)
return RegisterX64{SizeX64::qword, reg.index};
}
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -21,10 +21,10 @@ public:
virtual void start() = 0;
virtual void spill(int espOffset, RegisterX64 reg) = 0;
virtual void save(RegisterX64 reg) = 0;
virtual void spill(int espOffset, X64::RegisterX64 reg) = 0;
virtual void save(X64::RegisterX64 reg) = 0;
virtual void allocStack(int size) = 0;
virtual void setupFrameReg(RegisterX64 reg, int espOffset) = 0;
virtual void setupFrameReg(X64::RegisterX64 reg, int espOffset) = 0;
virtual void finish() = 0;

View file

@ -17,10 +17,10 @@ public:
void start() override;
void spill(int espOffset, RegisterX64 reg) override;
void save(RegisterX64 reg) override;
void spill(int espOffset, X64::RegisterX64 reg) override;
void save(X64::RegisterX64 reg) override;
void allocStack(int size) override;
void setupFrameReg(RegisterX64 reg, int espOffset) override;
void setupFrameReg(X64::RegisterX64 reg, int espOffset) override;
void finish() override;

View file

@ -27,10 +27,10 @@ public:
void start() override;
void spill(int espOffset, RegisterX64 reg) override;
void save(RegisterX64 reg) override;
void spill(int espOffset, X64::RegisterX64 reg) override;
void save(X64::RegisterX64 reg) override;
void allocStack(int size) override;
void setupFrameReg(RegisterX64 reg, int espOffset) override;
void setupFrameReg(X64::RegisterX64 reg, int espOffset) override;
void finish() override;
@ -45,7 +45,7 @@ private:
std::vector<UnwindCodeWin> unwindCodes;
uint8_t prologSize = 0;
RegisterX64 frameReg = rax; // rax means that frame register is not used
X64::RegisterX64 frameReg = X64::rax; // rax means that frame register is not used
uint8_t frameRegOffset = 0;
uint32_t stackOffset = 0;

View file

@ -9,6 +9,8 @@ namespace Luau
{
namespace CodeGen
{
namespace A64
{
static const uint8_t codeForCondition[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
static_assert(sizeof(codeForCondition) / sizeof(codeForCondition[0]) == size_t(ConditionA64::Count), "all conditions have to be covered");
@ -719,5 +721,6 @@ void AssemblyBuilderA64::log(AddressA64 addr)
text.append("]");
}
} // namespace A64
} // namespace CodeGen
} // namespace Luau
} // namespace Luau

View file

@ -11,6 +11,9 @@ namespace Luau
{
namespace CodeGen
{
namespace X64
{
// TODO: more assertions on operand sizes
static const uint8_t codeForCondition[] = {
@ -1475,5 +1478,6 @@ const char* AssemblyBuilderX64::getRegisterName(RegisterX64 reg) const
return names[size_t(reg.size)][reg.index];
}
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -41,7 +41,7 @@ namespace CodeGen
constexpr uint32_t kFunctionAlignment = 32;
static void assembleHelpers(AssemblyBuilderX64& build, ModuleHelpers& helpers)
static void assembleHelpers(X64::AssemblyBuilderX64& build, ModuleHelpers& helpers)
{
if (build.logText)
build.logAppend("; exitContinueVm\n");
@ -59,7 +59,7 @@ static void assembleHelpers(AssemblyBuilderX64& build, ModuleHelpers& helpers)
emitContinueCallInVm(build);
}
static NativeProto* assembleFunction(AssemblyBuilderX64& build, NativeState& data, ModuleHelpers& helpers, Proto* proto, AssemblyOptions options)
static NativeProto* assembleFunction(X64::AssemblyBuilderX64& build, NativeState& data, ModuleHelpers& helpers, Proto* proto, AssemblyOptions options)
{
NativeProto* result = new NativeProto();
@ -78,7 +78,7 @@ static NativeProto* assembleFunction(AssemblyBuilderX64& build, NativeState& dat
build.logAppend("\n");
}
build.align(kFunctionAlignment, AlignmentDataX64::Ud2);
build.align(kFunctionAlignment, X64::AlignmentDataX64::Ud2);
Label start = build.setLabel();
@ -92,7 +92,7 @@ static NativeProto* assembleFunction(AssemblyBuilderX64& build, NativeState& dat
optimizeMemoryOperandsX64(builder.function);
IrLoweringX64 lowering(build, helpers, data, proto, builder.function);
X64::IrLoweringX64 lowering(build, helpers, data, proto, builder.function);
lowering.lower(options);
@ -213,7 +213,7 @@ void create(lua_State* L)
initFallbackTable(data);
initHelperFunctions(data);
if (!x64::initEntryFunction(data))
if (!X64::initEntryFunction(data))
{
destroyNativeState(L);
return;
@ -251,7 +251,7 @@ void compile(lua_State* L, int idx)
if (!getNativeState(L))
return;
AssemblyBuilderX64 build(/* logText= */ false);
X64::AssemblyBuilderX64 build(/* logText= */ false);
NativeState* data = getNativeState(L);
std::vector<Proto*> protos;
@ -302,7 +302,7 @@ std::string getAssembly(lua_State* L, int idx, AssemblyOptions options)
LUAU_ASSERT(lua_isLfunction(L, idx));
const TValue* func = luaA_toobject(L, idx);
AssemblyBuilderX64 build(/* logText= */ options.includeAssembly);
X64::AssemblyBuilderX64 build(/* logText= */ options.includeAssembly);
NativeState data;
initFallbackTable(data);

View file

@ -38,7 +38,7 @@ namespace Luau
{
namespace CodeGen
{
namespace x64
namespace X64
{
bool initEntryFunction(NativeState& data)
@ -143,6 +143,6 @@ bool initEntryFunction(NativeState& data)
return true;
}
} // namespace x64
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -8,11 +8,11 @@ namespace CodeGen
struct NativeState;
namespace x64
namespace X64
{
bool initEntryFunction(NativeState& data);
} // namespace x64
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -5,7 +5,7 @@
#include "Luau/Bytecode.h"
#include "EmitCommonX64.h"
#include "IrTranslateBuiltins.h" // Used temporarily for shared definition of BuiltinImplResult
#include "IrRegAllocX64.h"
#include "NativeState.h"
#include "lstate.h"
@ -16,343 +16,135 @@ namespace Luau
{
namespace CodeGen
{
BuiltinImplResult emitBuiltinMathFloor(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
namespace X64
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_FLOOR\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
build.vroundsd(xmm0, xmm0, luauRegValue(arg), RoundingModeX64::RoundToNegativeInfinity);
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
void emitBuiltinMathFloor(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
ScopedRegX64 tmp{regs, SizeX64::xmmword};
build.vroundsd(tmp.reg, tmp.reg, luauRegValue(arg), RoundingModeX64::RoundToNegativeInfinity);
build.vmovsd(luauRegValue(ra), tmp.reg);
}
BuiltinImplResult emitBuiltinMathCeil(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathCeil(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_CEIL\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
build.vroundsd(xmm0, xmm0, luauRegValue(arg), RoundingModeX64::RoundToPositiveInfinity);
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
ScopedRegX64 tmp{regs, SizeX64::xmmword};
build.vroundsd(tmp.reg, tmp.reg, luauRegValue(arg), RoundingModeX64::RoundToPositiveInfinity);
build.vmovsd(luauRegValue(ra), tmp.reg);
}
BuiltinImplResult emitBuiltinMathSqrt(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathSqrt(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_SQRT\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
build.vsqrtsd(xmm0, xmm0, luauRegValue(arg));
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
ScopedRegX64 tmp{regs, SizeX64::xmmword};
build.vsqrtsd(tmp.reg, tmp.reg, luauRegValue(arg));
build.vmovsd(luauRegValue(ra), tmp.reg);
}
BuiltinImplResult emitBuiltinMathAbs(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathAbs(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_ABS\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
build.vmovsd(xmm0, luauRegValue(arg));
build.vandpd(xmm0, xmm0, build.i64(~(1LL << 63)));
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
ScopedRegX64 tmp{regs, SizeX64::xmmword};
build.vmovsd(tmp.reg, luauRegValue(arg));
build.vandpd(tmp.reg, tmp.reg, build.i64(~(1LL << 63)));
build.vmovsd(luauRegValue(ra), tmp.reg);
}
static BuiltinImplResult emitBuiltinMathSingleArgFunc(
AssemblyBuilderX64& build, int nparams, int ra, int arg, int nresults, Label& fallback, const char* name, int32_t offset)
static void emitBuiltinMathSingleArgFunc(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, int arg, int32_t offset)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined %s\n", name);
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
regs.assertAllFree();
build.vmovsd(xmm0, luauRegValue(arg));
build.call(qword[rNativeContext + offset]);
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult emitBuiltinMathExp(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathExp(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
return emitBuiltinMathSingleArgFunc(build, nparams, ra, arg, nresults, fallback, "LBF_MATH_EXP", offsetof(NativeContext, libm_exp));
emitBuiltinMathSingleArgFunc(regs, build, ra, arg, offsetof(NativeContext, libm_exp));
}
BuiltinImplResult emitBuiltinMathDeg(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathFmod(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_DEG\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
const double rpd = (3.14159265358979323846 / 180.0);
build.vmovsd(xmm0, luauRegValue(arg));
build.vdivsd(xmm0, xmm0, build.f64(rpd));
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult emitBuiltinMathRad(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_RAD\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
const double rpd = (3.14159265358979323846 / 180.0);
build.vmovsd(xmm0, luauRegValue(arg));
build.vmulsd(xmm0, xmm0, build.f64(rpd));
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult emitBuiltinMathFmod(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
{
if (nparams < 2 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_FMOD\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
// TODO: jumpIfTagIsNot can be generalized to take OperandX64 and then we can use it here; let's wait until we see this more though
build.cmp(dword[args + offsetof(TValue, tt)], LUA_TNUMBER);
build.jcc(ConditionX64::NotEqual, fallback);
regs.assertAllFree();
build.vmovsd(xmm0, luauRegValue(arg));
build.vmovsd(xmm1, qword[args + offsetof(TValue, value)]);
build.call(qword[rNativeContext + offsetof(NativeContext, libm_fmod)]);
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult emitBuiltinMathPow(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathPow(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams < 2 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_POW\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
// TODO: jumpIfTagIsNot can be generalized to take OperandX64 and then we can use it here; let's wait until we see this more though
build.cmp(dword[args + offsetof(TValue, tt)], LUA_TNUMBER);
build.jcc(ConditionX64::NotEqual, fallback);
regs.assertAllFree();
build.vmovsd(xmm0, luauRegValue(arg));
build.vmovsd(xmm1, qword[args + offsetof(TValue, value)]);
build.call(qword[rNativeContext + offsetof(NativeContext, libm_pow)]);
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult emitBuiltinMathMin(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathAsin(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams != 2 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_MIN\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
// TODO: jumpIfTagIsNot can be generalized to take OperandX64 and then we can use it here; let's wait until we see this more though
build.cmp(dword[args + offsetof(TValue, tt)], LUA_TNUMBER);
build.jcc(ConditionX64::NotEqual, fallback);
build.vmovsd(xmm0, qword[args + offsetof(TValue, value)]);
build.vminsd(xmm0, xmm0, luauRegValue(arg));
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
emitBuiltinMathSingleArgFunc(regs, build, ra, arg, offsetof(NativeContext, libm_asin));
}
BuiltinImplResult emitBuiltinMathMax(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathSin(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams != 2 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_MAX\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
// TODO: jumpIfTagIsNot can be generalized to take OperandX64 and then we can use it here; let's wait until we see this more though
build.cmp(dword[args + offsetof(TValue, tt)], LUA_TNUMBER);
build.jcc(ConditionX64::NotEqual, fallback);
build.vmovsd(xmm0, qword[args + offsetof(TValue, value)]);
build.vmaxsd(xmm0, xmm0, luauRegValue(arg));
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
emitBuiltinMathSingleArgFunc(regs, build, ra, arg, offsetof(NativeContext, libm_sin));
}
BuiltinImplResult emitBuiltinMathAsin(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathSinh(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
return emitBuiltinMathSingleArgFunc(build, nparams, ra, arg, nresults, fallback, "LBF_MATH_ASIN", offsetof(NativeContext, libm_asin));
emitBuiltinMathSingleArgFunc(regs, build, ra, arg, offsetof(NativeContext, libm_sinh));
}
BuiltinImplResult emitBuiltinMathSin(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathAcos(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
return emitBuiltinMathSingleArgFunc(build, nparams, ra, arg, nresults, fallback, "LBF_MATH_SIN", offsetof(NativeContext, libm_sin));
emitBuiltinMathSingleArgFunc(regs, build, ra, arg, offsetof(NativeContext, libm_acos));
}
BuiltinImplResult emitBuiltinMathSinh(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathCos(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
return emitBuiltinMathSingleArgFunc(build, nparams, ra, arg, nresults, fallback, "LBF_MATH_SINH", offsetof(NativeContext, libm_sinh));
emitBuiltinMathSingleArgFunc(regs, build, ra, arg, offsetof(NativeContext, libm_cos));
}
BuiltinImplResult emitBuiltinMathAcos(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathCosh(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
return emitBuiltinMathSingleArgFunc(build, nparams, ra, arg, nresults, fallback, "LBF_MATH_ACOS", offsetof(NativeContext, libm_acos));
emitBuiltinMathSingleArgFunc(regs, build, ra, arg, offsetof(NativeContext, libm_cosh));
}
BuiltinImplResult emitBuiltinMathCos(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathAtan(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
return emitBuiltinMathSingleArgFunc(build, nparams, ra, arg, nresults, fallback, "LBF_MATH_COS", offsetof(NativeContext, libm_cos));
emitBuiltinMathSingleArgFunc(regs, build, ra, arg, offsetof(NativeContext, libm_atan));
}
BuiltinImplResult emitBuiltinMathCosh(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathTan(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
return emitBuiltinMathSingleArgFunc(build, nparams, ra, arg, nresults, fallback, "LBF_MATH_COSH", offsetof(NativeContext, libm_cosh));
emitBuiltinMathSingleArgFunc(regs, build, ra, arg, offsetof(NativeContext, libm_tan));
}
BuiltinImplResult emitBuiltinMathAtan(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathTanh(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
return emitBuiltinMathSingleArgFunc(build, nparams, ra, arg, nresults, fallback, "LBF_MATH_ATAN", offsetof(NativeContext, libm_atan));
emitBuiltinMathSingleArgFunc(regs, build, ra, arg, offsetof(NativeContext, libm_tanh));
}
BuiltinImplResult emitBuiltinMathTan(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathAtan2(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
return emitBuiltinMathSingleArgFunc(build, nparams, ra, arg, nresults, fallback, "LBF_MATH_TAN", offsetof(NativeContext, libm_tan));
}
BuiltinImplResult emitBuiltinMathTanh(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
{
return emitBuiltinMathSingleArgFunc(build, nparams, ra, arg, nresults, fallback, "LBF_MATH_TANH", offsetof(NativeContext, libm_tanh));
}
BuiltinImplResult emitBuiltinMathAtan2(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
{
if (nparams < 2 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_ATAN2\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
// TODO: jumpIfTagIsNot can be generalized to take OperandX64 and then we can use it here; let's wait until we see this more though
build.cmp(dword[args + offsetof(TValue, tt)], LUA_TNUMBER);
build.jcc(ConditionX64::NotEqual, fallback);
regs.assertAllFree();
build.vmovsd(xmm0, luauRegValue(arg));
build.vmovsd(xmm1, qword[args + offsetof(TValue, value)]);
build.call(qword[rNativeContext + offsetof(NativeContext, libm_atan2)]);
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult emitBuiltinMathLog10(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathLog10(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
return emitBuiltinMathSingleArgFunc(build, nparams, ra, arg, nresults, fallback, "LBF_MATH_LOG10", offsetof(NativeContext, libm_log10));
emitBuiltinMathSingleArgFunc(regs, build, ra, arg, offsetof(NativeContext, libm_log10));
}
BuiltinImplResult emitBuiltinMathLog(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathLog(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_LOG\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
regs.assertAllFree();
build.vmovsd(xmm0, luauRegValue(arg));
if (nparams == 1)
@ -367,19 +159,15 @@ BuiltinImplResult emitBuiltinMathLog(AssemblyBuilderX64& build, int nparams, int
RegisterX64 tmp = rbx;
OperandX64 arg2value = qword[args + offsetof(TValue, value)];
// TODO: jumpIfTagIsNot can be generalized to take OperandX64 and then we can use it here; let's wait until we see this more though
build.cmp(dword[args + offsetof(TValue, tt)], LUA_TNUMBER);
build.jcc(ConditionX64::NotEqual, fallback);
build.vmovsd(xmm1, arg2value);
jumpOnNumberCmp(build, noreg, build.f64(2.0), xmm1, ConditionX64::NotEqual, log10check);
jumpOnNumberCmp(build, noreg, build.f64(2.0), xmm1, IrCondition::NotEqual, log10check);
build.call(qword[rNativeContext + offsetof(NativeContext, libm_log2)]);
build.jmp(exit);
build.setLabel(log10check);
jumpOnNumberCmp(build, noreg, build.f64(10.0), xmm1, ConditionX64::NotEqual, logdivlog);
jumpOnNumberCmp(build, noreg, build.f64(10.0), xmm1, IrCondition::NotEqual, logdivlog);
build.call(qword[rNativeContext + offsetof(NativeContext, libm_log10)]);
build.jmp(exit);
@ -402,28 +190,11 @@ BuiltinImplResult emitBuiltinMathLog(AssemblyBuilderX64& build, int nparams, int
}
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult emitBuiltinMathLdexp(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathLdexp(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams < 2 || nresults > 1)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_LDEXP\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
// TODO: jumpIfTagIsNot can be generalized to take OperandX64 and then we can use it here; let's wait until we see this more though
build.cmp(dword[args + offsetof(TValue, tt)], LUA_TNUMBER);
build.jcc(ConditionX64::NotEqual, fallback);
regs.assertAllFree();
build.vmovsd(xmm0, luauRegValue(arg));
if (build.abi == ABIX64::Windows)
@ -434,48 +205,27 @@ BuiltinImplResult emitBuiltinMathLdexp(AssemblyBuilderX64& build, int nparams, i
build.call(qword[rNativeContext + offsetof(NativeContext, libm_ldexp)]);
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult emitBuiltinMathRound(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathRound(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
ScopedRegX64 tmp0{regs, SizeX64::xmmword};
ScopedRegX64 tmp1{regs, SizeX64::xmmword};
ScopedRegX64 tmp2{regs, SizeX64::xmmword};
if (build.logText)
build.logAppend("; inlined LBF_MATH_ROUND\n");
build.vmovsd(tmp0.reg, luauRegValue(arg));
build.vandpd(tmp1.reg, tmp0.reg, build.f64x2(-0.0, -0.0));
build.vmovsd(tmp2.reg, build.i64(0x3fdfffffffffffff)); // 0.49999999999999994
build.vorpd(tmp1.reg, tmp1.reg, tmp2.reg);
build.vaddsd(tmp0.reg, tmp0.reg, tmp1.reg);
build.vroundsd(tmp0.reg, tmp0.reg, tmp0.reg, RoundingModeX64::RoundToZero);
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
build.vmovsd(xmm0, luauRegValue(arg));
build.vandpd(xmm1, xmm0, build.f64x2(-0.0, -0.0));
build.vmovsd(xmm2, build.i64(0x3fdfffffffffffff)); // 0.49999999999999994
build.vorpd(xmm1, xmm1, xmm2);
build.vaddsd(xmm0, xmm0, xmm1);
build.vroundsd(xmm0, xmm0, xmm0, RoundingModeX64::RoundToZero);
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
build.vmovsd(luauRegValue(ra), tmp0.reg);
}
BuiltinImplResult emitBuiltinMathFrexp(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathFrexp(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams < 1 || nresults > 2)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_FREXP\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
regs.assertAllFree();
build.vmovsd(xmm0, luauRegValue(arg));
if (build.abi == ABIX64::Windows)
@ -487,26 +237,13 @@ BuiltinImplResult emitBuiltinMathFrexp(AssemblyBuilderX64& build, int nparams, i
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
build.vcvtsi2sd(xmm0, xmm0, dword[sTemporarySlot + 0]);
build.vmovsd(luauRegValue(ra + 1), xmm0);
build.mov(luauRegTag(ra + 1), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 2};
}
BuiltinImplResult emitBuiltinMathModf(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathModf(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams < 1 || nresults > 2)
return {BuiltinImplType::None, -1};
if (build.logText)
build.logAppend("; inlined LBF_MATH_MODF\n");
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
regs.assertAllFree();
build.vmovsd(xmm0, luauRegValue(arg));
if (build.abi == ABIX64::Windows)
@ -519,156 +256,109 @@ BuiltinImplResult emitBuiltinMathModf(AssemblyBuilderX64& build, int nparams, in
build.vmovsd(xmm1, qword[sTemporarySlot + 0]);
build.vmovsd(luauRegValue(ra), xmm1);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
build.vmovsd(luauRegValue(ra + 1), xmm0);
build.mov(luauRegTag(ra + 1), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 2};
}
BuiltinImplResult emitBuiltinMathSign(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltinMathSign(IrRegAllocX64& regs, AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
ScopedRegX64 tmp0{regs, SizeX64::xmmword};
ScopedRegX64 tmp1{regs, SizeX64::xmmword};
ScopedRegX64 tmp2{regs, SizeX64::xmmword};
ScopedRegX64 tmp3{regs, SizeX64::xmmword};
if (build.logText)
build.logAppend("; inlined LBF_MATH_SIGN\n");
build.vmovsd(tmp0.reg, luauRegValue(arg));
build.vxorpd(tmp1.reg, tmp1.reg, tmp1.reg);
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
build.vmovsd(xmm0, luauRegValue(arg));
build.vxorpd(xmm1, xmm1, xmm1);
// Set xmm2 to -1 if arg < 0, else 0
build.vcmpltsd(xmm2, xmm0, xmm1);
build.vmovsd(xmm3, build.f64(-1));
build.vandpd(xmm2, xmm2, xmm3);
// Set tmp2 to -1 if arg < 0, else 0
build.vcmpltsd(tmp2.reg, tmp0.reg, tmp1.reg);
build.vmovsd(tmp3.reg, build.f64(-1));
build.vandpd(tmp2.reg, tmp2.reg, tmp3.reg);
// Set mask bit to 1 if 0 < arg, else 0
build.vcmpltsd(xmm0, xmm1, xmm0);
build.vcmpltsd(tmp0.reg, tmp1.reg, tmp0.reg);
// Result = (mask-bit == 1) ? 1.0 : xmm2
// If arg < 0 then xmm2 is -1 and mask-bit is 0, result is -1
// If arg == 0 then xmm2 is 0 and mask-bit is 0, result is 0
// If arg > 0 then xmm2 is 0 and mask-bit is 1, result is 1
build.vblendvpd(xmm0, xmm2, build.f64x2(1, 1), xmm0);
// Result = (mask-bit == 1) ? 1.0 : tmp2
// If arg < 0 then tmp2 is -1 and mask-bit is 0, result is -1
// If arg == 0 then tmp2 is 0 and mask-bit is 0, result is 0
// If arg > 0 then tmp2 is 0 and mask-bit is 1, result is 1
build.vblendvpd(tmp0.reg, tmp2.reg, build.f64x2(1, 1), tmp0.reg);
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
build.vmovsd(luauRegValue(ra), tmp0.reg);
}
BuiltinImplResult emitBuiltinMathClamp(AssemblyBuilderX64& build, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
void emitBuiltin(IrRegAllocX64& regs, AssemblyBuilderX64& build, int bfid, int ra, int arg, IrOp args, int nparams, int nresults)
{
if (nparams < 3 || nresults > 1)
return {BuiltinImplType::None, -1};
OperandX64 argsOp = 0;
if (build.logText)
build.logAppend("; inlined LBF_MATH_CLAMP\n");
if (args.kind == IrOpKind::VmReg)
argsOp = luauRegAddress(args.index);
else if (args.kind == IrOpKind::VmConst)
argsOp = luauConstantAddress(args.index);
jumpIfTagIsNot(build, arg, LUA_TNUMBER, fallback);
// TODO: jumpIfTagIsNot can be generalized to take OperandX64 and then we can use it here; let's wait until we see this more though
build.cmp(dword[args + offsetof(TValue, tt)], LUA_TNUMBER);
build.jcc(ConditionX64::NotEqual, fallback);
// TODO: jumpIfTagIsNot can be generalized to take OperandX64 and then we can use it here; let's wait until we see this more though
build.cmp(dword[args + sizeof(TValue) + offsetof(TValue, tt)], LUA_TNUMBER);
build.jcc(ConditionX64::NotEqual, fallback);
RegisterX64 min = xmm1;
RegisterX64 max = xmm2;
build.vmovsd(min, qword[args + offsetof(TValue, value)]);
build.vmovsd(max, qword[args + sizeof(TValue) + offsetof(TValue, value)]);
jumpOnNumberCmp(build, noreg, min, max, ConditionX64::NotLessEqual, fallback);
build.vmaxsd(xmm0, min, luauRegValue(arg));
build.vminsd(xmm0, max, xmm0);
build.vmovsd(luauRegValue(ra), xmm0);
if (ra != arg)
build.mov(luauRegTag(ra), LUA_TNUMBER);
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult emitBuiltin(AssemblyBuilderX64& build, int bfid, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback)
{
switch (bfid)
{
case LBF_ASSERT:
// This builtin fast-path was already translated to IR
return {BuiltinImplType::None, -1};
case LBF_MATH_FLOOR:
return emitBuiltinMathFloor(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_CEIL:
return emitBuiltinMathCeil(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_SQRT:
return emitBuiltinMathSqrt(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_ABS:
return emitBuiltinMathAbs(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_EXP:
return emitBuiltinMathExp(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_DEG:
return emitBuiltinMathDeg(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_RAD:
return emitBuiltinMathRad(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_FMOD:
return emitBuiltinMathFmod(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_POW:
return emitBuiltinMathPow(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_MIN:
return emitBuiltinMathMin(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_MAX:
return emitBuiltinMathMax(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_ASIN:
return emitBuiltinMathAsin(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_SIN:
return emitBuiltinMathSin(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_SINH:
return emitBuiltinMathSinh(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_ACOS:
return emitBuiltinMathAcos(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_COS:
return emitBuiltinMathCos(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_COSH:
return emitBuiltinMathCosh(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_ATAN:
return emitBuiltinMathAtan(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_TAN:
return emitBuiltinMathTan(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_TANH:
return emitBuiltinMathTanh(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_ATAN2:
return emitBuiltinMathAtan2(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_LOG10:
return emitBuiltinMathLog10(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_LOG:
return emitBuiltinMathLog(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_LDEXP:
return emitBuiltinMathLdexp(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_ROUND:
return emitBuiltinMathRound(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_FREXP:
return emitBuiltinMathFrexp(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_MODF:
return emitBuiltinMathModf(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_SIGN:
return emitBuiltinMathSign(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_CLAMP:
return emitBuiltinMathClamp(build, nparams, ra, arg, args, nresults, fallback);
// These instructions are fully translated to IR
break;
case LBF_MATH_FLOOR:
return emitBuiltinMathFloor(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_CEIL:
return emitBuiltinMathCeil(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_SQRT:
return emitBuiltinMathSqrt(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_ABS:
return emitBuiltinMathAbs(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_EXP:
return emitBuiltinMathExp(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_FMOD:
return emitBuiltinMathFmod(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_POW:
return emitBuiltinMathPow(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_ASIN:
return emitBuiltinMathAsin(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_SIN:
return emitBuiltinMathSin(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_SINH:
return emitBuiltinMathSinh(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_ACOS:
return emitBuiltinMathAcos(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_COS:
return emitBuiltinMathCos(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_COSH:
return emitBuiltinMathCosh(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_ATAN:
return emitBuiltinMathAtan(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_TAN:
return emitBuiltinMathTan(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_TANH:
return emitBuiltinMathTanh(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_ATAN2:
return emitBuiltinMathAtan2(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_LOG10:
return emitBuiltinMathLog10(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_LOG:
return emitBuiltinMathLog(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_LDEXP:
return emitBuiltinMathLdexp(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_ROUND:
return emitBuiltinMathRound(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_FREXP:
return emitBuiltinMathFrexp(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_MODF:
return emitBuiltinMathModf(regs, build, nparams, ra, arg, argsOp, nresults);
case LBF_MATH_SIGN:
return emitBuiltinMathSign(regs, build, nparams, ra, arg, argsOp, nresults);
default:
return {BuiltinImplType::None, -1};
LUAU_ASSERT(!"missing x64 lowering");
break;
}
}
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -6,12 +6,18 @@ namespace Luau
namespace CodeGen
{
class AssemblyBuilderX64;
struct Label;
struct IrOp;
namespace X64
{
class AssemblyBuilderX64;
struct OperandX64;
struct BuiltinImplResult;
struct IrRegAllocX64;
BuiltinImplResult emitBuiltin(AssemblyBuilderX64& build, int bfid, int nparams, int ra, int arg, OperandX64 args, int nresults, Label& fallback);
void emitBuiltin(IrRegAllocX64& regs, AssemblyBuilderX64& build, int bfid, int ra, int arg, IrOp args, int nparams, int nresults);
} // namespace X64
} // namespace CodeGen
} // namespace Luau

29
CodeGen/src/EmitCommon.h Normal file
View file

@ -0,0 +1,29 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Label.h"
namespace Luau
{
namespace CodeGen
{
constexpr unsigned kTValueSizeLog2 = 4;
constexpr unsigned kLuaNodeSizeLog2 = 5;
constexpr unsigned kLuaNodeTagMask = 0xf;
constexpr unsigned kNextBitOffset = 4;
constexpr unsigned kOffsetOfLuaNodeTag = 12; // offsetof cannot be used on a bit field
constexpr unsigned kOffsetOfLuaNodeNext = 12; // offsetof cannot be used on a bit field
constexpr unsigned kOffsetOfInstructionC = 3;
// Leaf functions that are placed in every module to perform common instruction sequences
struct ModuleHelpers
{
Label exitContinueVm;
Label exitNoContinueVm;
Label continueCallInVm;
};
} // namespace CodeGen
} // namespace Luau

View file

@ -2,6 +2,7 @@
#include "EmitCommonX64.h"
#include "Luau/AssemblyBuilderX64.h"
#include "Luau/IrData.h"
#include "CustomExecUtils.h"
#include "NativeState.h"
@ -13,8 +14,10 @@ namespace Luau
{
namespace CodeGen
{
namespace X64
{
void jumpOnNumberCmp(AssemblyBuilderX64& build, RegisterX64 tmp, OperandX64 lhs, OperandX64 rhs, ConditionX64 cond, Label& label)
void jumpOnNumberCmp(AssemblyBuilderX64& build, RegisterX64 tmp, OperandX64 lhs, OperandX64 rhs, IrCondition cond, Label& label)
{
// Refresher on comi/ucomi EFLAGS:
// CF only: less
@ -35,23 +38,23 @@ void jumpOnNumberCmp(AssemblyBuilderX64& build, RegisterX64 tmp, OperandX64 lhs,
// And because of NaN, integer check interchangeability like 'not less or equal' <-> 'greater' does not hold
switch (cond)
{
case ConditionX64::NotLessEqual:
case IrCondition::NotLessEqual:
// (b < a) is the same as !(a <= b). jnae checks CF=1 which means < or NaN
build.jcc(ConditionX64::NotAboveEqual, label);
break;
case ConditionX64::LessEqual:
case IrCondition::LessEqual:
// (b >= a) is the same as (a <= b). jae checks CF=0 which means >= and not NaN
build.jcc(ConditionX64::AboveEqual, label);
break;
case ConditionX64::NotLess:
case IrCondition::NotLess:
// (b <= a) is the same as !(a < b). jna checks CF=1 or ZF=1 which means <= or NaN
build.jcc(ConditionX64::NotAbove, label);
break;
case ConditionX64::Less:
case IrCondition::Less:
// (b > a) is the same as (a < b). ja checks CF=0 and ZF=0 which means > and not NaN
build.jcc(ConditionX64::Above, label);
break;
case ConditionX64::NotEqual:
case IrCondition::NotEqual:
// ZF=0 or PF=1 means != or NaN
build.jcc(ConditionX64::NotZero, label);
build.jcc(ConditionX64::Parity, label);
@ -61,25 +64,25 @@ void jumpOnNumberCmp(AssemblyBuilderX64& build, RegisterX64 tmp, OperandX64 lhs,
}
}
void jumpOnAnyCmpFallback(AssemblyBuilderX64& build, int ra, int rb, ConditionX64 cond, Label& label)
void jumpOnAnyCmpFallback(AssemblyBuilderX64& build, int ra, int rb, IrCondition cond, Label& label)
{
build.mov(rArg1, rState);
build.lea(rArg2, luauRegAddress(ra));
build.lea(rArg3, luauRegAddress(rb));
if (cond == ConditionX64::NotLessEqual || cond == ConditionX64::LessEqual)
if (cond == IrCondition::NotLessEqual || cond == IrCondition::LessEqual)
build.call(qword[rNativeContext + offsetof(NativeContext, luaV_lessequal)]);
else if (cond == ConditionX64::NotLess || cond == ConditionX64::Less)
else if (cond == IrCondition::NotLess || cond == IrCondition::Less)
build.call(qword[rNativeContext + offsetof(NativeContext, luaV_lessthan)]);
else if (cond == ConditionX64::NotEqual || cond == ConditionX64::Equal)
else if (cond == IrCondition::NotEqual || cond == IrCondition::Equal)
build.call(qword[rNativeContext + offsetof(NativeContext, luaV_equalval)]);
else
LUAU_ASSERT(!"Unsupported condition");
emitUpdateBase(build);
build.test(eax, eax);
build.jcc(cond == ConditionX64::NotLessEqual || cond == ConditionX64::NotLess || cond == ConditionX64::NotEqual ? ConditionX64::Zero
: ConditionX64::NotZero,
build.jcc(cond == IrCondition::NotLessEqual || cond == IrCondition::NotLess || cond == IrCondition::NotEqual ? ConditionX64::Zero
: ConditionX64::NotZero,
label);
}
@ -377,5 +380,6 @@ void emitContinueCallInVm(AssemblyBuilderX64& build)
emitExit(build, /* continueInVm */ true);
}
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -3,6 +3,8 @@
#include "Luau/AssemblyBuilderX64.h"
#include "EmitCommon.h"
#include "lobject.h"
#include "ltm.h"
@ -23,8 +25,12 @@ namespace Luau
namespace CodeGen
{
enum class IrCondition : uint8_t;
struct NativeState;
namespace X64
{
// Data that is very common to access is placed in non-volatile registers
constexpr RegisterX64 rState = r15; // lua_State* L
constexpr RegisterX64 rBase = r14; // StkId base
@ -65,23 +71,6 @@ constexpr OperandX64 sArg6 = noreg;
#endif
constexpr unsigned kTValueSizeLog2 = 4;
constexpr unsigned kLuaNodeSizeLog2 = 5;
constexpr unsigned kLuaNodeTagMask = 0xf;
constexpr unsigned kNextBitOffset = 4;
constexpr unsigned kOffsetOfLuaNodeTag = 12; // offsetof cannot be used on a bit field
constexpr unsigned kOffsetOfLuaNodeNext = 12; // offsetof cannot be used on a bit field
constexpr unsigned kOffsetOfInstructionC = 3;
// Leaf functions that are placed in every module to perform common instruction sequences
struct ModuleHelpers
{
Label exitContinueVm;
Label exitNoContinueVm;
Label continueCallInVm;
};
inline OperandX64 luauReg(int ri)
{
return xmmword[rBase + ri * sizeof(TValue)];
@ -243,8 +232,8 @@ inline void jumpIfNodeKeyNotInExpectedSlot(AssemblyBuilderX64& build, RegisterX6
jumpIfNodeValueTagIs(build, node, LUA_TNIL, label);
}
void jumpOnNumberCmp(AssemblyBuilderX64& build, RegisterX64 tmp, OperandX64 lhs, OperandX64 rhs, ConditionX64 cond, Label& label);
void jumpOnAnyCmpFallback(AssemblyBuilderX64& build, int ra, int rb, ConditionX64 cond, Label& label);
void jumpOnNumberCmp(AssemblyBuilderX64& build, RegisterX64 tmp, OperandX64 lhs, OperandX64 rhs, IrCondition cond, Label& label);
void jumpOnAnyCmpFallback(AssemblyBuilderX64& build, int ra, int rb, IrCondition cond, Label& label);
void getTableNodeAtCachedSlot(AssemblyBuilderX64& build, RegisterX64 tmp, RegisterX64 node, RegisterX64 table, int pcpos);
void convertNumberToIndexOrJump(AssemblyBuilderX64& build, RegisterX64 tmp, RegisterX64 numd, RegisterX64 numi, Label& label);
@ -268,5 +257,6 @@ void emitFallback(AssemblyBuilderX64& build, NativeState& data, int op, int pcpo
void emitContinueCallInVm(AssemblyBuilderX64& build);
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -7,7 +7,6 @@
#include "EmitBuiltinsX64.h"
#include "EmitCommonX64.h"
#include "NativeState.h"
#include "IrTranslateBuiltins.h" // Used temporarily until emitInstFastCallN is removed
#include "lobject.h"
#include "ltm.h"
@ -16,6 +15,8 @@ namespace Luau
{
namespace CodeGen
{
namespace X64
{
void emitInstNameCall(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, const TValue* k, Label& next, Label& fallback)
{
@ -481,137 +482,12 @@ void emitInstSetList(AssemblyBuilderX64& build, const Instruction* pc, Label& ne
callBarrierTableFast(build, table, next);
}
static void emitInstFastCallN(
AssemblyBuilderX64& build, const Instruction* pc, bool customParams, int customParamCount, OperandX64 customArgs, int pcpos, Label& fallback)
void emitinstForGLoop(AssemblyBuilderX64& build, int ra, int aux, Label& loopRepeat, Label& loopExit)
{
int bfid = LUAU_INSN_A(*pc);
int skip = LUAU_INSN_C(*pc);
// ipairs-style traversal is handled in IR
LUAU_ASSERT(aux >= 0);
Instruction call = pc[skip + 1];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
int ra = LUAU_INSN_A(call);
int nparams = customParams ? customParamCount : LUAU_INSN_B(call) - 1;
int nresults = LUAU_INSN_C(call) - 1;
int arg = customParams ? LUAU_INSN_B(*pc) : ra + 1;
OperandX64 args = customParams ? customArgs : luauRegAddress(ra + 2);
BuiltinImplResult br = emitBuiltin(build, LuauBuiltinFunction(bfid), nparams, ra, arg, args, nresults, fallback);
if (br.type == BuiltinImplType::UsesFallback)
{
if (nresults == LUA_MULTRET)
{
// L->top = ra + n;
build.lea(rax, addr[rBase + (ra + br.actualResultCount) * sizeof(TValue)]);
build.mov(qword[rState + offsetof(lua_State, top)], rax);
}
else if (nparams == LUA_MULTRET)
{
// L->top = L->ci->top;
build.mov(rax, qword[rState + offsetof(lua_State, ci)]);
build.mov(rax, qword[rax + offsetof(CallInfo, top)]);
build.mov(qword[rState + offsetof(lua_State, top)], rax);
}
return;
}
// TODO: we can skip saving pc for some well-behaved builtins which we didn't inline
emitSetSavedPc(build, pcpos + 1); // uses rax/rdx
build.mov(rax, qword[rNativeContext + offsetof(NativeContext, luauF_table) + bfid * sizeof(luau_FastFunction)]);
// 5th parameter (args) is left unset for LOP_FASTCALL1
if (args.cat == CategoryX64::mem)
{
if (build.abi == ABIX64::Windows)
{
build.lea(rcx, args);
build.mov(sArg5, rcx);
}
else
{
build.lea(rArg5, args);
}
}
if (nparams == LUA_MULTRET)
{
// L->top - (ra + 1)
RegisterX64 reg = (build.abi == ABIX64::Windows) ? rcx : rArg6;
build.mov(reg, qword[rState + offsetof(lua_State, top)]);
build.lea(rdx, addr[rBase + (ra + 1) * sizeof(TValue)]);
build.sub(reg, rdx);
build.shr(reg, kTValueSizeLog2);
if (build.abi == ABIX64::Windows)
build.mov(sArg6, reg);
}
else
{
if (build.abi == ABIX64::Windows)
build.mov(sArg6, nparams);
else
build.mov(rArg6, nparams);
}
build.mov(rArg1, rState);
build.lea(rArg2, luauRegAddress(ra));
build.lea(rArg3, luauRegAddress(arg));
build.mov(dwordReg(rArg4), nresults);
build.call(rax);
build.test(eax, eax); // test here will set SF=1 for a negative number and it always sets OF to 0
build.jcc(ConditionX64::Less, fallback); // jl jumps if SF != OF
if (nresults == LUA_MULTRET)
{
// L->top = ra + n;
build.shl(rax, kTValueSizeLog2);
build.lea(rax, addr[rBase + rax + ra * sizeof(TValue)]);
build.mov(qword[rState + offsetof(lua_State, top)], rax);
}
else if (nparams == LUA_MULTRET)
{
// L->top = L->ci->top;
build.mov(rax, qword[rState + offsetof(lua_State, ci)]);
build.mov(rax, qword[rax + offsetof(CallInfo, top)]);
build.mov(qword[rState + offsetof(lua_State, top)], rax);
}
}
void emitInstFastCall1(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& fallback)
{
return emitInstFastCallN(build, pc, /* customParams */ true, /* customParamCount */ 1, /* customArgs */ 0, pcpos, fallback);
}
void emitInstFastCall2(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& fallback)
{
return emitInstFastCallN(build, pc, /* customParams */ true, /* customParamCount */ 2, /* customArgs */ luauRegAddress(pc[1]), pcpos, fallback);
}
void emitInstFastCall2K(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& fallback)
{
return emitInstFastCallN(
build, pc, /* customParams */ true, /* customParamCount */ 2, /* customArgs */ luauConstantAddress(pc[1]), pcpos, fallback);
}
void emitInstFastCall(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& fallback)
{
return emitInstFastCallN(build, pc, /* customParams */ false, /* customParamCount */ 0, /* customArgs */ 0, pcpos, fallback);
}
void emitinstForGLoop(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& loopRepeat, Label& loopExit, Label& fallback)
{
int ra = LUAU_INSN_A(*pc);
int aux = pc[1];
emitInterrupt(build, pcpos);
// fast-path: builtin table iteration
jumpIfTagIsNot(build, ra, LUA_TNIL, fallback);
// This is a fast-path for builtin table iteration, tag check for 'ra' has to be performed before emitting this instruction
// Registers are chosen in this way to simplify fallback code for the node part
RegisterX64 table = rArg2;
@ -630,22 +506,19 @@ void emitinstForGLoop(AssemblyBuilderX64& build, const Instruction* pc, int pcpo
for (int i = 2; i < aux; ++i)
build.mov(luauRegTag(ra + 3 + i), LUA_TNIL);
// ipairs-style traversal is terminated early when array part ends of nil array element is encountered
bool isIpairsIter = aux < 0;
Label skipArray, skipArrayNil;
// First we advance index through the array portion
// while (unsigned(index) < unsigned(sizearray))
Label arrayLoop = build.setLabel();
build.cmp(dwordReg(index), dword[table + offsetof(Table, sizearray)]);
build.jcc(ConditionX64::NotBelow, isIpairsIter ? loopExit : skipArray);
build.jcc(ConditionX64::NotBelow, skipArray);
// If element is nil, we increment the index; if it's not, we still need 'index + 1' inside
build.inc(index);
build.cmp(dword[elemPtr + offsetof(TValue, tt)], LUA_TNIL);
build.jcc(ConditionX64::Equal, isIpairsIter ? loopExit : skipArrayNil);
build.jcc(ConditionX64::Equal, skipArrayNil);
// setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(index + 1)));
build.mov(luauRegValue(ra + 2), index);
@ -661,31 +534,25 @@ void emitinstForGLoop(AssemblyBuilderX64& build, const Instruction* pc, int pcpo
build.jmp(loopRepeat);
if (!isIpairsIter)
{
build.setLabel(skipArrayNil);
build.setLabel(skipArrayNil);
// Index already incremented, advance to next array element
build.add(elemPtr, sizeof(TValue));
build.jmp(arrayLoop);
// Index already incremented, advance to next array element
build.add(elemPtr, sizeof(TValue));
build.jmp(arrayLoop);
build.setLabel(skipArray);
build.setLabel(skipArray);
// Call helper to assign next node value or to signal loop exit
build.mov(rArg1, rState);
// rArg2 and rArg3 are already set
build.lea(rArg4, luauRegAddress(ra));
build.call(qword[rNativeContext + offsetof(NativeContext, forgLoopNodeIter)]);
build.test(al, al);
build.jcc(ConditionX64::NotZero, loopRepeat);
}
// Call helper to assign next node value or to signal loop exit
build.mov(rArg1, rState);
// rArg2 and rArg3 are already set
build.lea(rArg4, luauRegAddress(ra));
build.call(qword[rNativeContext + offsetof(NativeContext, forgLoopNodeIter)]);
build.test(al, al);
build.jcc(ConditionX64::NotZero, loopRepeat);
}
void emitinstForGLoopFallback(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& loopRepeat)
void emitinstForGLoopFallback(AssemblyBuilderX64& build, int pcpos, int ra, int aux, Label& loopRepeat)
{
int ra = LUAU_INSN_A(*pc);
int aux = pc[1];
emitSetSavedPc(build, pcpos + 1);
build.mov(rArg1, rState);
@ -697,10 +564,8 @@ void emitinstForGLoopFallback(AssemblyBuilderX64& build, const Instruction* pc,
build.jcc(ConditionX64::NotZero, loopRepeat);
}
void emitInstForGPrepXnextFallback(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& target)
void emitInstForGPrepXnextFallback(AssemblyBuilderX64& build, int pcpos, int ra, Label& target)
{
int ra = LUAU_INSN_A(*pc);
build.mov(rArg1, rState);
build.lea(rArg2, luauRegAddress(ra));
build.mov(dwordReg(rArg3), pcpos + 1);
@ -836,5 +701,6 @@ void emitInstCoverage(AssemblyBuilderX64& build, int pcpos)
build.mov(dword[rcx], eax);
}
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -13,21 +13,21 @@ namespace Luau
namespace CodeGen
{
class AssemblyBuilderX64;
struct Label;
struct ModuleHelpers;
namespace X64
{
class AssemblyBuilderX64;
void emitInstNameCall(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, const TValue* k, Label& next, Label& fallback);
void emitInstCall(AssemblyBuilderX64& build, ModuleHelpers& helpers, const Instruction* pc, int pcpos);
void emitInstReturn(AssemblyBuilderX64& build, ModuleHelpers& helpers, const Instruction* pc, int pcpos);
void emitInstSetList(AssemblyBuilderX64& build, const Instruction* pc, Label& next);
void emitInstFastCall1(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& fallback);
void emitInstFastCall2(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& fallback);
void emitInstFastCall2K(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& fallback);
void emitInstFastCall(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& fallback);
void emitinstForGLoop(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& loopRepeat, Label& loopExit, Label& fallback);
void emitinstForGLoopFallback(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& loopRepeat);
void emitInstForGPrepXnextFallback(AssemblyBuilderX64& build, const Instruction* pc, int pcpos, Label& target);
void emitinstForGLoop(AssemblyBuilderX64& build, int ra, int aux, Label& loopRepeat, Label& loopExit);
void emitinstForGLoopFallback(AssemblyBuilderX64& build, int pcpos, int ra, int aux, Label& loopRepeat);
void emitInstForGPrepXnextFallback(AssemblyBuilderX64& build, int pcpos, int ra, Label& target);
void emitInstAnd(AssemblyBuilderX64& build, const Instruction* pc);
void emitInstAndK(AssemblyBuilderX64& build, const Instruction* pc);
void emitInstOr(AssemblyBuilderX64& build, const Instruction* pc);
@ -35,5 +35,6 @@ void emitInstOrK(AssemblyBuilderX64& build, const Instruction* pc);
void emitInstGetImportFallback(AssemblyBuilderX64& build, int ra, uint32_t aux);
void emitInstCoverage(AssemblyBuilderX64& build, int pcpos);
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -1,6 +1,7 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/IrAnalysis.h"
#include "Luau/DenseHash.h"
#include "Luau/IrData.h"
#include "Luau/IrUtils.h"
@ -73,5 +74,47 @@ void updateLastUseLocations(IrFunction& function)
}
}
std::pair<uint32_t, uint32_t> getLiveInOutValueCount(IrFunction& function, IrBlock& block)
{
uint32_t liveIns = 0;
uint32_t liveOuts = 0;
auto checkOp = [&](IrOp op) {
if (op.kind == IrOpKind::Inst)
{
if (op.index >= block.start && op.index <= block.finish)
liveOuts--;
else
liveIns++;
}
};
for (uint32_t instIdx = block.start; instIdx <= block.finish; instIdx++)
{
IrInst& inst = function.instructions[instIdx];
liveOuts += inst.useCount;
checkOp(inst.a);
checkOp(inst.b);
checkOp(inst.c);
checkOp(inst.d);
checkOp(inst.e);
checkOp(inst.f);
}
return std::make_pair(liveIns, liveOuts);
}
uint32_t getLiveInValueCount(IrFunction& function, IrBlock& block)
{
return getLiveInOutValueCount(function, block).first;
}
uint32_t getLiveOutValueCount(IrFunction& function, IrBlock& block)
{
return getLiveInOutValueCount(function, block).second;
}
} // namespace CodeGen
} // namespace Luau

View file

@ -2,6 +2,7 @@
#include "Luau/IrBuilder.h"
#include "Luau/Common.h"
#include "Luau/DenseHash.h"
#include "Luau/IrAnalysis.h"
#include "Luau/IrUtils.h"
@ -271,7 +272,7 @@ void IrBuilder::translateInst(LuauOpcode op, const Instruction* pc, int i)
int skip = LUAU_INSN_C(*pc);
IrOp next = blockAtInst(i + skip + 2);
translateFastCallN(*this, pc, i, false, 0, {}, next, IrCmd::LOP_FASTCALL);
translateFastCallN(*this, pc, i, false, 0, {}, next);
activeFastcallFallback = true;
fastcallFallbackReturn = next;
@ -282,7 +283,7 @@ void IrBuilder::translateInst(LuauOpcode op, const Instruction* pc, int i)
int skip = LUAU_INSN_C(*pc);
IrOp next = blockAtInst(i + skip + 2);
translateFastCallN(*this, pc, i, true, 1, constBool(false), next, IrCmd::LOP_FASTCALL1);
translateFastCallN(*this, pc, i, true, 1, constBool(false), next);
activeFastcallFallback = true;
fastcallFallbackReturn = next;
@ -293,7 +294,7 @@ void IrBuilder::translateInst(LuauOpcode op, const Instruction* pc, int i)
int skip = LUAU_INSN_C(*pc);
IrOp next = blockAtInst(i + skip + 2);
translateFastCallN(*this, pc, i, true, 2, vmReg(pc[1]), next, IrCmd::LOP_FASTCALL2);
translateFastCallN(*this, pc, i, true, 2, vmReg(pc[1]), next);
activeFastcallFallback = true;
fastcallFallbackReturn = next;
@ -304,7 +305,7 @@ void IrBuilder::translateInst(LuauOpcode op, const Instruction* pc, int i)
int skip = LUAU_INSN_C(*pc);
IrOp next = blockAtInst(i + skip + 2);
translateFastCallN(*this, pc, i, true, 2, vmConst(pc[1]), next, IrCmd::LOP_FASTCALL2K);
translateFastCallN(*this, pc, i, true, 2, vmConst(pc[1]), next);
activeFastcallFallback = true;
fastcallFallbackReturn = next;
@ -318,21 +319,28 @@ void IrBuilder::translateInst(LuauOpcode op, const Instruction* pc, int i)
break;
case LOP_FORGLOOP:
{
int aux = int(pc[1]);
// We have a translation for ipairs-style traversal, general loop iteration is still too complex
if (int(pc[1]) < 0)
if (aux < 0)
{
translateInstForGLoopIpairs(*this, pc, i);
}
else
{
int ra = LUAU_INSN_A(*pc);
IrOp loopRepeat = blockAtInst(i + 1 + LUAU_INSN_D(*pc));
IrOp loopExit = blockAtInst(i + getOpLength(LOP_FORGLOOP));
IrOp fallback = block(IrBlockKind::Fallback);
inst(IrCmd::LOP_FORGLOOP, constUint(i), loopRepeat, loopExit, fallback);
inst(IrCmd::INTERRUPT, constUint(i));
loadAndCheckTag(vmReg(ra), LUA_TNIL, fallback);
inst(IrCmd::LOP_FORGLOOP, vmReg(ra), constInt(aux), loopRepeat, loopExit);
beginBlock(fallback);
inst(IrCmd::LOP_FORGLOOP_FALLBACK, constUint(i), loopRepeat, loopExit);
inst(IrCmd::LOP_FORGLOOP_FALLBACK, constUint(i), vmReg(ra), constInt(aux), loopRepeat, loopExit);
beginBlock(loopExit);
}
@ -426,6 +434,68 @@ void IrBuilder::beginBlock(IrOp block)
inTerminatedBlock = false;
}
void IrBuilder::loadAndCheckTag(IrOp loc, uint8_t tag, IrOp fallback)
{
inst(IrCmd::CHECK_TAG, inst(IrCmd::LOAD_TAG, loc), constTag(tag), fallback);
}
void IrBuilder::clone(const IrBlock& source, bool removeCurrentTerminator)
{
DenseHashMap<uint32_t, uint32_t> instRedir{~0u};
auto redirect = [&instRedir](IrOp& op) {
if (op.kind == IrOpKind::Inst)
{
if (const uint32_t* newIndex = instRedir.find(op.index))
op.index = *newIndex;
else
LUAU_ASSERT(!"values can only be used if they are defined in the same block");
}
};
if (removeCurrentTerminator && inTerminatedBlock)
{
IrBlock& active = function.blocks[activeBlockIdx];
IrInst& term = function.instructions[active.finish];
kill(function, term);
inTerminatedBlock = false;
}
for (uint32_t index = source.start; index <= source.finish; index++)
{
LUAU_ASSERT(index < function.instructions.size());
IrInst clone = function.instructions[index];
// Skip pseudo instructions to make clone more compact, but validate that they have no users
if (isPseudo(clone.cmd))
{
LUAU_ASSERT(clone.useCount == 0);
continue;
}
redirect(clone.a);
redirect(clone.b);
redirect(clone.c);
redirect(clone.d);
redirect(clone.e);
redirect(clone.f);
addUse(function, clone.a);
addUse(function, clone.b);
addUse(function, clone.c);
addUse(function, clone.d);
addUse(function, clone.e);
addUse(function, clone.f);
// Instructions that referenced the original will have to be adjusted to use the clone
instRedir[index] = uint32_t(function.instructions.size());
// Reconstruct the fresh clone
inst(clone.cmd, clone.a, clone.b, clone.c, clone.d, clone.e, clone.f);
}
}
IrOp IrBuilder::constBool(bool value)
{
IrConst constant;

View file

@ -118,6 +118,10 @@ const char* getCmdName(IrCmd cmd)
return "MOD_NUM";
case IrCmd::POW_NUM:
return "POW_NUM";
case IrCmd::MIN_NUM:
return "MIN_NUM";
case IrCmd::MAX_NUM:
return "MAX_NUM";
case IrCmd::UNM_NUM:
return "UNM_NUM";
case IrCmd::NOT_ANY:
@ -152,6 +156,12 @@ const char* getCmdName(IrCmd cmd)
return "ADJUST_STACK_TO_REG";
case IrCmd::ADJUST_STACK_TO_TOP:
return "ADJUST_STACK_TO_TOP";
case IrCmd::FASTCALL:
return "FASTCALL";
case IrCmd::INVOKE_FASTCALL:
return "INVOKE_FASTCALL";
case IrCmd::CHECK_FASTCALL_RES:
return "CHECK_FASTCALL_RES";
case IrCmd::DO_ARITH:
return "DO_ARITH";
case IrCmd::DO_LEN:
@ -206,14 +216,6 @@ const char* getCmdName(IrCmd cmd)
return "LOP_CALL";
case IrCmd::LOP_RETURN:
return "LOP_RETURN";
case IrCmd::LOP_FASTCALL:
return "LOP_FASTCALL";
case IrCmd::LOP_FASTCALL1:
return "LOP_FASTCALL1";
case IrCmd::LOP_FASTCALL2:
return "LOP_FASTCALL2";
case IrCmd::LOP_FASTCALL2K:
return "LOP_FASTCALL2K";
case IrCmd::LOP_FORGLOOP:
return "LOP_FORGLOOP";
case IrCmd::LOP_FORGLOOP_FALLBACK:
@ -267,6 +269,8 @@ const char* getBlockKindName(IrBlockKind kind)
return "bb_fallback";
case IrBlockKind::Internal:
return "bb";
case IrBlockKind::Linearized:
return "bb_linear";
case IrBlockKind::Dead:
return "dead";
}

View file

@ -20,6 +20,8 @@ namespace Luau
{
namespace CodeGen
{
namespace X64
{
IrLoweringX64::IrLoweringX64(AssemblyBuilderX64& build, ModuleHelpers& helpers, NativeState& data, Proto* proto, IrFunction& function)
: build(build)
@ -517,6 +519,36 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
break;
}
case IrCmd::MIN_NUM:
inst.regX64 = regs.allocXmmRegOrReuse(index, {inst.a, inst.b});
if (inst.a.kind == IrOpKind::Constant)
{
ScopedRegX64 tmp{regs, SizeX64::xmmword};
build.vmovsd(tmp.reg, memRegDoubleOp(inst.a));
build.vminsd(inst.regX64, tmp.reg, memRegDoubleOp(inst.b));
}
else
{
build.vminsd(inst.regX64, regOp(inst.a), memRegDoubleOp(inst.b));
}
break;
case IrCmd::MAX_NUM:
inst.regX64 = regs.allocXmmRegOrReuse(index, {inst.a, inst.b});
if (inst.a.kind == IrOpKind::Constant)
{
ScopedRegX64 tmp{regs, SizeX64::xmmword};
build.vmovsd(tmp.reg, memRegDoubleOp(inst.a));
build.vmaxsd(inst.regX64, tmp.reg, memRegDoubleOp(inst.b));
}
else
{
build.vmaxsd(inst.regX64, regOp(inst.a), memRegDoubleOp(inst.b));
}
break;
case IrCmd::UNM_NUM:
{
inst.regX64 = regs.allocXmmRegOrReuse(index, {inst.a});
@ -624,7 +656,7 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
ScopedRegX64 tmp{regs, SizeX64::xmmword};
// TODO: jumpOnNumberCmp should work on IrCondition directly
jumpOnNumberCmp(build, tmp.reg, memRegDoubleOp(inst.a), memRegDoubleOp(inst.b), getX64Condition(cond), labelOp(inst.d));
jumpOnNumberCmp(build, tmp.reg, memRegDoubleOp(inst.a), memRegDoubleOp(inst.b), cond, labelOp(inst.d));
jumpOrFallthrough(blockOp(inst.e), next);
break;
}
@ -636,7 +668,7 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
IrCondition cond = IrCondition(inst.c.index);
jumpOnAnyCmpFallback(build, inst.a.index, inst.b.index, getX64Condition(cond), labelOp(inst.d));
jumpOnAnyCmpFallback(build, inst.a.index, inst.b.index, cond, labelOp(inst.d));
jumpOrFallthrough(blockOp(inst.e), next);
break;
}
@ -716,6 +748,89 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
build.mov(qword[rState + offsetof(lua_State, top)], tmp.reg);
break;
}
case IrCmd::FASTCALL:
LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg);
LUAU_ASSERT(inst.c.kind == IrOpKind::VmReg);
emitBuiltin(regs, build, uintOp(inst.a), inst.b.index, inst.c.index, inst.d, intOp(inst.e), intOp(inst.f));
break;
case IrCmd::INVOKE_FASTCALL:
{
LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg);
LUAU_ASSERT(inst.c.kind == IrOpKind::VmReg);
unsigned bfid = uintOp(inst.a);
OperandX64 args = 0;
if (inst.d.kind == IrOpKind::VmReg)
args = luauRegAddress(inst.d.index);
else if (inst.d.kind == IrOpKind::VmConst)
args = luauConstantAddress(inst.d.index);
else
LUAU_ASSERT(boolOp(inst.d) == false);
int ra = inst.b.index;
int arg = inst.c.index;
int nparams = intOp(inst.e);
int nresults = intOp(inst.f);
regs.assertAllFree();
build.mov(rax, qword[rNativeContext + offsetof(NativeContext, luauF_table) + bfid * sizeof(luau_FastFunction)]);
// 5th parameter (args) is left unset for LOP_FASTCALL1
if (args.cat == CategoryX64::mem)
{
if (build.abi == ABIX64::Windows)
{
build.lea(rcx, args);
build.mov(sArg5, rcx);
}
else
{
build.lea(rArg5, args);
}
}
if (nparams == LUA_MULTRET)
{
// L->top - (ra + 1)
RegisterX64 reg = (build.abi == ABIX64::Windows) ? rcx : rArg6;
build.mov(reg, qword[rState + offsetof(lua_State, top)]);
build.lea(rdx, addr[rBase + (ra + 1) * sizeof(TValue)]);
build.sub(reg, rdx);
build.shr(reg, kTValueSizeLog2);
if (build.abi == ABIX64::Windows)
build.mov(sArg6, reg);
}
else
{
if (build.abi == ABIX64::Windows)
build.mov(sArg6, nparams);
else
build.mov(rArg6, nparams);
}
build.mov(rArg1, rState);
build.lea(rArg2, luauRegAddress(ra));
build.lea(rArg3, luauRegAddress(arg));
build.mov(dwordReg(rArg4), nresults);
build.call(rax);
inst.regX64 = regs.takeGprReg(eax); // Result of a builtin call is returned in eax
break;
}
case IrCmd::CHECK_FASTCALL_RES:
{
RegisterX64 res = regOp(inst.a);
build.test(res, res); // test here will set SF=1 for a negative number and it always sets OF to 0
build.jcc(ConditionX64::Less, labelOp(inst.b)); // jl jumps if SF != OF
break;
}
case IrCmd::DO_ARITH:
LUAU_ASSERT(inst.a.kind == IrOpKind::VmReg);
LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg);
@ -1014,41 +1129,18 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, IrBlock& next)
emitInstReturn(build, helpers, pc, uintOp(inst.a));
break;
}
case IrCmd::LOP_FASTCALL:
LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg);
LUAU_ASSERT(inst.c.kind == IrOpKind::Constant);
emitInstFastCall(build, proto->code + uintOp(inst.a), uintOp(inst.a), labelOp(inst.d));
break;
case IrCmd::LOP_FASTCALL1:
LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg);
LUAU_ASSERT(inst.c.kind == IrOpKind::VmReg);
emitInstFastCall1(build, proto->code + uintOp(inst.a), uintOp(inst.a), labelOp(inst.d));
break;
case IrCmd::LOP_FASTCALL2:
LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg);
LUAU_ASSERT(inst.c.kind == IrOpKind::VmReg);
LUAU_ASSERT(inst.d.kind == IrOpKind::VmReg);
emitInstFastCall2(build, proto->code + uintOp(inst.a), uintOp(inst.a), labelOp(inst.e));
break;
case IrCmd::LOP_FASTCALL2K:
LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg);
LUAU_ASSERT(inst.c.kind == IrOpKind::VmReg);
LUAU_ASSERT(inst.d.kind == IrOpKind::VmConst);
emitInstFastCall2K(build, proto->code + uintOp(inst.a), uintOp(inst.a), labelOp(inst.e));
break;
case IrCmd::LOP_FORGLOOP:
emitinstForGLoop(build, proto->code + uintOp(inst.a), uintOp(inst.a), labelOp(inst.b), labelOp(inst.c), labelOp(inst.d));
LUAU_ASSERT(inst.a.kind == IrOpKind::VmReg);
emitinstForGLoop(build, inst.a.index, intOp(inst.b), labelOp(inst.c), labelOp(inst.d));
break;
case IrCmd::LOP_FORGLOOP_FALLBACK:
emitinstForGLoopFallback(build, proto->code + uintOp(inst.a), uintOp(inst.a), labelOp(inst.b));
build.jmp(labelOp(inst.c));
LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg);
emitinstForGLoopFallback(build, uintOp(inst.a), inst.b.index, intOp(inst.c), labelOp(inst.d));
build.jmp(labelOp(inst.e));
break;
case IrCmd::LOP_FORGPREP_XNEXT_FALLBACK:
emitInstForGPrepXnextFallback(build, proto->code + uintOp(inst.a), uintOp(inst.a), labelOp(inst.b));
LUAU_ASSERT(inst.b.kind == IrOpKind::VmReg);
emitInstForGPrepXnextFallback(build, uintOp(inst.a), inst.b.index, labelOp(inst.c));
break;
case IrCmd::LOP_AND:
emitInstAnd(build, proto->code + uintOp(inst.a));
@ -1224,38 +1316,6 @@ Label& IrLoweringX64::labelOp(IrOp op) const
return blockOp(op).label;
}
ConditionX64 IrLoweringX64::getX64Condition(IrCondition cond) const
{
// TODO: this function will not be required when jumpOnNumberCmp starts accepting an IrCondition
switch (cond)
{
case IrCondition::Equal:
return ConditionX64::Equal;
case IrCondition::NotEqual:
return ConditionX64::NotEqual;
case IrCondition::Less:
return ConditionX64::Less;
case IrCondition::NotLess:
return ConditionX64::NotLess;
case IrCondition::LessEqual:
return ConditionX64::LessEqual;
case IrCondition::NotLessEqual:
return ConditionX64::NotLessEqual;
case IrCondition::Greater:
return ConditionX64::Greater;
case IrCondition::NotGreater:
return ConditionX64::NotGreater;
case IrCondition::GreaterEqual:
return ConditionX64::GreaterEqual;
case IrCondition::NotGreaterEqual:
return ConditionX64::NotGreaterEqual;
default:
LUAU_ASSERT(!"unsupported condition");
break;
}
return ConditionX64::Count;
}
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -19,6 +19,9 @@ struct ModuleHelpers;
struct NativeState;
struct AssemblyOptions;
namespace X64
{
struct IrLoweringX64
{
// Some of these arguments are only required while we re-use old direct bytecode to x64 lowering
@ -46,8 +49,6 @@ struct IrLoweringX64
IrBlock& blockOp(IrOp op) const;
Label& labelOp(IrOp op) const;
ConditionX64 getX64Condition(IrCondition cond) const;
AssemblyBuilderX64& build;
ModuleHelpers& helpers;
NativeState& data;
@ -58,5 +59,6 @@ struct IrLoweringX64
IrRegAllocX64 regs;
};
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -19,6 +19,8 @@ namespace Luau
{
namespace CodeGen
{
namespace X64
{
static const RegisterX64 kGprAllocOrder[] = {rax, rdx, rcx, rbx, rsi, rdi, r8, r9, r10, r11};
@ -106,6 +108,16 @@ RegisterX64 IrRegAllocX64::allocXmmRegOrReuse(uint32_t index, std::initializer_l
return allocXmmReg();
}
RegisterX64 IrRegAllocX64::takeGprReg(RegisterX64 reg)
{
// In a more advanced register allocator, this would require a spill for the current register user
// But at the current stage we don't have register live ranges intersecting forced register uses
LUAU_ASSERT(freeGprMap[reg.index]);
freeGprMap[reg.index] = false;
return reg;
}
void IrRegAllocX64::freeReg(RegisterX64 reg)
{
if (reg.size == SizeX64::xmmword)
@ -148,6 +160,15 @@ void IrRegAllocX64::freeLastUseRegs(const IrInst& inst, uint32_t index)
checkOp(inst.f);
}
void IrRegAllocX64::assertAllFree() const
{
for (RegisterX64 reg : kGprAllocOrder)
LUAU_ASSERT(freeGprMap[reg.index]);
for (bool free : freeXmmMap)
LUAU_ASSERT(free);
}
ScopedRegX64::ScopedRegX64(IrRegAllocX64& owner, SizeX64 size)
: owner(owner)
{
@ -157,7 +178,6 @@ ScopedRegX64::ScopedRegX64(IrRegAllocX64& owner, SizeX64 size)
reg = owner.allocGprReg(size);
}
ScopedRegX64::ScopedRegX64(IrRegAllocX64& owner, RegisterX64 reg)
: owner(owner)
, reg(reg)
@ -177,5 +197,6 @@ void ScopedRegX64::free()
reg = noreg;
}
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -11,6 +11,8 @@ namespace Luau
{
namespace CodeGen
{
namespace X64
{
struct IrRegAllocX64
{
@ -22,10 +24,14 @@ struct IrRegAllocX64
RegisterX64 allocGprRegOrReuse(SizeX64 preferredSize, uint32_t index, std::initializer_list<IrOp> oprefs);
RegisterX64 allocXmmRegOrReuse(uint32_t index, std::initializer_list<IrOp> oprefs);
RegisterX64 takeGprReg(RegisterX64 reg);
void freeReg(RegisterX64 reg);
void freeLastUseReg(IrInst& target, uint32_t index);
void freeLastUseRegs(const IrInst& inst, uint32_t index);
void assertAllFree() const;
IrFunction& function;
std::array<bool, 16> freeGprMap;
@ -47,5 +53,6 @@ struct ScopedRegX64
RegisterX64 reg;
};
} // namespace X64
} // namespace CodeGen
} // namespace Luau

View file

@ -6,11 +6,66 @@
#include "lstate.h"
// TODO: should be possible to handle fastcalls in contexts where nresults is -1 by adding the adjustment instruction
// TODO: when nresults is less than our actual result count, we can skip computing/writing unused results
namespace Luau
{
namespace CodeGen
{
// Wrapper code for all builtins with a fixed signature and manual assembly lowering of the body
// (number, ...) -> number
BuiltinImplResult translateBuiltinNumberToNumber(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.inst(IrCmd::FASTCALL, build.constUint(bfid), build.vmReg(ra), build.vmReg(arg), args, build.constInt(nparams), build.constInt(nresults));
// TODO: tag update might not be required, we place it here now because FASTCALL is not modeled in constant propagation yet
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
return {BuiltinImplType::UsesFallback, 1};
}
// (number, number, ...) -> number
BuiltinImplResult translateBuiltin2NumberToNumber(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 2 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
build.inst(IrCmd::FASTCALL, build.constUint(bfid), build.vmReg(ra), build.vmReg(arg), args, build.constInt(nparams), build.constInt(nresults));
// TODO:tag update might not be required, we place it here now because FASTCALL is not modeled in constant propagation yet
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
return {BuiltinImplType::UsesFallback, 1};
}
// (number, ...) -> (number, number)
BuiltinImplResult translateBuiltinNumberTo2Number(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 2)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.inst(IrCmd::FASTCALL, build.constUint(bfid), build.vmReg(ra), build.vmReg(arg), args, build.constInt(nparams), build.constInt(nresults));
// TODO: some tag updates might not be required, we place them here now because FASTCALL is not modeled in constant propagation yet
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra + 1), build.constTag(LUA_TNUMBER));
return {BuiltinImplType::UsesFallback, 2};
}
BuiltinImplResult translateBuiltinAssert(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults != 0)
@ -25,12 +80,180 @@ BuiltinImplResult translateBuiltinAssert(IrBuilder& build, int nparams, int ra,
return {BuiltinImplType::UsesFallback, 0};
}
BuiltinImplResult translateBuiltinMathDeg(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
const double rpd = (3.14159265358979323846 / 180.0);
IrOp varg = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp value = build.inst(IrCmd::DIV_NUM, varg, build.constDouble(rpd));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), value);
if (ra != arg)
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathRad(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
const double rpd = (3.14159265358979323846 / 180.0);
IrOp varg = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp value = build.inst(IrCmd::MUL_NUM, varg, build.constDouble(rpd));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), value);
if (ra != arg)
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathLog(
IrBuilder& build, LuauBuiltinFunction bfid, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 1 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
if (nparams != 1)
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
build.inst(IrCmd::FASTCALL, build.constUint(bfid), build.vmReg(ra), build.vmReg(arg), args, build.constInt(nparams), build.constInt(nresults));
// TODO: tag update might not be required, we place it here now because FASTCALL is not modeled in constant propagation yet
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathMin(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
// TODO: this can be extended for other number of arguments
if (nparams != 2 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
IrOp varg1 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp varg2 = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp res = build.inst(IrCmd::MIN_NUM, varg2, varg1); // Swapped arguments are required for consistency with VM builtins
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), res);
if (ra != arg)
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathMax(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
// TODO: this can be extended for other number of arguments
if (nparams != 2 || nresults > 1)
return {BuiltinImplType::None, -1};
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
IrOp varg1 = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp varg2 = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp res = build.inst(IrCmd::MAX_NUM, varg2, varg1); // Swapped arguments are required for consistency with VM builtins
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), res);
if (ra != arg)
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltinMathClamp(IrBuilder& build, int nparams, int ra, int arg, IrOp args, int nresults, IrOp fallback)
{
if (nparams < 3 || nresults > 1)
return {BuiltinImplType::None, -1};
IrOp block = build.block(IrBlockKind::Internal);
LUAU_ASSERT(args.kind == IrOpKind::VmReg);
build.loadAndCheckTag(build.vmReg(arg), LUA_TNUMBER, fallback);
build.loadAndCheckTag(args, LUA_TNUMBER, fallback);
build.loadAndCheckTag(build.vmReg(args.index + 1), LUA_TNUMBER, fallback);
IrOp min = build.inst(IrCmd::LOAD_DOUBLE, args);
IrOp max = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(args.index + 1));
build.inst(IrCmd::JUMP_CMP_NUM, min, max, build.cond(IrCondition::NotLessEqual), fallback, block);
build.beginBlock(block);
IrOp v = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(arg));
IrOp r = build.inst(IrCmd::MAX_NUM, min, v);
IrOp clamped = build.inst(IrCmd::MIN_NUM, max, r);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), clamped);
if (ra != arg)
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
return {BuiltinImplType::UsesFallback, 1};
}
BuiltinImplResult translateBuiltin(IrBuilder& build, int bfid, int ra, int arg, IrOp args, int nparams, int nresults, IrOp fallback)
{
switch (bfid)
{
case LBF_ASSERT:
return translateBuiltinAssert(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_DEG:
return translateBuiltinMathDeg(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_RAD:
return translateBuiltinMathRad(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_LOG:
return translateBuiltinMathLog(build, LuauBuiltinFunction(bfid), nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_MIN:
return translateBuiltinMathMin(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_MAX:
return translateBuiltinMathMax(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_CLAMP:
return translateBuiltinMathClamp(build, nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_FLOOR:
case LBF_MATH_CEIL:
case LBF_MATH_SQRT:
case LBF_MATH_ABS:
case LBF_MATH_EXP:
case LBF_MATH_ASIN:
case LBF_MATH_SIN:
case LBF_MATH_SINH:
case LBF_MATH_ACOS:
case LBF_MATH_COS:
case LBF_MATH_COSH:
case LBF_MATH_ATAN:
case LBF_MATH_TAN:
case LBF_MATH_TANH:
case LBF_MATH_LOG10:
case LBF_MATH_ROUND:
case LBF_MATH_SIGN:
return translateBuiltinNumberToNumber(build, LuauBuiltinFunction(bfid), nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_FMOD:
case LBF_MATH_POW:
case LBF_MATH_ATAN2:
case LBF_MATH_LDEXP:
return translateBuiltin2NumberToNumber(build, LuauBuiltinFunction(bfid), nparams, ra, arg, args, nresults, fallback);
case LBF_MATH_FREXP:
case LBF_MATH_MODF:
return translateBuiltinNumberTo2Number(build, LuauBuiltinFunction(bfid), nparams, ra, arg, args, nresults, fallback);
default:
return {BuiltinImplType::None, -1};
}

View file

@ -479,8 +479,7 @@ void translateInstCloseUpvals(IrBuilder& build, const Instruction* pc)
build.inst(IrCmd::CLOSE_UPVALS, build.vmReg(ra));
}
void translateFastCallN(
IrBuilder& build, const Instruction* pc, int pcpos, bool customParams, int customParamCount, IrOp customArgs, IrOp next, IrCmd fallbackCmd)
void translateFastCallN(IrBuilder& build, const Instruction* pc, int pcpos, bool customParams, int customParamCount, IrOp customArgs, IrOp next)
{
int bfid = LUAU_INSN_A(*pc);
int skip = LUAU_INSN_C(*pc);
@ -509,23 +508,17 @@ void translateFastCallN(
}
else
{
switch (fallbackCmd)
{
case IrCmd::LOP_FASTCALL:
build.inst(IrCmd::LOP_FASTCALL, build.constUint(pcpos), build.vmReg(ra), build.constInt(nparams), fallback);
break;
case IrCmd::LOP_FASTCALL1:
build.inst(IrCmd::LOP_FASTCALL1, build.constUint(pcpos), build.vmReg(ra), build.vmReg(arg), fallback);
break;
case IrCmd::LOP_FASTCALL2:
build.inst(IrCmd::LOP_FASTCALL2, build.constUint(pcpos), build.vmReg(ra), build.vmReg(arg), build.vmReg(pc[1]), fallback);
break;
case IrCmd::LOP_FASTCALL2K:
build.inst(IrCmd::LOP_FASTCALL2K, build.constUint(pcpos), build.vmReg(ra), build.vmReg(arg), build.vmConst(pc[1]), fallback);
break;
default:
LUAU_ASSERT(!"unexpected command");
}
// TODO: we can skip saving pc for some well-behaved builtins which we didn't inline
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
IrOp res = build.inst(IrCmd::INVOKE_FASTCALL, build.constUint(bfid), build.vmReg(ra), build.vmReg(arg), args, build.constInt(nparams),
build.constInt(nresults));
build.inst(IrCmd::CHECK_FASTCALL_RES, res, fallback);
if (nresults == LUA_MULTRET)
build.inst(IrCmd::ADJUST_STACK_TO_REG, build.vmReg(ra), res);
else if (nparams == LUA_MULTRET)
build.inst(IrCmd::ADJUST_STACK_TO_TOP);
}
build.inst(IrCmd::JUMP, next);
@ -645,7 +638,7 @@ void translateInstForGPrepNext(IrBuilder& build, const Instruction* pc, int pcpo
build.inst(IrCmd::JUMP, target);
build.beginBlock(fallback);
build.inst(IrCmd::LOP_FORGPREP_XNEXT_FALLBACK, build.constUint(pcpos), target);
build.inst(IrCmd::LOP_FORGPREP_XNEXT_FALLBACK, build.constUint(pcpos), build.vmReg(ra), target);
}
void translateInstForGPrepInext(IrBuilder& build, const Instruction* pc, int pcpos)
@ -677,7 +670,7 @@ void translateInstForGPrepInext(IrBuilder& build, const Instruction* pc, int pcp
build.inst(IrCmd::JUMP, target);
build.beginBlock(fallback);
build.inst(IrCmd::LOP_FORGPREP_XNEXT_FALLBACK, build.constUint(pcpos), target);
build.inst(IrCmd::LOP_FORGPREP_XNEXT_FALLBACK, build.constUint(pcpos), build.vmReg(ra), target);
}
void translateInstForGLoopIpairs(IrBuilder& build, const Instruction* pc, int pcpos)
@ -728,7 +721,7 @@ void translateInstForGLoopIpairs(IrBuilder& build, const Instruction* pc, int pc
build.inst(IrCmd::JUMP, loopRepeat);
build.beginBlock(fallback);
build.inst(IrCmd::LOP_FORGLOOP_FALLBACK, build.constUint(pcpos), loopRepeat, loopExit);
build.inst(IrCmd::LOP_FORGLOOP_FALLBACK, build.constUint(pcpos), build.vmReg(ra), build.constInt(int(pc[1])), loopRepeat, loopExit);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(loopExit))

View file

@ -43,8 +43,7 @@ void translateInstDupTable(IrBuilder& build, const Instruction* pc, int pcpos);
void translateInstGetUpval(IrBuilder& build, const Instruction* pc, int pcpos);
void translateInstSetUpval(IrBuilder& build, const Instruction* pc, int pcpos);
void translateInstCloseUpvals(IrBuilder& build, const Instruction* pc);
void translateFastCallN(
IrBuilder& build, const Instruction* pc, int pcpos, bool customParams, int customParamCount, IrOp customArgs, IrOp next, IrCmd fallbackCmd);
void translateFastCallN(IrBuilder& build, const Instruction* pc, int pcpos, bool customParams, int customParamCount, IrOp customArgs, IrOp next);
void translateInstForNPrep(IrBuilder& build, const Instruction* pc, int pcpos);
void translateInstForNLoop(IrBuilder& build, const Instruction* pc, int pcpos);
void translateInstForGPrepNext(IrBuilder& build, const Instruction* pc, int pcpos);

View file

@ -286,6 +286,24 @@ void foldConstants(IrBuilder& build, IrFunction& function, IrBlock& block, uint3
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
substitute(function, inst, build.constDouble(pow(function.doubleOp(inst.a), function.doubleOp(inst.b))));
break;
case IrCmd::MIN_NUM:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
{
double a1 = function.doubleOp(inst.a);
double a2 = function.doubleOp(inst.b);
substitute(function, inst, build.constDouble((a2 < a1) ? a2 : a1));
}
break;
case IrCmd::MAX_NUM:
if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Constant)
{
double a1 = function.doubleOp(inst.a);
double a2 = function.doubleOp(inst.b);
substitute(function, inst, build.constDouble((a2 > a1) ? a2 : a1));
}
break;
case IrCmd::UNM_NUM:
if (inst.a.kind == IrOpKind::Constant)
substitute(function, inst, build.constDouble(-function.doubleOp(inst.a)));

View file

@ -2,11 +2,16 @@
#include "Luau/OptimizeConstProp.h"
#include "Luau/DenseHash.h"
#include "Luau/IrAnalysis.h"
#include "Luau/IrBuilder.h"
#include "Luau/IrUtils.h"
#include "lua.h"
#include <vector>
LUAU_FASTINTVARIABLE(LuauCodeGenMinLinearBlockPath, 3)
namespace Luau
{
namespace CodeGen
@ -181,6 +186,82 @@ struct ConstPropState
DenseHashMap<uint32_t, RegisterLink> instLink{~0u};
};
static void handleBuiltinEffects(ConstPropState& state, LuauBuiltinFunction bfid, uint32_t firstReturnReg, int nresults)
{
// Switch over all values is used to force new items to be handled
switch (bfid)
{
case LBF_NONE:
case LBF_ASSERT:
case LBF_MATH_ABS:
case LBF_MATH_ACOS:
case LBF_MATH_ASIN:
case LBF_MATH_ATAN2:
case LBF_MATH_ATAN:
case LBF_MATH_CEIL:
case LBF_MATH_COSH:
case LBF_MATH_COS:
case LBF_MATH_DEG:
case LBF_MATH_EXP:
case LBF_MATH_FLOOR:
case LBF_MATH_FMOD:
case LBF_MATH_FREXP:
case LBF_MATH_LDEXP:
case LBF_MATH_LOG10:
case LBF_MATH_LOG:
case LBF_MATH_MAX:
case LBF_MATH_MIN:
case LBF_MATH_MODF:
case LBF_MATH_POW:
case LBF_MATH_RAD:
case LBF_MATH_SINH:
case LBF_MATH_SIN:
case LBF_MATH_SQRT:
case LBF_MATH_TANH:
case LBF_MATH_TAN:
case LBF_BIT32_ARSHIFT:
case LBF_BIT32_BAND:
case LBF_BIT32_BNOT:
case LBF_BIT32_BOR:
case LBF_BIT32_BXOR:
case LBF_BIT32_BTEST:
case LBF_BIT32_EXTRACT:
case LBF_BIT32_LROTATE:
case LBF_BIT32_LSHIFT:
case LBF_BIT32_REPLACE:
case LBF_BIT32_RROTATE:
case LBF_BIT32_RSHIFT:
case LBF_TYPE:
case LBF_STRING_BYTE:
case LBF_STRING_CHAR:
case LBF_STRING_LEN:
case LBF_TYPEOF:
case LBF_STRING_SUB:
case LBF_MATH_CLAMP:
case LBF_MATH_SIGN:
case LBF_MATH_ROUND:
case LBF_RAWSET:
case LBF_RAWGET:
case LBF_RAWEQUAL:
case LBF_TABLE_INSERT:
case LBF_TABLE_UNPACK:
case LBF_VECTOR:
case LBF_BIT32_COUNTLZ:
case LBF_BIT32_COUNTRZ:
case LBF_SELECT_VARARG:
case LBF_RAWLEN:
case LBF_BIT32_EXTRACTK:
case LBF_GETMETATABLE:
break;
case LBF_SETMETATABLE:
state.invalidateHeap(); // TODO: only knownNoMetatable is affected and we might know which one
break;
}
// TODO: classify further using switch above, some fastcalls only modify the value, not the tag
state.invalidateRegistersFrom(firstReturnReg);
}
static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction& function, IrBlock& block, IrInst& inst, uint32_t index)
{
switch (inst.cmd)
@ -406,20 +487,16 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
}
}
break;
case IrCmd::LOP_FASTCALL:
case IrCmd::LOP_FASTCALL1:
case IrCmd::LOP_FASTCALL2:
case IrCmd::LOP_FASTCALL2K:
// TODO: classify fast call behaviors to avoid heap invalidation
state.invalidateHeap(); // Even a builtin method can change table properties
state.invalidateRegistersFrom(inst.b.index);
break;
case IrCmd::LOP_AND:
case IrCmd::LOP_ANDK:
case IrCmd::LOP_OR:
case IrCmd::LOP_ORK:
state.invalidate(inst.b);
break;
case IrCmd::FASTCALL:
case IrCmd::INVOKE_FASTCALL:
handleBuiltinEffects(state, LuauBuiltinFunction(function.uintOp(inst.a)), inst.b.index, function.intOp(inst.f));
break;
// These instructions don't have an effect on register/memory state we are tracking
case IrCmd::NOP:
@ -436,6 +513,8 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
case IrCmd::DIV_NUM:
case IrCmd::MOD_NUM:
case IrCmd::POW_NUM:
case IrCmd::MIN_NUM:
case IrCmd::MAX_NUM:
case IrCmd::UNM_NUM:
case IrCmd::NOT_ANY:
case IrCmd::JUMP:
@ -458,6 +537,7 @@ static void constPropInInst(ConstPropState& state, IrBuilder& build, IrFunction&
case IrCmd::SUBSTITUTE:
case IrCmd::ADJUST_STACK_TO_REG: // Changes stack top, but not the values
case IrCmd::ADJUST_STACK_TO_TOP: // Changes stack top, but not the values
case IrCmd::CHECK_FASTCALL_RES: // Changes stack top, but not the values
break;
// We don't model the following instructions, so we just clear all the knowledge we have built up
@ -534,8 +614,9 @@ static void constPropInBlockChain(IrBuilder& build, std::vector<uint8_t>& visite
if (termInst.cmd == IrCmd::JUMP)
{
IrBlock& target = function.blockOp(termInst.a);
uint32_t targetIdx = function.getBlockIndex(target);
if (target.useCount == 1 && !visited[function.getBlockIndex(target)] && target.kind != IrBlockKind::Fallback)
if (target.useCount == 1 && !visited[targetIdx] && target.kind != IrBlockKind::Fallback)
nextBlock = &target;
}
@ -543,12 +624,114 @@ static void constPropInBlockChain(IrBuilder& build, std::vector<uint8_t>& visite
}
}
// Note that blocks in the collected path are marked as visited
static std::vector<uint32_t> collectDirectBlockJumpPath(IrFunction& function, std::vector<uint8_t>& visited, IrBlock* block)
{
// Path shouldn't be built starting with a block that has 'live out' values.
// One theoretical way to get it is if we had 'block' jumping unconditionally into a successor that uses values from 'block'
// * if the successor has only one use, the starting conditions of 'tryCreateLinearBlock' would prevent this
// * if the successor has multiple uses, it can't have such 'live in' values without phi nodes that we don't have yet
// Another possibility is to have two paths from 'block' into the target through two intermediate blocks
// Usually that would mean that we would have a conditional jump at the end of 'block'
// But using check guards and fallback clocks it becomes a possible setup
// We avoid this by making sure fallbacks rejoin the other immediate successor of 'block'
LUAU_ASSERT(getLiveOutValueCount(function, *block) == 0);
std::vector<uint32_t> path;
while (block)
{
IrInst& termInst = function.instructions[block->finish];
IrBlock* nextBlock = nullptr;
// A chain is made from internal blocks that were not a part of bytecode CFG
if (termInst.cmd == IrCmd::JUMP)
{
IrBlock& target = function.blockOp(termInst.a);
uint32_t targetIdx = function.getBlockIndex(target);
if (!visited[targetIdx] && target.kind == IrBlockKind::Internal)
{
// Additional restriction is that to join a block, it cannot produce values that are used in other blocks
// And it also can't use values produced in other blocks
auto [liveIns, liveOuts] = getLiveInOutValueCount(function, target);
if (liveIns == 0 && liveOuts == 0)
{
visited[targetIdx] = true;
path.push_back(targetIdx);
nextBlock = &target;
}
}
}
block = nextBlock;
}
return path;
}
static void tryCreateLinearBlock(IrBuilder& build, std::vector<uint8_t>& visited, IrBlock& startingBlock)
{
IrFunction& function = build.function;
uint32_t blockIdx = function.getBlockIndex(startingBlock);
LUAU_ASSERT(!visited[blockIdx]);
visited[blockIdx] = true;
IrInst& termInst = function.instructions[startingBlock.finish];
// Block has to end with an unconditional jump
if (termInst.cmd != IrCmd::JUMP)
return;
// And it has to jump to a block with more than one user
// If there's only one use, it should already be optimized by constPropInBlockChain
if (function.blockOp(termInst.a).useCount == 1)
return;
uint32_t targetBlockIdx = termInst.a.index;
// Check if this path is worth it (and it will also mark path blocks as visited)
std::vector<uint32_t> path = collectDirectBlockJumpPath(function, visited, &startingBlock);
// If path is too small, we are not going to linearize it
if (int(path.size()) < FInt::LuauCodeGenMinLinearBlockPath)
return;
// Initialize state with the knowledge of our current block
ConstPropState state;
constPropInBlock(build, startingBlock, state);
// Veryfy that target hasn't changed
LUAU_ASSERT(function.instructions[startingBlock.finish].a.index == targetBlockIdx);
// Create new linearized block into which we are going to redirect starting block jump
IrOp newBlock = build.block(IrBlockKind::Linearized);
visited.push_back(false);
// TODO: placement of linear blocks in final lowering is sub-optimal, it should follow our predecessor
build.beginBlock(newBlock);
replace(function, termInst.a, newBlock);
// Clone the collected path int our fresh block
for (uint32_t pathBlockIdx : path)
build.clone(function.blocks[pathBlockIdx], /* removeCurrentTerminator */ true);
// Optimize our linear block
IrBlock& linearBlock = function.blockOp(newBlock);
constPropInBlock(build, linearBlock, state);
}
void constPropInBlockChains(IrBuilder& build)
{
IrFunction& function = build.function;
std::vector<uint8_t> visited(function.blocks.size(), false);
// First pass: go over existing blocks once and propagate constants
for (IrBlock& block : function.blocks)
{
if (block.kind == IrBlockKind::Fallback || block.kind == IrBlockKind::Dead)
@ -559,6 +742,26 @@ void constPropInBlockChains(IrBuilder& build)
constPropInBlockChain(build, visited, &block);
}
// Second pass: go through internal block chains and outline them into a single new block
// Outlining will be able to linearize the execution, even if there was a jump to a block with multiple users,
// new 'block' will only be reachable from a single one and all gathered information can be preserved.
std::fill(visited.begin(), visited.end(), false);
// This next loop can create new 'linear' blocks, so index-based loop has to be used (and it intentionally won't reach those new blocks)
size_t originalBlockCount = function.blocks.size();
for (size_t i = 0; i < originalBlockCount; i++)
{
IrBlock& block = function.blocks[i];
if (block.kind == IrBlockKind::Fallback || block.kind == IrBlockKind::Dead)
continue;
if (visited[function.getBlockIndex(block)])
continue;
tryCreateLinearBlock(build, visited, block);
}
}
} // namespace CodeGen

View file

@ -41,6 +41,8 @@ static void optimizeMemoryOperandsX64(IrFunction& function, IrBlock& block)
case IrCmd::DIV_NUM:
case IrCmd::MOD_NUM:
case IrCmd::POW_NUM:
case IrCmd::MIN_NUM:
case IrCmd::MAX_NUM:
{
if (inst.b.kind == IrOpKind::Inst)
{

View file

@ -168,12 +168,12 @@ void UnwindBuilderDwarf2::start()
// Function call frame instructions to follow
}
void UnwindBuilderDwarf2::spill(int espOffset, RegisterX64 reg)
void UnwindBuilderDwarf2::spill(int espOffset, X64::RegisterX64 reg)
{
pos = advanceLocation(pos, 5); // REX.W mov [rsp + imm8], reg
}
void UnwindBuilderDwarf2::save(RegisterX64 reg)
void UnwindBuilderDwarf2::save(X64::RegisterX64 reg)
{
stackOffset += 8;
pos = advanceLocation(pos, 2); // REX.W push reg
@ -188,7 +188,7 @@ void UnwindBuilderDwarf2::allocStack(int size)
pos = defineCfaExpressionOffset(pos, stackOffset);
}
void UnwindBuilderDwarf2::setupFrameReg(RegisterX64 reg, int espOffset)
void UnwindBuilderDwarf2::setupFrameReg(X64::RegisterX64 reg, int espOffset)
{
if (espOffset != 0)
pos = advanceLocation(pos, 5); // REX.W lea rbp, [rsp + imm8]

View file

@ -49,12 +49,12 @@ void UnwindBuilderWin::start()
unwindCodes.reserve(16);
}
void UnwindBuilderWin::spill(int espOffset, RegisterX64 reg)
void UnwindBuilderWin::spill(int espOffset, X64::RegisterX64 reg)
{
prologSize += 5; // REX.W mov [rsp + imm8], reg
}
void UnwindBuilderWin::save(RegisterX64 reg)
void UnwindBuilderWin::save(X64::RegisterX64 reg)
{
prologSize += 2; // REX.W push reg
stackOffset += 8;
@ -70,7 +70,7 @@ void UnwindBuilderWin::allocStack(int size)
unwindCodes.push_back({prologSize, UWOP_ALLOC_SMALL, uint8_t((size - 8) / 8)});
}
void UnwindBuilderWin::setupFrameReg(RegisterX64 reg, int espOffset)
void UnwindBuilderWin::setupFrameReg(X64::RegisterX64 reg, int espOffset)
{
LUAU_ASSERT(espOffset < 256 && espOffset % 16 == 0);

View file

@ -244,5 +244,158 @@ void analyzeBuiltins(DenseHashMap<AstExprCall*, int>& result, const DenseHashMap
root->visit(&visitor);
}
BuiltinInfo getBuiltinInfo(int bfid)
{
switch (LuauBuiltinFunction(bfid))
{
case LBF_NONE:
return {-1, -1};
case LBF_ASSERT:
return {-1, -1};
; // assert() returns all values when first value is truthy
case LBF_MATH_ABS:
case LBF_MATH_ACOS:
case LBF_MATH_ASIN:
return {1, 1};
case LBF_MATH_ATAN2:
return {2, 1};
case LBF_MATH_ATAN:
case LBF_MATH_CEIL:
case LBF_MATH_COSH:
case LBF_MATH_COS:
case LBF_MATH_DEG:
case LBF_MATH_EXP:
case LBF_MATH_FLOOR:
return {1, 1};
case LBF_MATH_FMOD:
return {2, 1};
case LBF_MATH_FREXP:
return {1, 2};
case LBF_MATH_LDEXP:
return {2, 1};
case LBF_MATH_LOG10:
return {1, 1};
case LBF_MATH_LOG:
return {-1, 1}; // 1 or 2 parameters
case LBF_MATH_MAX:
case LBF_MATH_MIN:
return {-1, 1}; // variadic
case LBF_MATH_MODF:
return {1, 2};
case LBF_MATH_POW:
return {2, 1};
case LBF_MATH_RAD:
case LBF_MATH_SINH:
case LBF_MATH_SIN:
case LBF_MATH_SQRT:
case LBF_MATH_TANH:
case LBF_MATH_TAN:
return {1, 1};
case LBF_BIT32_ARSHIFT:
return {2, 1};
case LBF_BIT32_BAND:
return {-1, 1}; // variadic
case LBF_BIT32_BNOT:
return {1, 1};
case LBF_BIT32_BOR:
case LBF_BIT32_BXOR:
case LBF_BIT32_BTEST:
return {-1, 1}; // variadic
case LBF_BIT32_EXTRACT:
return {-1, 1}; // 2 or 3 parameters
case LBF_BIT32_LROTATE:
case LBF_BIT32_LSHIFT:
return {2, 1};
case LBF_BIT32_REPLACE:
return {-1, 1}; // 3 or 4 parameters
case LBF_BIT32_RROTATE:
case LBF_BIT32_RSHIFT:
return {2, 1};
case LBF_TYPE:
return {1, 1};
case LBF_STRING_BYTE:
return {-1, -1}; // 1, 2 or 3 parameters
case LBF_STRING_CHAR:
return {-1, 1}; // variadic
case LBF_STRING_LEN:
return {1, 1};
case LBF_TYPEOF:
return {1, 1};
case LBF_STRING_SUB:
return {-1, 1}; // 2 or 3 parameters
case LBF_MATH_CLAMP:
return {3, 1};
case LBF_MATH_SIGN:
case LBF_MATH_ROUND:
return {1, 1};
case LBF_RAWSET:
return {3, 1};
case LBF_RAWGET:
case LBF_RAWEQUAL:
return {2, 1};
case LBF_TABLE_INSERT:
return {-1, 0}; // 2 or 3 parameters
case LBF_TABLE_UNPACK:
return {-1, -1}; // 1, 2 or 3 parameters
case LBF_VECTOR:
return {-1, 1}; // 3 or 4 parameters in some configurations
case LBF_BIT32_COUNTLZ:
case LBF_BIT32_COUNTRZ:
return {1, 1};
case LBF_SELECT_VARARG:
return {-1, -1}; // variadic
case LBF_RAWLEN:
return {1, 1};
case LBF_BIT32_EXTRACTK:
return {3, 1};
case LBF_GETMETATABLE:
return {1, 1};
case LBF_SETMETATABLE:
return {2, 1};
};
LUAU_UNREACHABLE();
}
} // namespace Compile
} // namespace Luau

View file

@ -39,5 +39,13 @@ Builtin getBuiltin(AstExpr* node, const DenseHashMap<AstName, Global>& globals,
void analyzeBuiltins(DenseHashMap<AstExprCall*, int>& result, const DenseHashMap<AstName, Global>& globals,
const DenseHashMap<AstLocal*, Variable>& variables, const CompileOptions& options, AstNode* root);
struct BuiltinInfo
{
int params;
int results;
};
BuiltinInfo getBuiltinInfo(int bfid);
} // namespace Compile
} // namespace Luau

View file

@ -2038,7 +2038,10 @@ void BytecodeBuilder::dumpInstruction(const uint32_t* code, std::string& result,
case LOP_CAPTURE:
formatAppend(result, "CAPTURE %s %c%d\n",
LUAU_INSN_A(insn) == LCT_UPVAL ? "UPVAL" : LUAU_INSN_A(insn) == LCT_REF ? "REF" : LUAU_INSN_A(insn) == LCT_VAL ? "VAL" : "",
LUAU_INSN_A(insn) == LCT_UPVAL ? "UPVAL"
: LUAU_INSN_A(insn) == LCT_REF ? "REF"
: LUAU_INSN_A(insn) == LCT_VAL ? "VAL"
: "",
LUAU_INSN_A(insn) == LCT_UPVAL ? 'U' : 'R', LUAU_INSN_B(insn));
break;

View file

@ -26,6 +26,7 @@ LUAU_FASTINTVARIABLE(LuauCompileInlineThresholdMaxBoost, 300)
LUAU_FASTINTVARIABLE(LuauCompileInlineDepth, 5)
LUAU_FASTFLAGVARIABLE(LuauCompileTerminateBC, false)
LUAU_FASTFLAGVARIABLE(LuauCompileBuiltinArity, false)
namespace Luau
{
@ -293,6 +294,12 @@ struct Compiler
if (isConstant(expr))
return false;
// handles builtin calls that can't be constant-folded but are known to return one value
// note: optimizationLevel check is technically redundant but it's important that we never optimize based on builtins in O1
if (FFlag::LuauCompileBuiltinArity && options.optimizationLevel >= 2)
if (int* bfid = builtins.find(expr))
return getBuiltinInfo(*bfid).results != 1;
// handles local function calls where we know only one argument is returned
AstExprFunction* func = getFunctionExpr(expr->func);
Function* fi = func ? functions.find(func) : nullptr;
@ -506,6 +513,7 @@ struct Compiler
// we can't inline multret functions because the caller expects L->top to be adjusted:
// - inlined return compiles to a JUMP, and we don't have an instruction that adjusts L->top arbitrarily
// - even if we did, right now all L->top adjustments are immediately consumed by the next instruction, and for now we want to preserve that
// - additionally, we can't easily compile multret expressions into designated target as computed call arguments will get clobbered
if (multRet)
{
bytecode.addDebugRemark("inlining failed: can't convert fixed returns to multret");
@ -755,8 +763,13 @@ struct Compiler
}
// Optimization: for 1/2 argument fast calls use specialized opcodes
if (bfid >= 0 && expr->args.size >= 1 && expr->args.size <= 2 && !isExprMultRet(expr->args.data[expr->args.size - 1]))
return compileExprFastcallN(expr, target, targetCount, targetTop, multRet, regs, bfid);
if (bfid >= 0 && expr->args.size >= 1 && expr->args.size <= 2)
{
if (!isExprMultRet(expr->args.data[expr->args.size - 1]))
return compileExprFastcallN(expr, target, targetCount, targetTop, multRet, regs, bfid);
else if (FFlag::LuauCompileBuiltinArity && options.optimizationLevel >= 2 && int(expr->args.size) == getBuiltinInfo(bfid).params)
return compileExprFastcallN(expr, target, targetCount, targetTop, multRet, regs, bfid);
}
if (expr->self)
{

View file

@ -108,6 +108,7 @@ target_sources(Luau.CodeGen PRIVATE
CodeGen/src/CodeGenUtils.h
CodeGen/src/CodeGenX64.h
CodeGen/src/EmitBuiltinsX64.h
CodeGen/src/EmitCommon.h
CodeGen/src/EmitCommonX64.h
CodeGen/src/EmitInstructionX64.h
CodeGen/src/Fallbacks.h
@ -126,6 +127,7 @@ target_sources(Luau.Analysis PRIVATE
Analysis/include/Luau/AstJsonEncoder.h
Analysis/include/Luau/AstQuery.h
Analysis/include/Luau/Autocomplete.h
Analysis/include/Luau/Breadcrumb.h
Analysis/include/Luau/BuiltinDefinitions.h
Analysis/include/Luau/Clone.h
Analysis/include/Luau/Config.h

View file

@ -1445,7 +1445,7 @@ static int str_pack(lua_State* L)
const char* s = luaL_checklstring(L, arg, &len);
luaL_argcheck(L, len <= (size_t)size, arg, "string longer than given size");
luaL_addlstring(&b, s, len, -1); // add string
while (len++ < (size_t)size) // pad extra space
while (len++ < (size_t)size) // pad extra space
luaL_addchar(&b, LUAL_PACKPADBYTE);
break;
}

View file

@ -7,6 +7,7 @@
#include <string.h>
using namespace Luau::CodeGen;
using namespace Luau::CodeGen::A64;
static std::string bytecodeAsArray(const std::vector<uint8_t>& bytecode)
{

View file

@ -7,6 +7,7 @@
#include <string.h>
using namespace Luau::CodeGen;
using namespace Luau::CodeGen::X64;
static std::string bytecodeAsArray(const std::vector<uint8_t>& bytecode)
{

View file

@ -445,7 +445,7 @@ TEST_CASE_FIXTURE(JsonEncoderFixture, "encode_annotation")
AstStat* statement = expectParseStatement("type T = ((number) -> (string | nil)) & ((string) -> ())");
std::string_view expected =
R"({"type":"AstStatTypeAlias","location":"0,0 - 0,55","name":"T","generics":[],"genericPacks":[],"type":{"type":"AstTypeIntersection","location":"0,9 - 0,55","types":[{"type":"AstTypeFunction","location":"0,10 - 0,35","generics":[],"genericPacks":[],"argTypes":{"type":"AstTypeList","types":[{"type":"AstTypeReference","location":"0,11 - 0,17","name":"number","parameters":[]}]},"returnTypes":{"type":"AstTypeList","types":[{"type":"AstTypeUnion","location":"0,23 - 0,35","types":[{"type":"AstTypeReference","location":"0,23 - 0,29","name":"string","parameters":[]},{"type":"AstTypeReference","location":"0,32 - 0,35","name":"nil","parameters":[]}]}]}},{"type":"AstTypeFunction","location":"0,41 - 0,55","generics":[],"genericPacks":[],"argTypes":{"type":"AstTypeList","types":[{"type":"AstTypeReference","location":"0,42 - 0,48","name":"string","parameters":[]}]},"returnTypes":{"type":"AstTypeList","types":[]}}]},"exported":false})";
R"({"type":"AstStatTypeAlias","location":"0,0 - 0,55","name":"T","generics":[],"genericPacks":[],"type":{"type":"AstTypeIntersection","location":"0,9 - 0,55","types":[{"type":"AstTypeFunction","location":"0,10 - 0,36","generics":[],"genericPacks":[],"argTypes":{"type":"AstTypeList","types":[{"type":"AstTypeReference","location":"0,11 - 0,17","name":"number","parameters":[]}]},"returnTypes":{"type":"AstTypeList","types":[{"type":"AstTypeUnion","location":"0,23 - 0,35","types":[{"type":"AstTypeReference","location":"0,23 - 0,29","name":"string","parameters":[]},{"type":"AstTypeReference","location":"0,32 - 0,35","name":"nil","parameters":[]}]}]}},{"type":"AstTypeFunction","location":"0,41 - 0,55","generics":[],"genericPacks":[],"argTypes":{"type":"AstTypeList","types":[{"type":"AstTypeReference","location":"0,42 - 0,48","name":"string","parameters":[]}]},"returnTypes":{"type":"AstTypeList","types":[]}}]},"exported":false})";
CHECK(toJson(statement) == expected);
}

View file

@ -3198,6 +3198,20 @@ t.@1
}
}
TEST_CASE_FIXTURE(ACFixture, "simple")
{
check(R"(
local t = {}
function t:m() end
t:m()
)");
// auto ac = autocomplete('1');
// REQUIRE(ac.entryMap.count("m"));
// CHECK(!ac.entryMap["m"].wrongIndexType);
}
TEST_CASE_FIXTURE(ACFixture, "do_compatible_self_calls")
{
check(R"(
@ -3466,4 +3480,33 @@ TEST_CASE_FIXTURE(ACFixture, "string_contents_is_available_to_callback")
CHECK(isCorrect);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_response_perf1" * doctest::timeout(0.5))
{
ScopedFastFlag luauAutocompleteSkipNormalization{"LuauAutocompleteSkipNormalization", true};
// Build a function type with a large overload set
const int parts = 100;
std::string source;
for (int i = 0; i < parts; i++)
formatAppend(source, "type T%d = { f%d: number }\n", i, i);
source += "type Instance = { new: (('s0', extra: Instance?) -> T0)";
for (int i = 1; i < parts; i++)
formatAppend(source, " & (('s%d', extra: Instance?) -> T%d)", i, i);
source += " }\n";
source += "local Instance: Instance = {} :: any\n";
source += "local function c(): boolean return t@1 end\n";
check(source);
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("true"));
CHECK(ac.entryMap.count("Instance"));
}
TEST_SUITE_END();

View file

@ -131,6 +131,8 @@ TEST_CASE("CodeAllocationWithUnwindCallbacks")
#if !defined(LUAU_BIG_ENDIAN)
TEST_CASE("WindowsUnwindCodesX64")
{
using namespace X64;
UnwindBuilderWin unwind;
unwind.start();
@ -162,6 +164,8 @@ TEST_CASE("WindowsUnwindCodesX64")
TEST_CASE("Dwarf2UnwindCodesX64")
{
using namespace X64;
UnwindBuilderDwarf2 unwind;
unwind.start();
@ -195,21 +199,23 @@ TEST_CASE("Dwarf2UnwindCodesX64")
#if defined(_WIN32)
// Windows x64 ABI
constexpr RegisterX64 rArg1 = rcx;
constexpr RegisterX64 rArg2 = rdx;
constexpr RegisterX64 rArg3 = r8;
constexpr X64::RegisterX64 rArg1 = X64::rcx;
constexpr X64::RegisterX64 rArg2 = X64::rdx;
constexpr X64::RegisterX64 rArg3 = X64::r8;
#else
// System V AMD64 ABI
constexpr RegisterX64 rArg1 = rdi;
constexpr RegisterX64 rArg2 = rsi;
constexpr RegisterX64 rArg3 = rdx;
constexpr X64::RegisterX64 rArg1 = X64::rdi;
constexpr X64::RegisterX64 rArg2 = X64::rsi;
constexpr X64::RegisterX64 rArg3 = X64::rdx;
#endif
constexpr RegisterX64 rNonVol1 = r12;
constexpr RegisterX64 rNonVol2 = rbx;
constexpr X64::RegisterX64 rNonVol1 = X64::r12;
constexpr X64::RegisterX64 rNonVol2 = X64::rbx;
TEST_CASE("GeneratedCodeExecutionX64")
{
using namespace X64;
AssemblyBuilderX64 build(/* logText= */ false);
build.mov(rax, rArg1);
@ -244,6 +250,8 @@ void throwing(int64_t arg)
TEST_CASE("GeneratedCodeExecutionWithThrowX64")
{
using namespace X64;
AssemblyBuilderX64 build(/* logText= */ false);
#if defined(_WIN32)
@ -320,6 +328,8 @@ TEST_CASE("GeneratedCodeExecutionWithThrowX64")
TEST_CASE("GeneratedCodeExecutionWithThrowOutsideTheGateX64")
{
using namespace X64;
AssemblyBuilderX64 build(/* logText= */ false);
#if defined(_WIN32)
@ -437,6 +447,8 @@ TEST_CASE("GeneratedCodeExecutionWithThrowOutsideTheGateX64")
TEST_CASE("GeneratedCodeExecutionA64")
{
using namespace A64;
AssemblyBuilderA64 build(/* logText= */ false);
Label skip;

View file

@ -4655,6 +4655,8 @@ RETURN R0 0
TEST_CASE("LoopUnrollCost")
{
ScopedFastFlag sff("LuauCompileBuiltinArity", true);
ScopedFastInt sfis[] = {
{"LuauCompileLoopUnrollThreshold", 25},
{"LuauCompileLoopUnrollThresholdMaxBoost", 300},
@ -4796,10 +4798,10 @@ FORNPREP R1 L3
L0: FASTCALL1 24 R3 L1
MOVE R6 R3
GETIMPORT R5 2 [math.sin]
CALL R5 1 -1
L1: FASTCALL 2 L2
CALL R5 1 1
L1: FASTCALL1 2 R5 L2
GETIMPORT R4 4 [math.abs]
CALL R4 -1 1
CALL R4 1 1
L2: SETTABLE R4 R0 R3
FORNLOOP R1 L0
L3: RETURN R0 1
@ -5924,6 +5926,8 @@ RETURN R2 1
TEST_CASE("InlineMultret")
{
ScopedFastFlag sff("LuauCompileBuiltinArity", true);
// inlining a function in multret context is prohibited since we can't adjust L->top outside of CALL/GETVARARGS
CHECK_EQ("\n" + compileFunction(R"(
local function foo(a)
@ -5994,7 +5998,7 @@ CALL R1 1 -1
RETURN R1 -1
)");
// and unfortunately we can't do this analysis for builtins or method calls due to getfenv
// we do this for builtins though as we assume getfenv is not used or is not changing arity
CHECK_EQ("\n" + compileFunction(R"(
local function foo(a)
return math.abs(a)
@ -6005,10 +6009,8 @@ return foo(42)
1, 2),
R"(
DUPCLOSURE R0 K0 ['foo']
MOVE R1 R0
LOADN R2 42
CALL R1 1 -1
RETURN R1 -1
LOADN R1 42
RETURN R1 1
)");
}
@ -6263,6 +6265,8 @@ RETURN R0 52
TEST_CASE("BuiltinFoldingProhibited")
{
ScopedFastFlag sff("LuauCompileBuiltinArity", true);
CHECK_EQ("\n" + compileFunction(R"(
return
math.abs(),
@ -6326,8 +6330,8 @@ L8: LOADN R10 1
FASTCALL2K 19 R10 K3 L9 [true]
LOADK R11 K3 [true]
GETIMPORT R9 26 [math.min]
CALL R9 2 -1
L9: RETURN R0 -1
CALL R9 2 1
L9: RETURN R0 10
)");
}
@ -6865,4 +6869,111 @@ L3: RETURN R0 0
)");
}
TEST_CASE("BuiltinArity")
{
ScopedFastFlag sff("LuauCompileBuiltinArity", true);
// by default we can't assume that we know parameter/result count for builtins as they can be overridden at runtime
CHECK_EQ("\n" + compileFunction(R"(
return math.abs(unknown())
)",
0, 1),
R"(
GETIMPORT R1 1 [unknown]
CALL R1 0 -1
FASTCALL 2 L0
GETIMPORT R0 4 [math.abs]
CALL R0 -1 -1
L0: RETURN R0 -1
)");
// however, when using optimization level 2, we assume compile time knowledge about builtin behavior even if we can't deoptimize that with fenv
// in the test case below, this allows us to synthesize a more efficient FASTCALL1 (and use a fixed-return call to unknown)
CHECK_EQ("\n" + compileFunction(R"(
return math.abs(unknown())
)",
0, 2),
R"(
GETIMPORT R1 1 [unknown]
CALL R1 0 1
FASTCALL1 2 R1 L0
GETIMPORT R0 4 [math.abs]
CALL R0 1 1
L0: RETURN R0 1
)");
// some builtins are variadic, and as such they can't use fixed-length fastcall variants
CHECK_EQ("\n" + compileFunction(R"(
return math.max(0, unknown())
)",
0, 2),
R"(
LOADN R1 0
GETIMPORT R2 1 [unknown]
CALL R2 0 -1
FASTCALL 18 L0
GETIMPORT R0 4 [math.max]
CALL R0 -1 1
L0: RETURN R0 1
)");
// some builtins are not variadic but don't have a fixed number of arguments; we currently don't optimize this although we might start to in the
// future
CHECK_EQ("\n" + compileFunction(R"(
return bit32.extract(0, 1, unknown())
)",
0, 2),
R"(
LOADN R1 0
LOADN R2 1
GETIMPORT R3 1 [unknown]
CALL R3 0 -1
FASTCALL 34 L0
GETIMPORT R0 4 [bit32.extract]
CALL R0 -1 1
L0: RETURN R0 1
)");
// importantly, this optimization also helps us get around the multret inlining restriction for builtin wrappers
CHECK_EQ("\n" + compileFunction(R"(
local function new()
return setmetatable({}, MT)
end
return new()
)",
1, 2),
R"(
DUPCLOSURE R0 K0 ['new']
NEWTABLE R2 0 0
GETIMPORT R3 2 [MT]
FASTCALL2 61 R2 R3 L0
GETIMPORT R1 4 [setmetatable]
CALL R1 2 1
L0: RETURN R1 1
)");
// note that the results of this optimization are benign in fixed-arg contexts which dampens the effect of fenv substitutions on correctness in
// practice
CHECK_EQ("\n" + compileFunction(R"(
local x = ...
local y, z = type(x)
return type(y, z)
)",
0, 2),
R"(
GETVARARGS R0 1
FASTCALL1 40 R0 L0
MOVE R2 R0
GETIMPORT R1 1 [type]
CALL R1 1 2
L0: FASTCALL2 40 R1 R2 L1
MOVE R4 R1
MOVE R5 R2
GETIMPORT R3 1 [type]
CALL R3 2 1
L1: RETURN R3 1
)");
}
TEST_SUITE_END();

View file

@ -10,7 +10,7 @@
using namespace Luau;
class DataFlowGraphFixture
struct DataFlowGraphFixture
{
// Only needed to fix the operator== reflexivity of an empty Symbol.
ScopedFastFlag dcr{"DebugLuauDeferredConstraintResolution", true};
@ -23,7 +23,6 @@ class DataFlowGraphFixture
std::optional<DataFlowGraph> graph;
public:
void dfg(const std::string& code)
{
ParseResult parseResult = Parser::parse(code.c_str(), code.size(), names, allocator);
@ -34,19 +33,19 @@ public:
}
template<typename T, int N>
std::optional<DefId> getDef(const std::vector<Nth>& nths = {nth<T>(N)})
NullableBreadcrumbId getBreadcrumb(const std::vector<Nth>& nths = {nth<T>(N)})
{
T* node = query<T, N>(module, nths);
REQUIRE(node);
return graph->getDef(node);
return graph->getBreadcrumb(node);
}
template<typename T, int N>
DefId requireDef(const std::vector<Nth>& nths = {nth<T>(N)})
BreadcrumbId requireBreadcrumb(const std::vector<Nth>& nths = {nth<T>(N)})
{
auto loc = getDef<T, N>(nths);
REQUIRE(loc);
return NotNull{*loc};
auto bc = getBreadcrumb<T, N>(nths);
REQUIRE(bc);
return NotNull{bc};
}
};
@ -59,7 +58,7 @@ TEST_CASE_FIXTURE(DataFlowGraphFixture, "define_locals_in_local_stat")
local y = x
)");
REQUIRE(getDef<AstExprLocal, 1>());
REQUIRE(getBreadcrumb<AstExprLocal, 1>());
}
TEST_CASE_FIXTURE(DataFlowGraphFixture, "define_parameters_in_functions")
@ -70,7 +69,7 @@ TEST_CASE_FIXTURE(DataFlowGraphFixture, "define_parameters_in_functions")
end
)");
REQUIRE(getDef<AstExprLocal, 1>());
REQUIRE(getBreadcrumb<AstExprLocal, 1>());
}
TEST_CASE_FIXTURE(DataFlowGraphFixture, "find_aliases")
@ -81,9 +80,9 @@ TEST_CASE_FIXTURE(DataFlowGraphFixture, "find_aliases")
local z = y
)");
DefId x = requireDef<AstExprLocal, 1>();
DefId y = requireDef<AstExprLocal, 2>();
REQUIRE(x != y); // TODO: they should be equal but it's not just locals that can alias, so we'll support this later.
BreadcrumbId x = requireBreadcrumb<AstExprLocal, 1>();
BreadcrumbId y = requireBreadcrumb<AstExprLocal, 2>();
REQUIRE(x != y);
}
TEST_CASE_FIXTURE(DataFlowGraphFixture, "independent_locals")
@ -96,8 +95,8 @@ TEST_CASE_FIXTURE(DataFlowGraphFixture, "independent_locals")
local b = y
)");
DefId x = requireDef<AstExprLocal, 1>();
DefId y = requireDef<AstExprLocal, 2>();
BreadcrumbId x = requireBreadcrumb<AstExprLocal, 1>();
BreadcrumbId y = requireBreadcrumb<AstExprLocal, 2>();
REQUIRE(x != y);
}

View file

@ -178,17 +178,8 @@ AstStatBlock* Fixture::parse(const std::string& source, const ParseOptions& pars
if (FFlag::DebugLuauDeferredConstraintResolution)
{
Luau::check(
*sourceModule,
{},
frontend.builtinTypes,
NotNull{&ice},
NotNull{&moduleResolver},
NotNull{&fileResolver},
typeChecker.globalScope,
NotNull{&typeChecker.unifierState},
frontend.options
);
Luau::check(*sourceModule, {}, frontend.builtinTypes, NotNull{&ice}, NotNull{&moduleResolver}, NotNull{&fileResolver},
typeChecker.globalScope, frontend.options);
}
else
typeChecker.check(*sourceModule, sourceModule->mode.value_or(Luau::Mode::Nonstrict));

View file

@ -311,6 +311,8 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "Numeric")
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::DIV_NUM, build.constDouble(2), build.constDouble(5)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::MOD_NUM, build.constDouble(5), build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::POW_NUM, build.constDouble(5), build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::MIN_NUM, build.constDouble(5), build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::MAX_NUM, build.constDouble(5), build.constDouble(2)));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(0), build.inst(IrCmd::UNM_NUM, build.constDouble(5)));
@ -338,6 +340,8 @@ bb_0:
STORE_DOUBLE R0, 0.40000000000000002
STORE_DOUBLE R0, 1
STORE_DOUBLE R0, 25
STORE_DOUBLE R0, 2
STORE_DOUBLE R0, 5
STORE_DOUBLE R0, -5
STORE_INT R0, 1i
STORE_INT R0, 0i
@ -809,7 +813,8 @@ TEST_CASE_FIXTURE(IrBuilderFixture, "BuiltinFastcallsMayInvalidateMemory")
build.inst(IrCmd::CHECK_NO_METATABLE, table, fallback);
build.inst(IrCmd::CHECK_READONLY, table, fallback);
build.inst(IrCmd::LOP_FASTCALL1, build.constUint(0), build.vmReg(1), build.vmReg(2), fallback);
build.inst(IrCmd::INVOKE_FASTCALL, build.constUint(LBF_SETMETATABLE), build.vmReg(1), build.vmReg(2), build.vmReg(3), build.constInt(3),
build.constInt(1));
build.inst(IrCmd::CHECK_NO_METATABLE, table, fallback);
build.inst(IrCmd::CHECK_READONLY, table, fallback);
@ -830,7 +835,7 @@ bb_0:
%1 = LOAD_POINTER R0
CHECK_NO_METATABLE %1, bb_fallback_1
CHECK_READONLY %1, bb_fallback_1
LOP_FASTCALL1 0u, R1, R2, bb_fallback_1
%4 = INVOKE_FASTCALL 61u, R1, R2, R3, 3i, 1i
CHECK_NO_METATABLE %1, bb_fallback_1
CHECK_READONLY %1, bb_fallback_1
STORE_DOUBLE R1, 0.5
@ -1195,3 +1200,182 @@ bb_2:
}
TEST_SUITE_END();
TEST_SUITE_BEGIN("LinearExecutionFlowExtraction");
TEST_CASE_FIXTURE(IrBuilderFixture, "SimplePathExtraction")
{
IrOp block1 = build.block(IrBlockKind::Internal);
IrOp fallback1 = build.block(IrBlockKind::Fallback);
IrOp block2 = build.block(IrBlockKind::Internal);
IrOp fallback2 = build.block(IrBlockKind::Fallback);
IrOp block3 = build.block(IrBlockKind::Internal);
IrOp block4 = build.block(IrBlockKind::Internal);
build.beginBlock(block1);
IrOp tag1 = build.inst(IrCmd::LOAD_TAG, build.vmReg(2));
build.inst(IrCmd::CHECK_TAG, tag1, build.constTag(tnumber), fallback1);
build.inst(IrCmd::JUMP, block2);
build.beginBlock(fallback1);
build.inst(IrCmd::DO_LEN, build.vmReg(1), build.vmReg(2));
build.inst(IrCmd::JUMP, block2);
build.beginBlock(block2);
IrOp tag2 = build.inst(IrCmd::LOAD_TAG, build.vmReg(2));
build.inst(IrCmd::CHECK_TAG, tag2, build.constTag(tnumber), fallback2);
build.inst(IrCmd::JUMP, block3);
build.beginBlock(fallback2);
build.inst(IrCmd::DO_LEN, build.vmReg(0), build.vmReg(2));
build.inst(IrCmd::JUMP, block3);
build.beginBlock(block3);
build.inst(IrCmd::JUMP, block4);
build.beginBlock(block4);
build.inst(IrCmd::LOP_RETURN, build.constUint(0), build.vmReg(0), build.constInt(0));
updateUseCounts(build.function);
constPropInBlockChains(build);
CHECK("\n" + toString(build.function, /* includeDetails */ false) == R"(
bb_0:
%0 = LOAD_TAG R2
CHECK_TAG %0, tnumber, bb_fallback_1
JUMP bb_linear_6
bb_fallback_1:
DO_LEN R1, R2
JUMP bb_2
bb_2:
%5 = LOAD_TAG R2
CHECK_TAG %5, tnumber, bb_fallback_3
JUMP bb_4
bb_fallback_3:
DO_LEN R0, R2
JUMP bb_4
bb_4:
JUMP bb_5
bb_5:
LOP_RETURN 0u, R0, 0i
bb_linear_6:
LOP_RETURN 0u, R0, 0i
)");
}
TEST_CASE_FIXTURE(IrBuilderFixture, "NoPathExtractionForBlocksWithLiveOutValues")
{
IrOp block1 = build.block(IrBlockKind::Internal);
IrOp fallback1 = build.block(IrBlockKind::Fallback);
IrOp block2 = build.block(IrBlockKind::Internal);
IrOp fallback2 = build.block(IrBlockKind::Fallback);
IrOp block3 = build.block(IrBlockKind::Internal);
IrOp block4a = build.block(IrBlockKind::Internal);
IrOp block4b = build.block(IrBlockKind::Internal);
build.beginBlock(block1);
IrOp tag1 = build.inst(IrCmd::LOAD_TAG, build.vmReg(2));
build.inst(IrCmd::CHECK_TAG, tag1, build.constTag(tnumber), fallback1);
build.inst(IrCmd::JUMP, block2);
build.beginBlock(fallback1);
build.inst(IrCmd::DO_LEN, build.vmReg(1), build.vmReg(2));
build.inst(IrCmd::JUMP, block2);
build.beginBlock(block2);
IrOp tag2 = build.inst(IrCmd::LOAD_TAG, build.vmReg(2));
build.inst(IrCmd::CHECK_TAG, tag2, build.constTag(tnumber), fallback2);
build.inst(IrCmd::JUMP, block3);
build.beginBlock(fallback2);
build.inst(IrCmd::DO_LEN, build.vmReg(0), build.vmReg(2));
build.inst(IrCmd::JUMP, block3);
build.beginBlock(block3);
IrOp tag3a = build.inst(IrCmd::LOAD_TAG, build.vmReg(3));
build.inst(IrCmd::JUMP_EQ_TAG, tag3a, build.constTag(tnil), block4a, block4b);
build.beginBlock(block4a);
build.inst(IrCmd::STORE_TAG, build.vmReg(0), tag3a);
build.inst(IrCmd::LOP_RETURN, build.constUint(0), build.vmReg(0), build.constInt(0));
build.beginBlock(block4b);
build.inst(IrCmd::STORE_TAG, build.vmReg(0), tag3a);
build.inst(IrCmd::LOP_RETURN, build.constUint(0), build.vmReg(0), build.constInt(0));
updateUseCounts(build.function);
constPropInBlockChains(build);
CHECK("\n" + toString(build.function, /* includeDetails */ false) == R"(
bb_0:
%0 = LOAD_TAG R2
CHECK_TAG %0, tnumber, bb_fallback_1
JUMP bb_2
bb_fallback_1:
DO_LEN R1, R2
JUMP bb_2
bb_2:
%5 = LOAD_TAG R2
CHECK_TAG %5, tnumber, bb_fallback_3
JUMP bb_4
bb_fallback_3:
DO_LEN R0, R2
JUMP bb_4
bb_4:
%10 = LOAD_TAG R3
JUMP_EQ_TAG %10, tnil, bb_5, bb_6
bb_5:
STORE_TAG R0, %10
LOP_RETURN 0u, R0, 0i
bb_6:
STORE_TAG R0, %10
LOP_RETURN 0u, R0, 0i
)");
}
TEST_CASE_FIXTURE(IrBuilderFixture, "InfiniteLoopInPathAnalysis")
{
IrOp block1 = build.block(IrBlockKind::Internal);
IrOp block2 = build.block(IrBlockKind::Internal);
build.beginBlock(block1);
build.inst(IrCmd::STORE_TAG, build.vmReg(0), build.constTag(tnumber));
build.inst(IrCmd::JUMP, block2);
build.beginBlock(block2);
build.inst(IrCmd::STORE_TAG, build.vmReg(1), build.constTag(tboolean));
build.inst(IrCmd::JUMP, block2);
updateUseCounts(build.function);
constPropInBlockChains(build);
CHECK("\n" + toString(build.function, /* includeDetails */ false) == R"(
bb_0:
STORE_TAG R0, tnumber
JUMP bb_1
bb_1:
STORE_TAG R1, tboolean
JUMP bb_1
)");
}
TEST_SUITE_END();

View file

@ -155,6 +155,36 @@ TEST_CASE("string_interpolation_basic")
CHECK_EQ(interpEnd.type, Lexeme::InterpStringEnd);
}
TEST_CASE("string_interpolation_full")
{
ScopedFastFlag sff("LuauFixInterpStringMid", true);
const std::string testInput = R"(`foo {"bar"} {"baz"} end`)";
Luau::Allocator alloc;
AstNameTable table(alloc);
Lexer lexer(testInput.c_str(), testInput.size(), table);
Lexeme interpBegin = lexer.next();
CHECK_EQ(interpBegin.type, Lexeme::InterpStringBegin);
CHECK_EQ(interpBegin.toString(), "`foo {");
Lexeme quote1 = lexer.next();
CHECK_EQ(quote1.type, Lexeme::QuotedString);
CHECK_EQ(quote1.toString(), "\"bar\"");
Lexeme interpMid = lexer.next();
CHECK_EQ(interpMid.type, Lexeme::InterpStringMid);
CHECK_EQ(interpMid.toString(), "} {");
Lexeme quote2 = lexer.next();
CHECK_EQ(quote2.type, Lexeme::QuotedString);
CHECK_EQ(quote2.toString(), "\"baz\"");
Lexeme interpEnd = lexer.next();
CHECK_EQ(interpEnd.type, Lexeme::InterpStringEnd);
CHECK_EQ(interpEnd.toString(), "} end`");
}
TEST_CASE("string_interpolation_double_brace")
{
const std::string testInput = R"(`foo{{bad}}bar`)";

View file

@ -37,7 +37,7 @@ TEST_CASE_FIXTURE(Fixture, "DeprecatedGlobal")
// Normally this would be defined externally, so hack it in for testing
addGlobalBinding(frontend, "Wait", Binding{typeChecker.anyType, {}, true, "wait", "@test/global/Wait"});
LintResult result = lintTyped("Wait(5)");
LintResult result = lint("Wait(5)");
REQUIRE(1 == result.warnings.size());
CHECK_EQ(result.warnings[0].text, "Global 'Wait' is deprecated, use 'wait' instead");
@ -49,7 +49,7 @@ TEST_CASE_FIXTURE(Fixture, "DeprecatedGlobalNoReplacement")
const char* deprecationReplacementString = "";
addGlobalBinding(frontend, "Version", Binding{typeChecker.anyType, {}, true, deprecationReplacementString});
LintResult result = lintTyped("Version()");
LintResult result = lint("Version()");
REQUIRE(1 == result.warnings.size());
CHECK_EQ(result.warnings[0].text, "Global 'Version' is deprecated");
@ -1440,8 +1440,10 @@ TEST_CASE_FIXTURE(Fixture, "LintHygieneUAF")
REQUIRE(12 == result.warnings.size());
}
TEST_CASE_FIXTURE(Fixture, "DeprecatedApi")
TEST_CASE_FIXTURE(BuiltinsFixture, "DeprecatedApiTyped")
{
ScopedFastFlag sff("LuauImproveDeprecatedApiLint", true);
unfreeze(typeChecker.globalTypes);
TypeId instanceType = typeChecker.globalTypes.addType(ClassType{"Instance", {}, std::nullopt, std::nullopt, {}, {}, "Test"});
persist(instanceType);
@ -1459,6 +1461,13 @@ TEST_CASE_FIXTURE(Fixture, "DeprecatedApi")
addGlobalBinding(frontend, "Color3", Binding{colorType, {}});
if (TableType* ttv = getMutable<TableType>(getGlobalBinding(typeChecker, "table")))
{
ttv->props["foreach"].deprecated = true;
ttv->props["getn"].deprecated = true;
ttv->props["getn"].deprecatedSuggestion = "#";
}
freeze(typeChecker.globalTypes);
LintResult result = lintTyped(R"(
@ -1467,14 +1476,43 @@ return function (i: Instance)
print(i.Name)
print(Color3.toHSV())
print(Color3.doesntexist, i.doesntexist) -- type error, but this verifies we correctly handle non-existent members
print(table.getn({}))
table.foreach({}, function() end)
print(table.nogetn()) -- verify that we correctly handle non-existent members
return i.DataCost
end
)");
REQUIRE(3 == result.warnings.size());
REQUIRE(5 == result.warnings.size());
CHECK_EQ(result.warnings[0].text, "Member 'Instance.Wait' is deprecated");
CHECK_EQ(result.warnings[1].text, "Member 'toHSV' is deprecated, use 'Color3:ToHSV' instead");
CHECK_EQ(result.warnings[2].text, "Member 'Instance.DataCost' is deprecated");
CHECK_EQ(result.warnings[2].text, "Member 'table.getn' is deprecated, use '#' instead");
CHECK_EQ(result.warnings[3].text, "Member 'table.foreach' is deprecated");
CHECK_EQ(result.warnings[4].text, "Member 'Instance.DataCost' is deprecated");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "DeprecatedApiUntyped")
{
ScopedFastFlag sff("LuauImproveDeprecatedApiLint", true);
if (TableType* ttv = getMutable<TableType>(getGlobalBinding(typeChecker, "table")))
{
ttv->props["foreach"].deprecated = true;
ttv->props["getn"].deprecated = true;
ttv->props["getn"].deprecatedSuggestion = "#";
}
LintResult result = lint(R"(
return function ()
print(table.getn({}))
table.foreach({}, function() end)
print(table.nogetn()) -- verify that we correctly handle non-existent members
end
)");
REQUIRE(2 == result.warnings.size());
CHECK_EQ(result.warnings[0].text, "Member 'table.getn' is deprecated, use '#' instead");
CHECK_EQ(result.warnings[1].text, "Member 'table.foreach' is deprecated");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "TableOperations")

View file

@ -488,6 +488,20 @@ TEST_CASE_FIXTURE(NormalizeFixture, "negate_boolean_2")
)")));
}
TEST_CASE_FIXTURE(NormalizeFixture, "double_negation")
{
CHECK("number" == toString(normal(R"(
number & Not<Not<any>>
)")));
}
TEST_CASE_FIXTURE(NormalizeFixture, "negate_any")
{
CHECK("number" == toString(normal(R"(
number & Not<any>
)")));
}
TEST_CASE_FIXTURE(NormalizeFixture, "intersect_function_and_top_function")
{
CHECK("() -> ()" == toString(normal(R"(

View file

@ -458,6 +458,24 @@ TEST_CASE_FIXTURE(Fixture, "type_alias_should_work_when_name_is_also_local")
REQUIRE(block->body.data[1]->is<AstStatTypeAlias>());
}
TEST_CASE_FIXTURE(Fixture, "type_alias_span_is_correct")
{
AstStatBlock* block = parse(R"(
type Packed1<T...> = (T...) -> (T...)
type Packed2<T...> = (Packed1<T...>, T...) -> (Packed1<T...>, T...)
)");
REQUIRE(block != nullptr);
REQUIRE(2 == block->body.size);
AstStatTypeAlias* t1 = block->body.data[0]->as<AstStatTypeAlias>();
REQUIRE(t1);
REQUIRE(Location{Position{1, 8}, Position{1, 45}} == t1->location);
AstStatTypeAlias* t2 = block->body.data[1]->as<AstStatTypeAlias>();
REQUIRE(t2);
REQUIRE(Location{Position{2, 8}, Position{2, 75}} == t2->location);
}
TEST_CASE_FIXTURE(Fixture, "parse_error_messages")
{
CHECK_EQ(getParseError(R"(
@ -1020,6 +1038,35 @@ TEST_CASE_FIXTURE(Fixture, "parse_interpolated_string_call_without_parens")
}
}
TEST_CASE_FIXTURE(Fixture, "parse_interpolated_string_without_expression")
{
ScopedFastFlag sff("LuauFixInterpStringMid", true);
try
{
parse(R"(
print(`{}`)
)");
FAIL("Expected ParseErrors to be thrown");
}
catch (const ParseErrors& e)
{
CHECK_EQ("Malformed interpolated string, expected expression inside '{}'", e.getErrors().front().getMessage());
}
try
{
parse(R"(
print(`{}{1}`)
)");
FAIL("Expected ParseErrors to be thrown");
}
catch (const ParseErrors& e)
{
CHECK_EQ("Malformed interpolated string, expected expression inside '{}'", e.getErrors().front().getMessage());
}
}
TEST_CASE_FIXTURE(Fixture, "parse_nesting_based_end_detection")
{
try

View file

@ -272,4 +272,22 @@ end
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "set_prop_of_intersection_containing_metatable")
{
CheckResult result = check(R"(
export type Set<T> = typeof(setmetatable(
{} :: {
add: (self: Set<T>, T) -> Set<T>,
},
{}
))
local Set = {} :: Set<any> & {}
function Set:add(t)
return self
end
)");
}
TEST_SUITE_END();

View file

@ -814,18 +814,4 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "table_insert_with_a_singleton_argument")
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "refine_unknown_to_table_then_clone_it")
{
CheckResult result = check(R"(
local function f(x: unknown)
if typeof(x) == "table" then
local cloned: {} = table.clone(x)
end
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
// LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_SUITE_END();

View file

@ -535,13 +535,20 @@ TEST_CASE_FIXTURE(Fixture, "string_not_equal_to_string_or_nil")
CHECK_EQ(toString(requireTypeAtPosition({6, 29})), "string"); // a ~= b
CHECK_EQ(toString(requireTypeAtPosition({6, 32})), "string?"); // a ~= b
CHECK_EQ(toString(requireTypeAtPosition({8, 29})), "string"); // a == b
CHECK_EQ(toString(requireTypeAtPosition({8, 32})), "string?"); // a == b
if (FFlag::DebugLuauDeferredConstraintResolution)
{
CHECK_EQ(toString(requireTypeAtPosition({8, 29})), "string?"); // a == b
CHECK_EQ(toString(requireTypeAtPosition({8, 32})), "string?"); // a == b
}
else
{
CHECK_EQ(toString(requireTypeAtPosition({8, 29})), "string"); // a == b
CHECK_EQ(toString(requireTypeAtPosition({8, 32})), "string?"); // a == b
}
}
TEST_CASE_FIXTURE(Fixture, "narrow_property_of_a_bounded_variable")
{
CheckResult result = check(R"(
local t
local u: {x: number?} = {x = nil}
@ -804,7 +811,10 @@ TEST_CASE_FIXTURE(Fixture, "not_t_or_some_prop_of_t")
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("{| x: boolean |}?", toString(requireTypeAtPosition({3, 28})));
if (FFlag::DebugLuauDeferredConstraintResolution)
CHECK_EQ("{| x: true |}?", toString(requireTypeAtPosition({3, 28})));
else
CHECK_EQ("{| x: boolean |}?", toString(requireTypeAtPosition({3, 28})));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "assert_a_to_be_truthy_then_assert_a_to_be_number")
@ -1523,7 +1533,7 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "refine_unknown_to_table_then_take_the_length
if (FFlag::DebugLuauDeferredConstraintResolution)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("a & table", toString(requireTypeAtPosition({3, 29})));
CHECK_EQ("table", toString(requireTypeAtPosition({3, 29})));
}
else
{
@ -1532,6 +1542,26 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "refine_unknown_to_table_then_take_the_length
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "refine_unknown_to_table_then_clone_it")
{
CheckResult result = check(R"(
local function f(x: unknown)
if typeof(x) == "table" then
local cloned: {} = table.clone(x)
end
end
)");
if (FFlag::DebugLuauDeferredConstraintResolution)
{
LUAU_REQUIRE_NO_ERRORS(result);
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
}
TEST_CASE_FIXTURE(RefinementClassFixture, "refine_a_param_that_got_resolved_during_constraint_solving_stage")
{
CheckResult result = check(R"(
@ -1573,4 +1603,150 @@ TEST_CASE_FIXTURE(RefinementClassFixture, "refine_a_param_that_got_resolved_duri
CHECK_EQ("Instance", toString(requireTypeAtPosition({7, 28})));
}
TEST_CASE_FIXTURE(Fixture, "refine_a_property_of_some_global")
{
ScopedFastFlag sff{"DebugLuauDeferredConstraintResolution", true};
CheckResult result = check(R"(
foo = { bar = 5 :: number? }
if foo.bar then
local bar = foo.bar
end
)");
LUAU_REQUIRE_ERROR_COUNT(3, result);
CHECK_EQ("*error-type*", toString(requireTypeAtPosition({4, 30})));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "dataflow_analysis_can_tell_refinements_when_its_appropriate_to_refine_into_nil_or_never")
{
CheckResult result = check(R"(
local function f(t: {string}, s: string)
local v1 = t[5]
local v2 = v1
if typeof(v1) == "nil" then
local foo = v1
else
local foo = v1
end
if typeof(v2) == "nil" then
local foo = v2
else
local foo = v2
end
if typeof(s) == "nil" then
local foo = s
else
local foo = s
end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("nil", toString(requireTypeAtPosition({6, 28})));
CHECK_EQ("string", toString(requireTypeAtPosition({8, 28})));
CHECK_EQ("nil", toString(requireTypeAtPosition({12, 28})));
CHECK_EQ("string", toString(requireTypeAtPosition({14, 28})));
if (FFlag::DebugLuauDeferredConstraintResolution)
{
CHECK_EQ("never", toString(requireTypeAtPosition({18, 28})));
CHECK_EQ("string", toString(requireTypeAtPosition({20, 28})));
}
else
{
CHECK_EQ("nil", toString(requireTypeAtPosition({18, 28})));
CHECK_EQ("string", toString(requireTypeAtPosition({20, 28})));
}
}
TEST_CASE_FIXTURE(Fixture, "cat_or_dog_through_a_local")
{
CheckResult result = check(R"(
type Cat = { tag: "cat", catfood: string }
type Dog = { tag: "dog", dogfood: string }
type Animal = Cat | Dog
local function f(animal: Animal)
local tag = animal.tag
if tag == "dog" then
local dog = animal
elseif tag == "cat" then
local cat = animal
end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("Cat | Dog", toString(requireTypeAtPosition({8, 28})));
CHECK_EQ("Cat | Dog", toString(requireTypeAtPosition({10, 28})));
}
TEST_CASE_FIXTURE(Fixture, "prove_that_dataflow_analysis_isnt_doing_alias_tracking_yet")
{
CheckResult result = check(R"(
local function f(tag: "cat" | "dog")
local tag2 = tag
if tag2 == "cat" then
local foo = tag
else
local foo = tag
end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(R"("cat" | "dog")", toString(requireTypeAtPosition({5, 28})));
CHECK_EQ(R"("cat" | "dog")", toString(requireTypeAtPosition({7, 28})));
}
TEST_CASE_FIXTURE(Fixture, "fail_to_refine_a_property_of_subscript_expression")
{
CheckResult result = check(R"(
type Foo = { foo: number? }
local function f(t: {Foo})
if t[1].foo then
local foo = t[1].foo
end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("number?", toString(requireTypeAtPosition({4, 34})));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "type_annotations_arent_relevant_when_doing_dataflow_analysis")
{
CheckResult result = check(R"(
local function s() return "hello" end
local function f(t: {string})
local s1: string = t[5]
local s2: string = s()
if typeof(s1) == "nil" and typeof(s2) == "nil" then
local foo = s1
local bar = s2
end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("nil", toString(requireTypeAtPosition({8, 28})));
if (FFlag::DebugLuauDeferredConstraintResolution)
CHECK_EQ("never", toString(requireTypeAtPosition({9, 28})));
else
CHECK_EQ("nil", toString(requireTypeAtPosition({9, 28})));
}
TEST_SUITE_END();

View file

@ -519,10 +519,16 @@ TEST_CASE_FIXTURE(Fixture, "okay_to_add_property_to_unsealed_tables_by_function_
local x = get(t)
)");
// Currently this errors but it shouldn't, since set only needs write access
// TODO: file a JIRA for this
LUAU_REQUIRE_ERRORS(result);
// CHECK_EQ("number?", toString(requireType("x")));
if (FFlag::DebugLuauDeferredConstraintResolution)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("number", toString(requireType("x")));
}
else
{
LUAU_REQUIRE_ERRORS(result);
// CHECK_EQ("number?", toString(requireType("x")));
}
}
TEST_CASE_FIXTURE(Fixture, "width_subtyping")
@ -2646,7 +2652,7 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "dont_quantify_table_that_belongs_to_outer_sc
const MetatableType* newRet = get<MetatableType>(follow(*newRetType));
REQUIRE(newRet);
const TableType* newRetMeta = get<TableType>(newRet->metatable);
const TableType* newRetMeta = get<TableType>(follow(newRet->metatable));
REQUIRE(newRetMeta);
CHECK(newRetMeta->props.count("incr"));
@ -3601,4 +3607,42 @@ TEST_CASE_FIXTURE(Fixture, "dont_extend_unsealed_tables_in_rvalue_position")
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "extend_unsealed_table_with_metatable")
{
CheckResult result = check(R"(
local T = setmetatable({}, {
__call = function(_, name: string?)
end,
})
T.for_ = "for_"
return T
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "top_table_type_is_isomorphic_to_empty_sealed_table_type")
{
CheckResult result = check(R"(
local None = newproxy(true)
local mt = getmetatable(None)
mt.__tostring = function()
return "Object.None"
end
function assign(...)
for index = 1, select("#", ...) do
local rest = select(index, ...)
if rest ~= nil and typeof(rest) == "table" then
for key, value in pairs(rest) do
end
end
end
end
)");
}
TEST_SUITE_END();

View file

@ -439,7 +439,10 @@ end
_ += not _
do end
)");
}
TEST_CASE_FIXTURE(Fixture, "cyclic_follow_2")
{
check(R"(
--!nonstrict
n13,_,table,_,l0,_,_ = ...

View file

@ -261,6 +261,11 @@ assert(math.sign(inf) == 1)
assert(math.sign(-inf) == -1)
assert(math.sign(nan) == 0)
assert(math.min(nan, 2) ~= math.min(nan, 2))
assert(math.min(1, nan) == 1)
assert(math.max(nan, 2) ~= math.max(nan, 2))
assert(math.max(1, nan) == 1)
-- clamp
assert(math.clamp(-1, 0, 1) == 0)
assert(math.clamp(0.5, 0, 1) == 0.5)

View file

@ -1,13 +1,9 @@
AnnotationTests.instantiate_type_fun_should_not_trip_rbxassert
AnnotationTests.too_many_type_params
AnnotationTests.two_type_params
AstQuery.last_argument_function_call_type
AstQuery::getDocumentationSymbolAtPosition.overloaded_class_method
AstQuery::getDocumentationSymbolAtPosition.overloaded_fn
AstQuery::getDocumentationSymbolAtPosition.table_overloaded_function_prop
AutocompleteTest.autocomplete_oop_implicit_self
AutocompleteTest.type_correct_expected_return_type_suggestion
AutocompleteTest.type_correct_suggestion_for_overloads
AutocompleteTest.autocomplete_response_perf1
BuiltinTests.aliased_string_format
BuiltinTests.assert_removes_falsy_types
BuiltinTests.assert_removes_falsy_types2
@ -43,7 +39,6 @@ GenericsTests.bound_tables_do_not_clone_original_fields
GenericsTests.check_mutual_generic_functions
GenericsTests.correctly_instantiate_polymorphic_member_functions
GenericsTests.do_not_infer_generic_functions
GenericsTests.dont_unify_bound_types
GenericsTests.generic_argument_count_too_few
GenericsTests.generic_argument_count_too_many
GenericsTests.generic_functions_should_be_memory_safe
@ -56,7 +51,6 @@ GenericsTests.infer_generic_lib_function_function_argument
GenericsTests.instantiated_function_argument_names
GenericsTests.no_stack_overflow_from_quantifying
GenericsTests.self_recursive_instantiated_param
IntersectionTypes.overload_is_not_a_function
IntersectionTypes.table_intersection_write_sealed
IntersectionTypes.table_intersection_write_sealed_indirect
IntersectionTypes.table_write_sealed_indirect
@ -72,7 +66,6 @@ NonstrictModeTests.local_tables_are_not_any
NonstrictModeTests.locals_are_any_by_default
NonstrictModeTests.offer_a_hint_if_you_use_a_dot_instead_of_a_colon
NonstrictModeTests.parameters_having_type_any_are_optional
NonstrictModeTests.table_dot_insert_and_recursive_calls
NonstrictModeTests.table_props_are_any
ProvisionalTests.assign_table_with_refined_property_with_a_similar_type_is_illegal
ProvisionalTests.bail_early_if_unification_is_too_complicated
@ -85,20 +78,11 @@ ProvisionalTests.setmetatable_constrains_free_type_into_free_table
ProvisionalTests.specialization_binds_with_prototypes_too_early
ProvisionalTests.table_insert_with_a_singleton_argument
ProvisionalTests.typeguard_inference_incomplete
RefinementTest.apply_refinements_on_astexprindexexpr_whose_subscript_expr_is_constant_string
RefinementTest.discriminate_from_isa_of_x
RefinementTest.falsiness_of_TruthyPredicate_narrows_into_nil
RefinementTest.narrow_property_of_a_bounded_variable
RefinementTest.nonoptional_type_can_narrow_to_nil_if_sense_is_true
RefinementTest.refine_a_param_that_got_resolved_during_constraint_solving_stage
RefinementTest.refine_param_of_type_folder_or_part_without_using_typeof
RefinementTest.refine_unknowns
RefinementTest.type_guard_can_filter_for_intersection_of_tables
RefinementTest.type_narrow_to_vector
RefinementTest.typeguard_cast_free_table_to_vector
RefinementTest.typeguard_in_assert_position
RefinementTest.x_as_any_if_x_is_instance_elseif_x_is_table
RefinementTest.x_is_not_instance_or_else_not_part
RuntimeLimits.typescript_port_of_Result_type
TableTests.a_free_shape_cannot_turn_into_a_scalar_if_it_is_not_compatible
TableTests.accidentally_checked_prop_in_opposite_branch
@ -109,7 +93,6 @@ TableTests.checked_prop_too_early
TableTests.disallow_indexing_into_an_unsealed_table_with_no_indexer_in_strict_mode
TableTests.dont_crash_when_setmetatable_does_not_produce_a_metatabletypevar
TableTests.dont_hang_when_trying_to_look_up_in_cyclic_metatable_index
TableTests.dont_quantify_table_that_belongs_to_outer_scope
TableTests.dont_suggest_exact_match_keys
TableTests.error_detailed_metatable_prop
TableTests.expected_indexer_from_table_union
@ -134,7 +117,6 @@ TableTests.less_exponential_blowup_please
TableTests.missing_metatable_for_sealed_tables_do_not_get_inferred
TableTests.mixed_tables_with_implicit_numbered_keys
TableTests.nil_assign_doesnt_hit_indexer
TableTests.nil_assign_doesnt_hit_no_indexer
TableTests.ok_to_set_nil_even_on_non_lvalue_base_expr
TableTests.only_ascribe_synthetic_names_at_module_scope
TableTests.oop_polymorphic
@ -153,7 +135,6 @@ TableTests.table_subtyping_with_missing_props_dont_report_multiple_errors
TableTests.table_unification_4
TableTests.used_colon_instead_of_dot
TableTests.used_dot_instead_of_colon
TableTests.when_augmenting_an_unsealed_table_with_an_indexer_apply_the_correct_scope_to_the_indexer_type
ToString.named_metatable_toStringNamedFunction
ToString.toStringDetailed2
ToString.toStringErrorPack
@ -187,11 +168,9 @@ TypeInfer.no_stack_overflow_from_isoptional
TypeInfer.no_stack_overflow_from_isoptional2
TypeInfer.tc_after_error_recovery_no_replacement_name_in_error
TypeInfer.type_infer_recursion_limit_no_ice
TypeInfer.type_infer_recursion_limit_normalizer
TypeInferAnyError.for_in_loop_iterator_is_any2
TypeInferClasses.class_type_mismatch_with_name_conflict
TypeInferClasses.classes_without_overloaded_operators_cannot_be_added
TypeInferClasses.higher_order_function_arguments_are_contravariant
TypeInferClasses.index_instance_property
TypeInferClasses.optional_class_field_access_error
TypeInferClasses.table_class_unification_reports_sane_errors_for_missing_properties
@ -239,7 +218,6 @@ TypeInferModules.module_type_conflict_instantiated
TypeInferModules.type_error_of_unknown_qualified_type
TypeInferOOP.inferring_hundreds_of_self_calls_should_not_suffocate_memory
TypeInferOOP.methods_are_topologically_sorted
TypeInferOOP.object_constructor_can_refer_to_method_of_self
TypeInferOperators.CallAndOrOfFunctions
TypeInferOperators.CallOrOfFunctions
TypeInferOperators.cannot_indirectly_compare_types_that_do_not_have_a_metatable
@ -265,25 +243,15 @@ TypeInferUnknownNever.math_operators_and_never
TypePackTests.detect_cyclic_typepacks2
TypePackTests.pack_tail_unification_check
TypePackTests.type_alias_backwards_compatible
TypePackTests.type_alias_default_mixed_self
TypePackTests.type_alias_default_type_errors
TypePackTests.type_alias_default_type_pack_self_chained_tp
TypePackTests.type_alias_default_type_pack_self_tp
TypePackTests.type_alias_defaults_confusing_types
TypePackTests.type_alias_type_pack_multi
TypePackTests.type_alias_type_pack_variadic
TypePackTests.type_alias_type_packs_errors
TypePackTests.type_alias_type_packs_nested
TypePackTests.unify_variadic_tails_in_arguments
TypePackTests.variadic_packs
TypeSingletons.function_call_with_singletons
TypeSingletons.function_call_with_singletons_mismatch
TypeSingletons.indexing_on_union_of_string_singletons
TypeSingletons.no_widening_from_callsites
TypeSingletons.overloaded_function_call_with_singletons
TypeSingletons.overloaded_function_call_with_singletons_mismatch
TypeSingletons.return_type_of_f_is_not_widened
TypeSingletons.table_properties_singleton_strings_mismatch
TypeSingletons.table_properties_type_error_escapes
TypeSingletons.taking_the_length_of_union_of_string_singleton
TypeSingletons.widen_the_supertype_if_it_is_free_and_subtype_has_singleton