This commit is contained in:
ajeffrey@roblox.com 2022-02-25 14:47:01 -06:00
parent 51133397cc
commit ac76424b6d
22 changed files with 335 additions and 306 deletions

View file

@ -3,9 +3,8 @@
module Examples.OpSem where
open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; subst)
open import Luau.Syntax using (Block; var; nil; local_←_; _∙_; done; return; block_is_end)
open import Luau.Syntax using (Block; var; val; nil; local_←_; _∙_; done; return; block_is_end)
open import Luau.Heap using ()
open import Luau.Value using (nil)
ex1 : (local (var "x") nil return (var "x") done) ⟶ᴮ (return nil done)
ex1 : (local (var "x") val nil return (var "x") done) ⟶ᴮ (return (val nil) done)
ex1 = subst nil

View file

@ -4,18 +4,17 @@ module Examples.Run where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Bool using (true; false)
open import Luau.Syntax using (nil; var; _$_; function_is_end; return; _∙_; done; _⟨_⟩; number; binexp; +; <; true; false)
open import Luau.Value using (nil; number; bool)
open import Luau.Syntax using (nil; var; _$_; function_is_end; return; _∙_; done; _⟨_⟩; number; binexp; +; <; val; bool)
open import Luau.Run using (run; return)
ex1 : (run (function "id" var "x" is return (var "x") done end return (var "id" $ nil) done) return nil _)
ex1 : (run (function "id" var "x" is return (var "x") done end return (var "id" $ val nil) done) return nil _)
ex1 = refl
ex2 : (run (function "fn" var "x" is return (number 123.0) done end return (var "fn" $ nil) done) return (number 123.0) _)
ex2 : (run (function "fn" var "x" is return (val (number 123.0)) done end return (var "fn" $ val nil) done) return (number 123.0) _)
ex2 = refl
ex3 : (run (function "fn" var "x" is return (binexp (number 1.0) + (number 2.0)) done end return (var "fn" $ nil) done) return (number 3.0) _)
ex3 : (run (function "fn" var "x" is return (binexp (val (number 1.0)) + (val (number 2.0))) done end return (var "fn" $ val nil) done) return (number 3.0) _)
ex3 = refl
ex4 : (run (function "fn" var "x" is return (binexp (number 1.0) < (number 2.0)) done end return (var "fn" $ nil) done) return (bool true) _)
ex4 : (run (function "fn" var "x" is return (binexp (val (number 1.0)) < (val (number 2.0))) done end return (var "fn" $ val nil) done) return (bool true) _)
ex4 = refl

View file

@ -2,7 +2,7 @@ module Examples.Syntax where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.String using (_++_)
open import Luau.Syntax using (var; _$_; return; nil; function_is_end; local_←_; done; _∙_; _⟨_⟩)
open import Luau.Syntax using (var; _$_; return; val; nil; function_is_end; local_←_; done; _∙_; _⟨_⟩)
open import Luau.Syntax.ToString using (exprToString; blockToString)
ex1 : exprToString(function "" var "x" is return (var "f" $ var "x") done end)
@ -11,7 +11,7 @@ ex1 : exprToString(function "" ⟨ var "x" ⟩ is return (var "f" $ var "x") ∙
"end"
ex1 = refl
ex2 : blockToString(local var "x" nil return (var "x") done)
ex2 : blockToString(local var "x" (val nil) return (var "x") done)
"local x = nil\n" ++
"return x"
ex2 = refl

View file

@ -17,10 +17,9 @@ open import FFI.System.Exit using (exitWith; ExitFailure)
open import Luau.StrictMode.ToString using (warningToStringᴮ)
open import Luau.Syntax using (Block; yes; maybe; isAnnotatedᴮ)
open import Luau.Syntax.FromJSON using (blockFromJSON)
open import Luau.Syntax.ToString using (blockToString)
open import Luau.Syntax.ToString using (blockToString; valueToString)
open import Luau.Run using (run; return; done; error)
open import Luau.RuntimeError.ToString using (errToStringᴮ)
open import Luau.Value.ToString using (valueToString)
open import Properties.StrictMode using (wellTypedProgramsDontGoWrong)

View file

@ -7,47 +7,33 @@ open import Agda.Builtin.Float using (Float; primFloatPlus; primFloatMinus; prim
open import Agda.Builtin.Bool using (Bool; true; false)
open import Utility.Bool using (not; _or_; _and_)
open import Agda.Builtin.Nat using () renaming (_==_ to _==ᴬ_)
open import FFI.Data.Maybe using (just)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Luau.Heap using (Heap; _≡_⊕_↦_; _[_]; function_is_end)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Luau.Syntax using (Expr; Stat; Block; nil; addr; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; fun; arg; binexp; BinaryOperator; +; -; *; /; <; >; ==; ~=; <=; >=; number)
open import Luau.Value using (addr; val; number; Value; bool)
open import Luau.Syntax using (Value; Expr; Stat; Block; nil; addr; val; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; fun; arg; binexp; BinaryOperator; +; -; *; /; <; >; ==; ~=; <=; >=; number; bool)
open import Luau.RuntimeType using (RuntimeType; valueType)
open import Properties.Product using (_×_; _,_)
evalNumOp : Float BinaryOperator Float Value
evalNumOp x + y = number (primFloatPlus x y)
evalNumOp x - y = number (primFloatMinus x y)
evalNumOp x * y = number (primFloatTimes x y)
evalNumOp x / y = number (primFloatDiv x y)
evalNumOp x < y = bool (primFloatLess x y)
evalNumOp x > y = bool (primFloatLess y x)
evalNumOp x == y = bool (primFloatEquality x y)
evalNumOp x ~= y = bool (primFloatInequality x y)
evalNumOp x <= y = bool ((primFloatLess x y) or (primFloatEquality x y))
evalNumOp x >= y = bool ((primFloatLess y x) or (primFloatEquality x y))
evalEqOp : Value Value Value
evalEqOp Value.nil Value.nil = bool true
evalEqOp (addr x) (addr y) = bool (x == y)
evalEqOp (number x) (number y) = bool (primFloatEquality x y)
evalEqOp (bool true) (bool y) = bool y
evalEqOp (bool false) (bool y) = bool (not y)
evalEqOp _ _ = bool false
evalNeqOp : Value Value Value
evalNeqOp Value.nil Value.nil = bool false
evalNeqOp (addr x) (addr y) = bool (not (x == y))
evalNeqOp (number x) (number y) = bool (primFloatInequality x y)
evalNeqOp (bool true) (bool y) = bool (not y)
evalNeqOp (bool false) (bool y) = bool y
evalNeqOp _ _ = bool true
coerceToBool : Value Bool
coerceToBool Value.nil = false
coerceToBool (addr x) = true
coerceToBool (number x) = true
coerceToBool (bool x) = x
evalEqOp : Value Value Bool
evalEqOp Value.nil Value.nil = true
evalEqOp (addr x) (addr y) = (x == y)
evalEqOp (number x) (number y) = primFloatEquality x y
evalEqOp (bool true) (bool y) = y
evalEqOp (bool false) (bool y) = not y
evalEqOp _ _ = false
data _⟦_⟧_⟶_ : Value BinaryOperator Value Value Set where
+ : m n (number m) + (number n) number (primFloatPlus m n)
- : m n (number m) - (number n) number (primFloatMinus m n)
/ : m n (number m) / (number n) number (primFloatTimes m n)
* : m n (number m) * (number n) number (primFloatDiv m n)
< : m n (number m) < (number n) bool (primFloatLess m n)
> : m n (number m) > (number n) bool (primFloatLess n m)
<= : m n (number m) <= (number n) bool ((primFloatLess m n) or (primFloatEquality m n))
>= : m n (number m) >= (number n) bool ((primFloatLess n m) or (primFloatEquality m n))
== : v w v == w bool (evalEqOp v w)
~= : v w v ~= w bool (not (evalEqOp v w))
data _⊢_⟶ᴮ_⊣_ {a} : Heap a Block a Block a Heap a Set
data _⊢_⟶ᴱ_⊣_ {a} : Heap a Expr a Expr a Heap a Set
@ -57,7 +43,7 @@ data _⊢_⟶ᴱ_⊣_ where
H H a (function F is B end)
-------------------------------------------
H (function F is B end) ⟶ᴱ (addr a) H
H (function F is B end) ⟶ᴱ val(addr a) H
app₁ : {H H M M N}
@ -76,7 +62,7 @@ data _⊢_⟶ᴱ_⊣_ where
(O function F is B end)
H [ a ] just(O)
-----------------------------------------------------------------------------
H (addr a $ val v) ⟶ᴱ (block (fun F) is (B [ v / name(arg F) ]ᴮ) end) H
H (val (addr a) $ val v) ⟶ᴱ (block (fun F) is (B [ v / name(arg F) ]ᴮ) end) H
block : {H H B B b}
@ -91,24 +77,15 @@ data _⊢_⟶ᴱ_⊣_ where
done : {H b}
---------------------------------
H (block b is done end) ⟶ᴱ nil H
binOpEquality :
{H x y}
---------------------------------------------------------------------------
H (binexp (val x) == (val y)) ⟶ᴱ (val (evalEqOp x y)) H
binOpInequality :
{H x y}
----------------------------------------------------------------------------
H (binexp (val x) ~= (val y)) ⟶ᴱ (val (evalNeqOp x y)) H
binOpNumbers :
{H x op y}
-----------------------------------------------------------------------
H (binexp (number x) op (number y)) ⟶ᴱ (val (evalNumOp x op y)) H
--------------------------------------------
H (block b is done end) ⟶ᴱ (val nil) H
binOp₀ : {H op v₁ v₂ w}
v₁ op v₂ w
--------------------------------------------------
H (binexp (val v₁) op (val v₂)) ⟶ᴱ (val w) H
binOp₁ : {H H x x op y}
H x ⟶ᴱ x H

View file

@ -4,14 +4,13 @@ module Luau.Run where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Luau.Heap using (Heap; )
open import Luau.Syntax using (Block; return; _∙_; done)
open import Luau.Syntax using (Block; val; return; _∙_; done)
open import Luau.OpSem using (_⊢_⟶*_⊣_; refl; step)
open import Luau.Value using (val)
open import Properties.Step using (stepᴮ; step; return; done; error)
open import Luau.RuntimeError using (RuntimeErrorᴮ)
data RunResult {a} (H : Heap a) (B : Block a) : Set where
return : V {B H} (H B ⟶* (return (val V) B) H) RunResult H B
return : v {B H} (H B ⟶* (return (val v) B) H) RunResult H B
done : {H} (H B ⟶* done H) RunResult H B
error : {B H} (RuntimeErrorᴮ H B) (H B ⟶* B H) RunResult H B

View file

@ -6,20 +6,29 @@ open import Agda.Builtin.Equality using (_≡_)
open import Luau.Heap using (Heap; _[_])
open import FFI.Data.Maybe using (just; nothing)
open import FFI.Data.String using (String)
open import Luau.Syntax using (Block; Expr; nil; var; addr; block_is_end; _$_; local_←_; return; done; _∙_; number; binexp)
open import Luau.Syntax using (BinaryOperator; Block; Expr; nil; var; val; addr; block_is_end; _$_; local_←_; return; done; _∙_; number; binexp; +; -; *; /; <; >; <=; >=)
open import Luau.RuntimeType using (RuntimeType; valueType; function; number)
open import Luau.Value using (val)
open import Properties.Equality using (_≢_)
data BinOpError : BinaryOperator RuntimeType Set where
+ : {t} (t number) BinOpError + t
- : {t} (t number) BinOpError - t
* : {t} (t number) BinOpError * t
/ : {t} (t number) BinOpError / t
< : {t} (t number) BinOpError < t
> : {t} (t number) BinOpError > t
<= : {t} (t number) BinOpError <= t
>= : {t} (t number) BinOpError >= t
data RuntimeErrorᴮ {a} (H : Heap a) : Block a Set
data RuntimeErrorᴱ {a} (H : Heap a) : Expr a Set
data RuntimeErrorᴱ H where
FunctionMismatch : v w (function valueType v) RuntimeErrorᴱ H (val v $ val w)
BinopMismatch₁ : v w {op} (number valueType v) RuntimeErrorᴱ H (binexp (val v) op (val w))
BinopMismatch₂ : v w {op} (number valueType w) RuntimeErrorᴱ H (binexp (val v) op (val w))
BinOpMismatch₁ : v w {op} (BinOpError op (valueType v)) RuntimeErrorᴱ H (binexp (val v) op (val w))
BinOpMismatch₂ : v w {op} (BinOpError op (valueType w)) RuntimeErrorᴱ H (binexp (val v) op (val w))
UnboundVariable : {x} RuntimeErrorᴱ H (var x)
SEGV : {a} (H [ a ] nothing) RuntimeErrorᴱ H (addr a)
SEGV : {a} (H [ a ] nothing) RuntimeErrorᴱ H (val (addr a))
app₁ : {M N} RuntimeErrorᴱ H M RuntimeErrorᴱ H (M $ N)
app₂ : {M N} RuntimeErrorᴱ H N RuntimeErrorᴱ H (M $ N)
block : {b B} RuntimeErrorᴮ H B RuntimeErrorᴱ H (block b is B end)

View file

@ -4,24 +4,23 @@ module Luau.RuntimeError.ToString where
open import Agda.Builtin.Float using (primShowFloat)
open import FFI.Data.String using (String; _++_)
open import Luau.RuntimeError using (RuntimeErrorᴮ; RuntimeErrorᴱ; local; return; FunctionMismatch; BinopMismatch₁; BinopMismatch₂; UnboundVariable; SEGV; app₁; app₂; block; bin₁; bin₂)
open import Luau.RuntimeError using (RuntimeErrorᴮ; RuntimeErrorᴱ; local; return; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; block; bin₁; bin₂)
open import Luau.RuntimeType.ToString using (runtimeTypeToString)
open import Luau.Addr.ToString using (addrToString)
open import Luau.Syntax.ToString using (exprToString)
open import Luau.Syntax.ToString using (valueToString; exprToString)
open import Luau.Var.ToString using (varToString)
open import Luau.Value.ToString using (valueToString)
open import Luau.Syntax using (var; addr; binexp; block_is_end; local_←_; return; _∙_; name; _$_)
open import Luau.Syntax using (var; val; addr; binexp; block_is_end; local_←_; return; _∙_; name; _$_)
errToStringᴱ : {a H} M RuntimeErrorᴱ {a} H M String
errToStringᴮ : {a H} B RuntimeErrorᴮ {a} H B String
errToStringᴱ (var x) (UnboundVariable) = "variable " ++ varToString x ++ " is unbound"
errToStringᴱ (addr a) (SEGV p) = "address " ++ addrToString a ++ " is unallocated"
errToStringᴱ (val (addr a)) (SEGV p) = "address " ++ addrToString a ++ " is unallocated"
errToStringᴱ (M $ N) (FunctionMismatch v w p) = "value " ++ (valueToString v) ++ " is not a function"
errToStringᴱ (M $ N) (app₁ E) = errToStringᴱ M E
errToStringᴱ (M $ N) (app₂ E) = errToStringᴱ N E
errToStringᴱ (binexp M op N) (BinopMismatch₁ v w p) = "value " ++ (valueToString v) ++ " is not a number"
errToStringᴱ (binexp M op N) (BinopMismatch₂ v w p) = "value " ++ (valueToString w) ++ " is not a number"
errToStringᴱ (binexp M op N) (BinOpMismatch₁ v w p) = "value " ++ (valueToString v) ++ " is not a number"
errToStringᴱ (binexp M op N) (BinOpMismatch₂ v w p) = "value " ++ (valueToString w) ++ " is not a number"
errToStringᴱ (binexp M op N) (bin₁ E) = errToStringᴱ M E
errToStringᴱ (binexp M op N) (bin₂ E) = errToStringᴱ N E
errToStringᴱ (block b is B end) (block E) = errToStringᴮ B E ++ "\n in call of function " ++ varToString (name b)

View file

@ -1,6 +1,6 @@
module Luau.RuntimeType where
open import Luau.Value using (Value; nil; addr; number; bool)
open import Luau.Syntax using (Value; nil; addr; number; bool)
data RuntimeType : Set where
function : RuntimeType
@ -10,6 +10,6 @@ data RuntimeType : Set where
valueType : Value RuntimeType
valueType nil = nil
valueType (addr x) = function
valueType (number x) = number
valueType (bool _) = boolean
valueType (addr a) = function
valueType (number n) = number
valueType (bool b) = boolean

View file

@ -4,7 +4,7 @@ module Luau.StrictMode where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Syntax using (Expr; Stat; Block; yes; nil; addr; var; binexp; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name)
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; var; binexp; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; +; -; *; /; <; >; <=; >=)
open import Luau.Type using (Type; strict; bot; top; nil; number; _⇒_; tgt)
open import Luau.Heap using (Heap; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
@ -16,6 +16,16 @@ open import Properties.Product using (_,_)
src : Type Type
src = Luau.Type.src strict
data BinOpWarning : BinaryOperator Type Set where
+ : {T} (T number) BinOpWarning + T
- : {T} (T number) BinOpWarning - T
* : {T} (T number) BinOpWarning * T
/ : {T} (T number) BinOpWarning / T
< : {T} (T number) BinOpWarning < T
> : {T} (T number) BinOpWarning > T
<= : {T} (T number) BinOpWarning <= T
>= : {T} (T number) BinOpWarning >= T
data Warningᴱ (H : Heap yes) {Γ} : {M T} (Γ ⊢ᴱ M T) Set
data Warningᴮ (H : Heap yes) {Γ} : {B T} (Γ ⊢ᴮ B T) Set
@ -51,15 +61,15 @@ data Warningᴱ H {Γ} where
-----------------
Warningᴱ H (app D₁ D₂)
BinopMismatch₁ : {op M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
BinOpMismatch₁ : {op M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
(T number)
BinOpWarning op T
------------------------------
Warningᴱ H (binexp {op} D₁ D₂)
BinopMismatch₂ : {op M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
BinOpMismatch₂ : {op M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
(U number)
BinOpWarning op U
------------------------------
Warningᴱ H (binexp {op} D₁ D₂)

View file

@ -3,8 +3,8 @@
module Luau.StrictMode.ToString where
open import FFI.Data.String using (String; _++_)
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; FunctionDefnMismatch; BlockMismatch; app₁; app₂; BinopMismatch₁; BinopMismatch₂; bin₁; bin₂; block₁; return; LocalVarMismatch; local₁; local₂; function₁; function₂; heap; expr; block; addr)
open import Luau.Syntax using (Expr; yes; var; var_∈_; _⟨_⟩∈_; _$_; addr; number; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name)
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; FunctionDefnMismatch; BlockMismatch; app₁; app₂; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; block₁; return; LocalVarMismatch; local₁; local₂; function₁; function₂; heap; expr; block; addr)
open import Luau.Syntax using (Expr; val; yes; var; var_∈_; _⟨_⟩∈_; _$_; addr; number; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name)
open import Luau.Type using (strict)
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_)
open import Luau.Addr.ToString using (addrToString)
@ -16,7 +16,7 @@ warningToStringᴱ : ∀ {H Γ T} M → {D : Γ ⊢ᴱ M ∈ T} → Warningᴱ H
warningToStringᴮ : {H Γ T} B {D : Γ ⊢ᴮ B T} Warningᴮ H D String
warningToStringᴱ (var x) (UnboundVariable p) = "Unbound variable " ++ varToString x
warningToStringᴱ (addr a) (UnallocatedAddress p) = "Unallocated adress " ++ addrToString a
warningToStringᴱ (val (addr a)) (UnallocatedAddress p) = "Unallocated adress " ++ addrToString a
warningToStringᴱ (M $ N) (FunctionCallMismatch {T = T} {U = U} p) = "Function has type " ++ typeToString T ++ " but argument has type " ++ typeToString U
warningToStringᴱ (M $ N) (app₁ W) = warningToStringᴱ M W
warningToStringᴱ (M $ N) (app₂ W) = warningToStringᴱ N W
@ -24,8 +24,8 @@ warningToStringᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) (FunctionDefnM
warningToStringᴱ (function f var x T ⟩∈ U is B end) (function₁ W) = warningToStringᴮ B W ++ "\n in function expression " ++ varToString f
warningToStringᴱ block var b T is B end (BlockMismatch {U = U} p) = "Block " ++ varToString b ++ " has type " ++ typeToString T ++ " but body returns " ++ typeToString U
warningToStringᴱ block var b T is B end (block₁ W) = warningToStringᴮ B W ++ "\n in block " ++ varToString b
warningToStringᴱ (binexp M op N) (BinopMismatch₁ {T = T} p) = "Binary operator " ++ binOpToString op ++ " lhs has type " ++ typeToString T ++ " not number"
warningToStringᴱ (binexp M op N) (BinopMismatch₂ {U = U} p) = "Binary operator " ++ binOpToString op ++ " rhs has type " ++ typeToString U ++ " not number"
warningToStringᴱ (binexp M op N) (BinOpMismatch₁ {T = T} p) = "Binary operator " ++ binOpToString op ++ " lhs has type " ++ typeToString T
warningToStringᴱ (binexp M op N) (BinOpMismatch₂ {U = U} p) = "Binary operator " ++ binOpToString op ++ " rhs has type " ++ typeToString U
warningToStringᴱ (binexp M op N) (bin₁ W) = warningToStringᴱ M W
warningToStringᴱ (binexp M op N) (bin₂ W) = warningToStringᴱ N W

View file

@ -1,7 +1,6 @@
module Luau.Substitution where
open import Luau.Syntax using (Expr; Stat; Block; nil; true; false; addr; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; _⟨_⟩ ; name; fun; arg; number; binexp)
open import Luau.Value using (Value; val)
open import Luau.Syntax using (Value; Expr; Stat; Block; val; nil; bool; addr; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; _⟨_⟩ ; name; fun; arg; number; binexp)
open import Luau.Var using (Var; _≡ⱽ_)
open import Properties.Dec using (Dec; yes; no)
@ -10,12 +9,8 @@ _[_/_]ᴮ : ∀ {a} → Block a → Value → Var → Block a
var_[_/_]ᴱwhenever_ : {a P} Var Value Var (Dec P) Expr a
_[_/_]ᴮunless_ : {a P} Block a Value Var (Dec P) Block a
nil [ v / x ]ᴱ = nil
true [ v / x ]ᴱ = true
false [ v / x ]ᴱ = false
val w [ v / x ]ᴱ = val w
var y [ v / x ]ᴱ = var y [ v / x ]ᴱwhenever (x ≡ⱽ y)
addr a [ v / x ]ᴱ = addr a
(number y) [ v / x ]ᴱ = number y
(M $ N) [ v / x ]ᴱ = (M [ v / x ]ᴱ) $ (N [ v / x ]ᴱ)
function F is C end [ v / x ]ᴱ = function F is C [ v / x ]ᴮunless (x ≡ⱽ name(arg F)) end
block b is C end [ v / x ]ᴱ = block b is C [ v / x ]ᴮ end

View file

@ -1,6 +1,7 @@
module Luau.Syntax where
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.Bool using (Bool; true; false)
open import Agda.Builtin.Float using (Float)
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
@ -45,6 +46,12 @@ data BinaryOperator : Set where
<= : BinaryOperator
>= : BinaryOperator
data Value : Set where
nil : Value
addr : Addr Value
number : Float Value
bool : Bool Value
data Block (a : Annotated) : Set
data Stat (a : Annotated) : Set
data Expr (a : Annotated) : Set
@ -59,25 +66,18 @@ data Stat a where
return : Expr a Stat a
data Expr a where
nil : Expr a
true : Expr a
false : Expr a
var : Var Expr a
addr : Addr Expr a
val : Value Expr a
_$_ : Expr a Expr a Expr a
function_is_end : FunDec a Block a Expr a
block_is_end : VarDec a Block a Expr a
number : Float Expr a
binexp : Expr a BinaryOperator Expr a Expr a
isAnnotatedᴱ : {a} Expr a Maybe (Expr yes)
isAnnotatedᴮ : {a} Block a Maybe (Block yes)
isAnnotatedᴱ nil = just nil
isAnnotatedᴱ (var x) = just (var x)
isAnnotatedᴱ (addr a) = just (addr a)
isAnnotatedᴱ true = just true
isAnnotatedᴱ false = just false
isAnnotatedᴱ (val v) = just (val v)
isAnnotatedᴱ (M $ N) with isAnnotatedᴱ M | isAnnotatedᴱ N
isAnnotatedᴱ (M $ N) | just M | just N = just (M $ N)
isAnnotatedᴱ (M $ N) | _ | _ = nothing
@ -89,7 +89,6 @@ isAnnotatedᴱ (block var b ∈ T is B end) with isAnnotatedᴮ B
isAnnotatedᴱ (block var b T is B end) | just B = just (block var b T is B end)
isAnnotatedᴱ (block var b T is B end) | _ = nothing
isAnnotatedᴱ (block _ is B end) = nothing
isAnnotatedᴱ (number n) = just (number n)
isAnnotatedᴱ (binexp M op N) with isAnnotatedᴱ M | isAnnotatedᴱ N
isAnnotatedᴱ (binexp M op N) | just M | just N = just (binexp M op N)
isAnnotatedᴱ (binexp M op N) | _ | _ = nothing

View file

@ -2,7 +2,7 @@
module Luau.Syntax.FromJSON where
open import Luau.Syntax using (Block; Stat ; Expr; nil; _$_; var; var_∈_; function_is_end; _⟨_⟩; _⟨_⟩∈_; local_←_; return; done; _∙_; maybe; VarDec; number; binexp; BinaryOperator; +; -; *; /; ==; ~=; <; >; <=; >=)
open import Luau.Syntax using (Block; Stat ; Expr; _$_; val; nil; bool; number; var; var_∈_; function_is_end; _⟨_⟩; _⟨_⟩∈_; local_←_; return; done; _∙_; maybe; VarDec; binexp; BinaryOperator; +; -; *; /; ==; ~=; <; >; <=; >=)
open import Luau.Type.FromJSON using (typeFromJSON)
open import Agda.Builtin.List using (List; _∷_; [])
@ -53,7 +53,7 @@ blockFromJSON : Value → Either String (Block maybe)
blockFromArray : Array Either String (Block maybe)
binOpFromJSON (string s) = binOpFromString s
binOpFromJSON val = Left "Binary operator not a string"
binOpFromJSON _ = Left "Binary operator not a string"
binOpFromString "Add" = Right +
binOpFromString "Sub" = Right -
@ -68,7 +68,7 @@ binOpFromString "CompareGe" = Right >=
binOpFromString s = Left ("'" ++ s ++ "' is not a valid operator")
varDecFromJSON (object arg) = varDecFromObject arg
varDecFromJSON val = Left "VarDec not an object"
varDecFromJSON _ = Left "VarDec not an object"
varDecFromObject obj with lookup name obj | lookup type obj
varDecFromObject obj | just (string name) | nothing = Right (var name)
@ -80,7 +80,7 @@ varDecFromObject obj | just _ | _ = Left "AstLocal name is not a string"
varDecFromObject obj | nothing | _ = Left "AstLocal missing name"
exprFromJSON (object obj) = exprFromObject obj
exprFromJSON val = Left "AstExpr not an object"
exprFromJSON _ = Left "AstExpr not an object"
exprFromObject obj with lookup type obj
exprFromObject obj | just (string "AstExprCall") with lookup func obj | lookup args obj
@ -93,7 +93,7 @@ exprFromObject obj | just (string "AstExprCall") | just value | just (array arr)
exprFromObject obj | just (string "AstExprCall") | just value | just _ = Left ("AstExprCall args not an array")
exprFromObject obj | just (string "AstExprCall") | nothing | _ = Left ("AstExprCall missing func")
exprFromObject obj | just (string "AstExprCall") | _ | nothing = Left ("AstExprCall missing args")
exprFromObject obj | just (string "AstExprConstantNil") = Right nil
exprFromObject obj | just (string "AstExprConstantNil") = Right (val nil)
exprFromObject obj | just (string "AstExprFunction") with lookup args obj | lookup body obj | lookup returnAnnotation obj
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn with head arr | blockFromJSON blockValue
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn | just argValue | Right B with varDecFromJSON argValue
@ -119,12 +119,11 @@ exprFromObject obj | just (string "AstExprLocal") | just x | Right x = Right
exprFromObject obj | just (string "AstExprLocal") | just x | Left err = Left err
exprFromObject obj | just (string "AstExprLocal") | nothing = Left "AstExprLocal missing local"
exprFromObject obj | just (string "AstExprConstantNumber") with lookup value obj
exprFromObject obj | just (string "AstExprConstantNumber") | just (FFI.Data.Aeson.Value.number x) = Right (number (toFloat x))
exprFromObject obj | just (string "AstExprConstantNumber") | just (FFI.Data.Aeson.Value.number x) = Right (val (number (toFloat x)))
exprFromObject obj | just (string "AstExprConstantNumber") | just _ = Left "AstExprConstantNumber value is not a number"
exprFromObject obj | just (string "AstExprConstantNumber") | nothing = Left "AstExprConstantNumber missing value"
exprFromObject obj | just (string "AstExprConstantBool") with lookup value obj
exprFromObject obj | just (string "AstExprConstantBool") | just (FFI.Data.Aeson.Value.bool true) = Right Expr.true
exprFromObject obj | just (string "AstExprConstantBool") | just (FFI.Data.Aeson.Value.bool false) = Right Expr.false
exprFromObject obj | just (string "AstExprConstantBool") | just (FFI.Data.Aeson.Value.bool b) = Right (val (bool b))
exprFromObject obj | just (string "AstExprConstantBool") | just _ = Left "AstExprConstantBool value is not a bool"
exprFromObject obj | just (string "AstExprConstantBool") | nothing = Left "AstExprConstantBool missing value"
exprFromObject obj | just (string "AstExprBinary") with lookup op obj | lookup left obj | lookup right obj

View file

@ -1,7 +1,8 @@
module Luau.Syntax.ToString where
open import Agda.Builtin.Bool using (true; false)
open import Agda.Builtin.Float using (primShowFloat)
open import Luau.Syntax using (Block; Stat; Expr; VarDec; FunDec; nil; var; var_∈_; addr; _$_; function_is_end; return; local_←_; _∙_; done; block_is_end; _⟨_⟩; _⟨_⟩∈_; number; BinaryOperator; +; -; *; /; <; >; ≡; ≅; ≤; ≥; binexp; true; false)
open import Luau.Syntax using (Value; Block; Stat; Expr; VarDec; FunDec; nil; bool; val; var; var_∈_; addr; _$_; function_is_end; return; local_←_; _∙_; done; block_is_end; _⟨_⟩; _⟨_⟩∈_; number; BinaryOperator; +; -; *; /; <; >; ==; ~=; <=; >=; binexp)
open import FFI.Data.String using (String; _++_)
open import Luau.Addr.ToString using (addrToString)
open import Luau.Type.ToString using (typeToString)
@ -24,19 +25,24 @@ binOpToString * = "*"
binOpToString / = "/"
binOpToString < = "<"
binOpToString > = ">"
binOpToString = "=="
binOpToString = "~="
binOpToString = "<="
binOpToString = ">="
binOpToString == = "=="
binOpToString ~= = "~="
binOpToString <= = "<="
binOpToString >= = ">="
valueToString : Value String
valueToString nil = "nil"
valueToString (addr a) = addrToString a
valueToString (number x) = primShowFloat x
valueToString (bool false) = "false"
valueToString (bool true) = "true"
exprToString : {a} String Expr a String
statToString : {a} String Stat a String
blockToString : {a} String Block a String
exprToString lb nil =
"nil"
exprToString lb (addr a) =
addrToString(a)
exprToString lb (val v) =
valueToString(v)
exprToString lb (var x) =
varToString(x)
exprToString lb (M $ N) =
@ -49,10 +55,7 @@ exprToString lb (block b is B end) =
"(" ++ varDecToString b ++ "()" ++ lb ++
" " ++ (blockToString (lb ++ " ") B) ++ lb ++
"end)()"
exprToString lb (number x) = primShowFloat x
exprToString lb (binexp x op y) = exprToString lb x ++ " " ++ binOpToString op ++ " " ++ exprToString lb y
exprToString lb true = "true"
exprToString lb false = "false"
statToString lb (function F is B end) =
"local " ++ funDecToString F ++ lb ++

View file

@ -6,11 +6,10 @@ module Luau.TypeCheck (m : Mode) where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (Maybe; just)
open import Luau.Syntax using (Expr; Stat; Block; yes; nil; addr; number; true; false; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name)
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; number; bool; val; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name; +; -; *; /; <; >; ==; ~=; <=; >=)
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.Value using (addr; val)
open import Luau.Type using (Type; Mode; nil; bot; top; number; boolean; _⇒_; tgt)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import FFI.Data.Vector using (Vector)
@ -24,6 +23,18 @@ orBot : Maybe Type → Type
orBot nothing = bot
orBot (just T) = T
tgtBinOp : BinaryOperator Type
tgtBinOp + = number
tgtBinOp - = number
tgtBinOp * = number
tgtBinOp / = number
tgtBinOp < = boolean
tgtBinOp > = boolean
tgtBinOp == = boolean
tgtBinOp ~= = boolean
tgtBinOp <= = boolean
tgtBinOp >= = boolean
data _⊢ᴮ_∈_ : VarCtxt Block yes Type Set
data _⊢ᴱ_∈_ : VarCtxt Expr yes Type Set
@ -59,8 +70,8 @@ data _⊢ᴱ_∈_ where
nil : {Γ}
--------------
Γ ⊢ᴱ nil nil
--------------------
Γ ⊢ᴱ (val nil) nil
var : {x T Γ}
@ -71,22 +82,17 @@ data _⊢ᴱ_∈_ where
addr : {a Γ} T
-----------------
Γ ⊢ᴱ (addr a) T
Γ ⊢ᴱ val(addr a) T
number : {n Γ}
------------------------
Γ ⊢ᴱ (number n) number
---------------------------
Γ ⊢ᴱ val(number n) number
true : {Γ}
bool : {b Γ}
-------------------
Γ ⊢ᴱ true boolean
false : {Γ}
-------------------
Γ ⊢ᴱ false boolean
--------------------------
Γ ⊢ᴱ val(bool b) boolean
app : {M N T U Γ}
@ -111,8 +117,8 @@ data _⊢ᴱ_∈_ where
Γ ⊢ᴱ M T
Γ ⊢ᴱ N U
----------------------------
Γ ⊢ᴱ (binexp M op N) number
----------------------------------
Γ ⊢ᴱ (binexp M op N) tgtBinOp op
data ⊢ᴼ_ : Maybe(Object yes) Set where

View file

@ -1,20 +1 @@
module Luau.Value where
open import Agda.Builtin.Bool using (Bool; true; false)
open import Agda.Builtin.Float using (Float)
open import Luau.Addr using (Addr)
open import Luau.Syntax using (Block; Expr; nil; addr; number; true; false)
open import Luau.Var using (Var)
data Value : Set where
nil : Value
addr : Addr Value
number : Float Value
bool : Bool Value
val : {a} Value Expr a
val nil = nil
val (addr a) = addr a
val (number x) = number x
val (bool false) = false
val (bool true) = true

View file

@ -1,14 +1 @@
module Luau.Value.ToString where
open import Agda.Builtin.String using (String)
open import Agda.Builtin.Float using (primShowFloat)
open import Agda.Builtin.Bool using (true; false)
open import Luau.Value using (Value; nil; addr; number; bool)
open import Luau.Addr.ToString using (addrToString)
valueToString : Value String
valueToString nil = "nil"
valueToString (addr a) = addrToString a
valueToString (number x) = primShowFloat x
valueToString (bool false) = "false"
valueToString (bool true) = "true"

View file

@ -1,5 +1,7 @@
module Properties.Product where
infixr 5 _×_ _,_
record Σ {A : Set} (B : A Set) : Set where
constructor _,_

View file

@ -3,24 +3,89 @@
module Properties.Step where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Float using (primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv)
open import Agda.Builtin.Float using (primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv; primFloatEquality; primFloatLess)
open import Agda.Builtin.Bool using (true; false)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Heap using (Heap; _[_]; alloc; ok; function_is_end)
open import Luau.Syntax using (Block; Expr; nil; var; addr; true; false; function_is_end; block_is_end; _$_; local_←_; return; done; _∙_; name; fun; arg; number; binexp; +; ==; ~=)
open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; app₁ ; app₂ ; beta; function; block; return; done; local; subst; binOpNumbers; evalNumOp; binOp₁; binOp₂; evalEqOp; evalNeqOp; binOpEquality; binOpInequality)
open import Luau.RuntimeError using (RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinopMismatch₁; BinopMismatch₂; UnboundVariable; SEGV; app₁; app₂; block; local; return; bin₁; bin₂)
open import Luau.RuntimeType using (function; number)
open import Luau.Syntax using (Block; Expr; nil; var; val; addr; bool; function_is_end; block_is_end; _$_; local_←_; return; done; _∙_; name; fun; arg; number; binexp; +; -; *; /; <; >; <=; >=; ==; ~=)
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; app₁ ; app₂ ; beta; function; block; return; done; local; subst; binOp₀; binOp₁; binOp₂; +; -; *; /; <; >; <=; >=; ==; ~=; evalEqOp)
open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; block; local; return; bin₁; bin₂; +; -; *; /; <; >; <=; >=)
open import Luau.RuntimeType using (valueType; function; number)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Luau.Value using (nil; addr; val; number; bool)
open import Properties.Remember using (remember; _,_)
open import Utility.Bool using (not; _or_)
data BinOpStepResult v op w : Set where
step : x (v op w x) BinOpStepResult v op w
error₁ : BinOpError op (valueType(v)) BinOpStepResult v op w
error₂ : BinOpError op (valueType(w)) BinOpStepResult v op w
binOpStep : v op w BinOpStepResult v op w
binOpStep nil + w = error₁ (+ (λ ()))
binOpStep (addr a) + w = error₁ (+ (λ ()))
binOpStep (number m) + nil = error₂ (+ (λ ()))
binOpStep (number m) + (addr a) = error₂ (+ (λ ()))
binOpStep (number m) + (number n) = step (number (primFloatPlus m n)) (+ m n)
binOpStep (number m) + (bool b) = error₂ (+ (λ ()))
binOpStep (bool b) + w = error₁ (+ (λ ()))
binOpStep nil - w = error₁ (- (λ ()))
binOpStep (addr a) - w = error₁ (- (λ ()))
binOpStep (number x) - nil = error₂ (- (λ ()))
binOpStep (number x) - (addr a) = error₂ (- (λ ()))
binOpStep (number x) - (number n) = step (number (primFloatMinus x n)) (- x n)
binOpStep (number x) - (bool b) = error₂ (- (λ ()))
binOpStep (bool b) - w = error₁ (- (λ ()))
binOpStep nil * w = error₁ (* (λ ()))
binOpStep (addr a) * w = error₁ (* (λ ()))
binOpStep (number m) * nil = error₂ (* (λ ()))
binOpStep (number m) * (addr a) = error₂ (* (λ ()))
binOpStep (number m) * (number n) = step (number (primFloatDiv m n)) (* m n)
binOpStep (number m) * (bool b) = error₂ (* (λ ()))
binOpStep (bool b) * w = error₁ (* (λ ()))
binOpStep nil / w = error₁ (/ (λ ()))
binOpStep (addr a) / w = error₁ (/ (λ ()))
binOpStep (number m) / nil = error₂ (/ (λ ()))
binOpStep (number m) / (addr a) = error₂ (/ (λ ()))
binOpStep (number m) / (number n) = step (number (primFloatTimes m n)) (/ m n)
binOpStep (number m) / (bool b) = error₂ (/ (λ ()))
binOpStep (bool b) / w = error₁ (/ (λ ()))
binOpStep nil < w = error₁ (< (λ ()))
binOpStep (addr a) < w = error₁ (< (λ ()))
binOpStep (number m) < nil = error₂ (< (λ ()))
binOpStep (number m) < (addr a) = error₂ (< (λ ()))
binOpStep (number m) < (number n) = step (bool (primFloatLess m n)) (< m n)
binOpStep (number m) < (bool b) = error₂ (< (λ ()))
binOpStep (bool b) < w = error₁ (< (λ ()))
binOpStep nil > w = error₁ (> (λ ()))
binOpStep (addr a) > w = error₁ (> (λ ()))
binOpStep (number m) > nil = error₂ (> (λ ()))
binOpStep (number m) > (addr a) = error₂ (> (λ ()))
binOpStep (number m) > (number n) = step (bool (primFloatLess n m)) (> m n)
binOpStep (number m) > (bool b) = error₂ (> (λ ()))
binOpStep (bool b) > w = error₁ (> (λ ()))
binOpStep v == w = step (bool (evalEqOp v w)) (== v w)
binOpStep v ~= w = step (bool (not (evalEqOp v w))) (~= v w)
binOpStep nil <= w = error₁ (<= (λ ()))
binOpStep (addr a) <= w = error₁ (<= (λ ()))
binOpStep (number m) <= nil = error₂ (<= (λ ()))
binOpStep (number m) <= (addr a) = error₂ (<= (λ ()))
binOpStep (number m) <= (number n) = step (bool (primFloatLess m n or primFloatEquality m n)) (<= m n)
binOpStep (number m) <= (bool b) = error₂ (<= (λ ()))
binOpStep (bool b) <= w = error₁ (<= (λ ()))
binOpStep nil >= w = error₁ (>= (λ ()))
binOpStep (addr a) >= w = error₁ (>= (λ ()))
binOpStep (number m) >= nil = error₂ (>= (λ ()))
binOpStep (number m) >= (addr a) = error₂ (>= (λ ()))
binOpStep (number m) >= (number n) = step (bool (primFloatLess n m or primFloatEquality m n)) (>= m n)
binOpStep (number m) >= (bool b) = error₂ (>= (λ ()))
binOpStep (bool b) >= w = error₁ (>= (λ ()))
data StepResultᴮ {a} (H : Heap a) (B : Block a) : Set
data StepResultᴱ {a} (H : Heap a) (M : Expr a) : Set
data StepResultᴮ H B where
step : H B (H B ⟶ᴮ B H) StepResultᴮ H B
return : V {B} (B (return (val V) B)) StepResultᴮ H B
return : v {B} (B (return (val v) B)) StepResultᴮ H B
done : (B done) StepResultᴮ H B
error : (RuntimeErrorᴮ H B) StepResultᴮ H B
@ -32,12 +97,8 @@ data StepResultᴱ H M where
stepᴱ : {a} H M StepResultᴱ {a} H M
stepᴮ : {a} H B StepResultᴮ {a} H B
stepᴱ H nil = value nil refl
stepᴱ H (val v) = value v refl
stepᴱ H (var x) = error UnboundVariable
stepᴱ H (addr a) = value (addr a) refl
stepᴱ H (number x) = value (number x) refl
stepᴱ H (true) = value (bool true) refl
stepᴱ H (false) = value (bool false) refl
stepᴱ H (M $ N) with stepᴱ H M
stepᴱ H (M $ N) | step H M D = step H (M $ N) (app₁ D)
stepᴱ H (_ $ N) | value v refl with stepᴱ H N
@ -46,32 +107,27 @@ stepᴱ H (_ $ _) | value (addr a) refl | value w refl with remember (H [ a ])
stepᴱ H (_ $ _) | value (addr a) refl | value w refl | (nothing , p) = error (app₁ (SEGV p))
stepᴱ H (_ $ _) | value (addr a) refl | value w refl | (just(function F is B end) , p) = step H (block (fun F) is B [ w / name (arg F) ]ᴮ end) (beta function F is B end w refl p)
stepᴱ H (_ $ _) | value nil refl | value w refl = error (FunctionMismatch nil w (λ ()))
stepᴱ H (_ $ _) | value (number x) refl | value w refl = error (FunctionMismatch (number x) w (λ ()))
stepᴱ H (_ $ _) | value (number m) refl | value w refl = error (FunctionMismatch (number m) w (λ ()))
stepᴱ H (_ $ _) | value (bool b) refl | value w refl = error (FunctionMismatch (bool b) w (λ ()))
stepᴱ H (M $ N) | value V p | error E = error (app₂ E)
stepᴱ H (M $ N) | error E = error (app₁ E)
stepᴱ H (block b is B end) with stepᴮ H B
stepᴱ H (block b is B end) | step H B D = step H (block b is B end) (block D)
stepᴱ H (block b is (return _ B) end) | return v refl = step H (val v) (return v)
stepᴱ H (block b is done end) | done refl = step H nil done
stepᴱ H (block b is done end) | done refl = step H (val nil) done
stepᴱ H (block b is B end) | error E = error (block E)
stepᴱ H (function F is C end) with alloc H (function F is C end)
stepᴱ H function F is C end | ok a H p = step H (addr a) (function a p)
stepᴱ H function F is C end | ok a H p = step H (val (addr a)) (function a p)
stepᴱ H (binexp M op N) with stepᴱ H M
stepᴱ H (binexp M op N) | step H M s = step H (binexp M op N) (binOp₁ s)
stepᴱ H (binexp M op N) | error E = error (bin₁ E)
stepᴱ H (binexp M op N) | value v refl with stepᴱ H N
stepᴱ H (binexp M op N) | value v refl | step H N s = step H (binexp (val v) op N) (binOp₂ s)
stepᴱ H (binexp M op N) | value v refl | error E = error (bin₂ E)
stepᴱ H (binexp M == N) | value v refl | value w refl = step H (val (evalEqOp v w)) binOpEquality
stepᴱ H (binexp M ~= N) | value v refl | value w refl = step H (val (evalNeqOp v w)) binOpInequality
stepᴱ H (binexp M op N) | value (number m) refl | value (number n) refl = step H (val (evalNumOp m op n)) binOpNumbers
stepᴱ H (binexp M op N) | value nil refl | value w refl = error (BinopMismatch₁ nil w λ ())
stepᴱ H (binexp M op N) | value (addr a) refl | value w refl = error (BinopMismatch₁ (addr a) w λ ())
stepᴱ H (binexp M op N) | value (bool b) refl | value w refl = error (BinopMismatch₁ (bool b) w λ ())
stepᴱ H (binexp M op N) | value v refl | value nil refl = error (BinopMismatch₂ v nil (λ ()))
stepᴱ H (binexp M op N) | value v refl | value (addr a) refl = error (BinopMismatch₂ v (addr a) (λ ()))
stepᴱ H (binexp M op N) | value v refl | value (bool b) refl = error (BinopMismatch₂ v (bool b) (λ ()))
stepᴱ H (binexp M op N) | step H M s = step H (binexp M op N) (binOp₁ s)
stepᴱ H (binexp M op N) | error E = error (bin₁ E)
stepᴱ H (binexp M op N) | value v refl | value w refl with binOpStep v op w
stepᴱ H (binexp M op N) | value v refl | value w refl | step x p = step H (val x) (binOp₀ p)
stepᴱ H (binexp M op N) | value v refl | value w refl | error₁ E = error (BinOpMismatch₁ v w E)
stepᴱ H (binexp M op N) | value v refl | value w refl | error₂ E = error (BinOpMismatch₂ v w E)
stepᴮ H (function F is C end B) with alloc H (function F is C end)
stepᴮ H (function F is C end B) | ok a H p = step H (B [ addr a / name (fun F) ]ᴮ) (function a p)

View file

@ -6,12 +6,11 @@ import Agda.Builtin.Equality.Rewrite
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Luau.Heap using (Heap; Object; function_is_end; defn; alloc; ok; next; lookup-not-allocated) renaming (_≡_⊕_↦_ to _≡ᴴ_⊕_↦_; _[_] to _[_]ᴴ; to ∅ᴴ)
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴᴱ; Warningᴴᴮ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinopMismatch₁; BinopMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr)
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴᴱ; Warningᴴᴮ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpWarning; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr; +; -; *; /; <; >; <=; >=)
open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_)
open import Luau.Syntax using (Expr; yes; var; var_∈_; _⟨_⟩∈_; _$_; addr; number; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name)
open import Luau.Syntax using (Expr; yes; var; val; var_∈_; _⟨_⟩∈_; _$_; addr; number; bool; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name; ==; ~=)
open import Luau.Type using (Type; strict; nil; _⇒_; bot; tgt; _≡ᵀ_; _≡ᴹᵀ_)
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orBot)
open import Luau.Value using (val; nil; addr; number)
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orBot; tgtBinOp)
open import Luau.Var using (_≡ⱽ_)
open import Luau.Addr using (_≡ᴬ_)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ⊕-lookup-miss; ⊕-swap; ⊕-over) renaming (_[_] to _[_]ⱽ)
@ -20,9 +19,10 @@ open import Properties.Remember using (remember; _,_)
open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeOfᴱⱽ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴᴱ; typeCheckᴴᴮ; mustBeFunction; mustBeNumber)
open import Luau.OpSem using (_⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₁; binOp₂; binOpEval; refl; step)
open import Luau.RuntimeError using (RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinopMismatch₁; BinopMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return)
open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴᴱ; typeCheckᴴᴮ; mustBeFunction; mustBeNumber)
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=)
open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return; +; -; *; /; <; >; <=; >=)
open import Luau.RuntimeType using (valueType)
src = Luau.Type.src strict
@ -40,7 +40,7 @@ rednᴱ⊑ (beta O v p q) = refl
rednᴱ⊑ (block s) = rednᴮ⊑ s
rednᴱ⊑ (return v) = refl
rednᴱ⊑ done = refl
rednᴱ⊑ (binOpEval m n) = refl
rednᴱ⊑ (binOp p) = refl
rednᴱ⊑ (binOp₁ s) = rednᴱ⊑ s
rednᴱ⊑ (binOp₂ s) = rednᴱ⊑ s
@ -78,13 +78,14 @@ data OrWarningᴴᴮ {Γ B T} H (D : Γ ⊢ᴴᴮ H ▷ B ∈ T) A : Set where
heap-weakeningᴱ : H M {H Γ} (H H) OrWarningᴱ H (typeCheckᴱ H Γ M) (typeOfᴱ H Γ M typeOfᴱ H Γ M)
heap-weakeningᴮ : H B {H Γ} (H H) OrWarningᴮ H (typeCheckᴮ H Γ B) (typeOfᴮ H Γ B typeOfᴮ H Γ B)
heap-weakeningᴱ H (nil) h = ok refl
heap-weakeningᴱ H (var x) h = ok refl
heap-weakeningᴱ H (addr a) refl = ok refl
heap-weakeningᴱ H (addr a) (snoc {a = b} defn) with a ≡ᴬ b
heap-weakeningᴱ H (addr a) (snoc {a = a} defn) | yes refl = warning (UnallocatedAddress refl)
heap-weakeningᴱ H (addr a) (snoc {a = b} p) | no q = ok (cong orBot (cong typeOfᴹᴼ (lookup-not-allocated p q)))
heap-weakeningᴱ H (number n) h = ok refl
heap-weakeningᴱ H (val nil) h = ok refl
heap-weakeningᴱ H (val (addr a)) refl = ok refl
heap-weakeningᴱ H (val (addr a)) (snoc {a = b} defn) with a ≡ᴬ b
heap-weakeningᴱ H (val (addr a)) (snoc {a = a} defn) | yes refl = warning (UnallocatedAddress refl)
heap-weakeningᴱ H (val (addr a)) (snoc {a = b} p) | no q = ok (cong orBot (cong typeOfᴹᴼ (lookup-not-allocated p q)))
heap-weakeningᴱ H (val (number n)) h = ok refl
heap-weakeningᴱ H (val (bool b)) h = ok refl
heap-weakeningᴱ H (binexp M op N) h = ok refl
heap-weakeningᴱ H (M $ N) h with heap-weakeningᴱ H M h
heap-weakeningᴱ H (M $ N) h | ok p = ok (cong tgt p)
@ -108,6 +109,7 @@ bot-not-obj (function f ⟨ var x ∈ T ⟩∈ U is B end) ()
typeOf-val-not-bot : {H Γ} v OrWarningᴱ H (typeCheckᴱ H Γ (val v)) (bot typeOfᴱ H Γ (val v))
typeOf-val-not-bot nil = ok (λ ())
typeOf-val-not-bot (number n) = ok (λ ())
typeOf-val-not-bot (bool b) = ok (λ ())
typeOf-val-not-bot {H = H} (addr a) with remember (H [ a ]ᴴ)
typeOf-val-not-bot {H = H} (addr a) | (just O , p) = ok (λ q bot-not-obj O (trans q (cong orBot (cong typeOfᴹᴼ p))))
typeOf-val-not-bot {H = H} (addr a) | (nothing , p) = warning (UnallocatedAddress p)
@ -119,17 +121,15 @@ substitutivityᴮ : ∀ {Γ T} H B v x → (just T ≡ typeOfⱽ H v) → (typeO
substitutivityᴮ-unless-yes : {Γ Γ′ T} H B v x y (p : x y) (just T typeOfⱽ H v) (Γ′ Γ) (typeOfᴮ H Γ′ B typeOfᴮ H Γ (B [ v / x ]ᴮunless (yes p)))
substitutivityᴮ-unless-no : {Γ Γ′ T} H B v x y (p : x y) (just T typeOfⱽ H v) (Γ′ Γ x T) (typeOfᴮ H Γ′ B typeOfᴮ H Γ (B [ v / x ]ᴮunless (no p)))
substitutivityᴱ H nil v x p = refl
substitutivityᴱ H (var y) v x p with x ≡ⱽ y
substitutivityᴱ H (var y) v x p | yes q = substitutivityᴱ-whenever-yes H v x y q p
substitutivityᴱ H (var y) v x p | no q = substitutivityᴱ-whenever-no H v x y q p
substitutivityᴱ H (addr a) v x p = refl
substitutivityᴱ H (number n) v x p = refl
substitutivityᴱ H (val w) v x p = refl
substitutivityᴱ H (binexp M op N) v x p = refl
substitutivityᴱ H (M $ N) v x p = cong tgt (substitutivityᴱ H M v x p)
substitutivityᴱ H (function f var y T ⟩∈ U is B end) v x p = refl
substitutivityᴱ H (block var b T is B end) v x p = refl
substitutivityᴱ-whenever-yes H v x x refl q = trans (cong orBot q) (sym (typeOfᴱⱽ v))
substitutivityᴱ-whenever-yes H v x x refl q = cong orBot q
substitutivityᴱ-whenever-no H v x y p q = cong orBot ( sym (⊕-lookup-miss x y _ _ p))
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p with x ≡ⱽ f
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p | yes q = substitutivityᴮ-unless-yes H B v x f q p (⊕-over q)
@ -142,6 +142,18 @@ substitutivityᴮ H done v x p = refl
substitutivityᴮ-unless-yes H B v x x refl q refl = refl
substitutivityᴮ-unless-no H B v x y p q refl = substitutivityᴮ H B v x q
binOpPreservation : H {op v w x} (v op w x) (tgtBinOp op typeOfᴱ H (val x))
binOpPreservation H (+ m n) = refl
binOpPreservation H (- m n) = refl
binOpPreservation H (/ m n) = refl
binOpPreservation H (* m n) = refl
binOpPreservation H (< m n) = refl
binOpPreservation H (> m n) = refl
binOpPreservation H (<= m n) = refl
binOpPreservation H (>= m n) = refl
binOpPreservation H (== v w) = refl
binOpPreservation H (~= v w) = refl
preservationᴱ : H M {H M} (H M ⟶ᴱ M H) OrWarningᴴᴱ H (typeCheckᴴᴱ H M) (typeOfᴱ H M typeOfᴱ H M)
preservationᴮ : H B {H B} (H B ⟶ᴮ B H) OrWarningᴴᴮ H (typeCheckᴴᴮ H B) (typeOfᴮ H B typeOfᴮ H B)
@ -153,14 +165,14 @@ preservationᴱ H (M $ N) (app₁ s) | warning (heap W) = warning (heap W)
preservationᴱ H (M $ N) (app₂ p s) with heap-weakeningᴱ H M (rednᴱ⊑ s)
preservationᴱ H (M $ N) (app₂ p s) | ok q = ok (cong tgt q)
preservationᴱ H (M $ N) (app₂ p s) | warning W = warning (expr (app₁ W))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) with remember (typeOfⱽ H v)
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) with S ≡ᵀ U | T ≡ᵀ typeOfᴮ H (x S) B
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | yes refl = ok (cong tgt (cong orBot (cong typeOfᴹᴼ p)))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | no r = warning (heap (addr a p (FunctionDefnMismatch r)))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | no r | _ = warning (expr (FunctionCallMismatch (λ s r (trans (trans (sym (cong src (cong orBot (cong typeOfᴹᴼ p)))) (trans s (typeOfᴱⱽ v))) (cong orBot q)))))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) with typeOf-val-not-bot v
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | ok r = CONTRADICTION (r (sym (trans (typeOfᴱⱽ v) (cong orBot q))))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | warning W = warning (expr (app₂ W))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) with remember (typeOfⱽ H v)
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) with S ≡ᵀ U | T ≡ᵀ typeOfᴮ H (x S) B
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | yes refl = ok (cong tgt (cong orBot (cong typeOfᴹᴼ p)))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | no r = warning (heap (addr a p (FunctionDefnMismatch r)))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | no r | _ = warning (expr (FunctionCallMismatch (λ s r (trans (trans (sym (cong src (cong orBot (cong typeOfᴹᴼ p)))) s) (cong orBot q)))))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) with typeOf-val-not-bot v
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | ok r = CONTRADICTION (r (sym (cong orBot q)))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | warning W = warning (expr (app₂ W))
preservationᴱ H (block var b T is B end) (block s) = ok refl
preservationᴱ H (block var b T is return M B end) (return v) with T ≡ᵀ typeOfᴱ H (val v)
preservationᴱ H (block var b T is return M B end) (return v) | yes p = ok p
@ -168,7 +180,7 @@ preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) | no p =
preservationᴱ H (block var b T is done end) (done) with T ≡ᵀ nil
preservationᴱ H (block var b T is done end) (done) | yes p = ok p
preservationᴱ H (block var b T is done end) (done) | no p = warning (expr (BlockMismatch p))
preservationᴱ H (binexp M op N) (binOpEval m n) = ok refl
preservationᴱ H (binexp M op N) (binOp s) = ok (binOpPreservation H s)
preservationᴱ H (binexp M op N) (binOp₁ s) = ok refl
preservationᴱ H (binexp M op N) (binOp₂ s) = ok refl
@ -178,9 +190,9 @@ preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) | warning W = warnin
preservationᴮ H (local var x T M B) (subst v) with remember (typeOfⱽ H v)
preservationᴮ H (local var x T M B) (subst v) | (just U , p) with T ≡ᵀ U
preservationᴮ H (local var x T M B) (subst v) | (just T , p) | yes refl = ok (substitutivityᴮ H B v x (sym p))
preservationᴮ H (local var x T M B) (subst v) | (just U , p) | no q = warning (block (LocalVarMismatch (λ r q (trans r (trans (typeOfᴱⱽ v) (cong orBot p))))))
preservationᴮ H (local var x T M B) (subst v) | (just U , p) | no q = warning (block (LocalVarMismatch (λ r q (trans r (cong orBot p)))))
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) with typeOf-val-not-bot v
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) | ok q = CONTRADICTION (q (sym (trans (typeOfᴱⱽ v) (cong orBot p))))
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) | ok q = CONTRADICTION (q (sym (cong orBot p)))
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) | warning W = warning (block (local₁ W))
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) with heap-weakeningᴮ H B (snoc defn)
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) | ok r = ok (trans r (substitutivityᴮ _ B (addr a) f refl))
@ -200,7 +212,7 @@ reflect-substitutionᴮ-unless-no : ∀ {Γ Γ′ T} H B v x y (r : x ≢ y) →
reflect-substitutionᴱ H (var y) v x p W with x ≡ⱽ y
reflect-substitutionᴱ H (var y) v x p W | yes r = reflect-substitutionᴱ-whenever-yes H v x y r p W
reflect-substitutionᴱ H (var y) v x p W | no r = reflect-substitutionᴱ-whenever-no H v x y r p W
reflect-substitutionᴱ H (addr a) v x p (UnallocatedAddress r) = UnallocatedAddress r
reflect-substitutionᴱ H (val (addr a)) v x p (UnallocatedAddress r) = UnallocatedAddress r
reflect-substitutionᴱ H (M $ N) v x p (FunctionCallMismatch q) = FunctionCallMismatch (λ s q (trans (cong src (sym (substitutivityᴱ H M v x p))) (trans s (substitutivityᴱ H N v x p))))
reflect-substitutionᴱ H (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ H M v x p W)
reflect-substitutionᴱ H (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ H N v x p W)
@ -212,8 +224,8 @@ reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₁ W) | no r = function₁ (reflect-substitutionᴮ-unless-no H B v x y r p (⊕-swap r) W)
reflect-substitutionᴱ H (block var b T is B end) v x p (BlockMismatch q) = BlockMismatch (λ r q (trans r (substitutivityᴮ H B v x p)))
reflect-substitutionᴱ H (block var b T is B end) v x p (block₁ W) = block₁ (reflect-substitutionᴮ H B v x p W)
reflect-substitutionᴱ H (binexp M op N) x v p (BinopMismatch₁ q) = BinopMismatch₁ (λ r q (trans (sym (substitutivityᴱ H M x v p)) r))
reflect-substitutionᴱ H (binexp M op N) x v p (BinopMismatch₂ q) = BinopMismatch₂ (λ r q (trans (sym (substitutivityᴱ H N x v p)) r))
reflect-substitutionᴱ H (binexp M op N) x v p (BinOpMismatch₁ q) = BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym (substitutivityᴱ H M x v p)) q)
reflect-substitutionᴱ H (binexp M op N) x v p (BinOpMismatch₂ q) = BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym (substitutivityᴱ H N x v p)) q)
reflect-substitutionᴱ H (binexp M op N) x v p (bin₁ W) = bin₁ (reflect-substitutionᴱ H M x v p W)
reflect-substitutionᴱ H (binexp M op N) x v p (bin₂ W) = bin₂ (reflect-substitutionᴱ H N x v p W)
@ -244,19 +256,19 @@ reflect-weakeningᴱ : ∀ H M {H Γ} → (H ⊑ H) → Warningᴱ H (t
reflect-weakeningᴮ : H B {H Γ} (H H) Warningᴮ H (typeCheckᴮ H Γ B) Warningᴮ H (typeCheckᴮ H Γ B)
reflect-weakeningᴱ H (var x) h (UnboundVariable p) = (UnboundVariable p)
reflect-weakeningᴱ H (addr a) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p)
reflect-weakeningᴱ H (val (addr a)) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p)
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) with heap-weakeningᴱ H M h | heap-weakeningᴱ H N h
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | ok q₁ | ok q₂ = FunctionCallMismatch (λ r p (trans (cong src (sym q₁)) (trans r q₂)))
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | warning W | _ = app₁ W
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | _ | warning W = app₂ W
reflect-weakeningᴱ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ H M h W)
reflect-weakeningᴱ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ H N h W)
reflect-weakeningᴱ H (binexp M op N) h (BinopMismatch₁ p) with heap-weakeningᴱ H M h
reflect-weakeningᴱ H (binexp M op N) h (BinopMismatch₁ p) | ok q = BinopMismatch₁ (λ r p (trans (sym q) r))
reflect-weakeningᴱ H (binexp M op N) h (BinopMismatch₁ p) | warning W = bin₁ W
reflect-weakeningᴱ H (binexp M op N) h (BinopMismatch₂ p) with heap-weakeningᴱ H N h
reflect-weakeningᴱ H (binexp M op N) h (BinopMismatch₂ p) | ok q = BinopMismatch₂ (λ r p (trans (sym q) r))
reflect-weakeningᴱ H (binexp M op N) h (BinopMismatch₂ p) | warning W = bin₂ W
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) with heap-weakeningᴱ H M h
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) | ok q = BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p)
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) | warning W = bin₁ W
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) with heap-weakeningᴱ H N h
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) | ok q = BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym q) p)
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) | warning W = bin₂ W
reflect-weakeningᴱ H (binexp M op N) h (bin₁ W) = bin₁ (reflect-weakeningᴱ H M h W)
reflect-weakeningᴱ H (binexp M op N) h (bin₂ W) = bin₂ (reflect-weakeningᴱ H N h W)
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (FunctionDefnMismatch p) with heap-weakeningᴮ H B h
@ -307,20 +319,20 @@ reflectᴱ H (M $ N) (app₂ p s) (app₁ W) = expr (app₁ (reflect-weakenin
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) with reflectᴱ H N s W
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) | heap W = heap W
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) | expr W = expr (app₂ W)
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) with remember (typeOfⱽ H v)
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just S , r) with S ≡ᵀ T
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just T , r) | yes refl = heap (addr a p (FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ H B v x (sym r))))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just S , r) | no s = expr (FunctionCallMismatch (λ t s (trans (cong orBot (sym r)) (trans (sym (typeOfᴱⱽ v)) (trans (sym t) (cong src (cong orBot (cong typeOfᴹᴼ p))))))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) with typeOf-val-not-bot v
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) | ok s = CONTRADICTION (s (trans (cong orBot (sym r)) (sym (typeOfᴱⱽ v))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) | warning W = expr (app₂ W)
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) with remember (typeOfⱽ H v)
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just S , q) with S ≡ᵀ T
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just T , q) | yes refl = heap (addr a p (function₁ (reflect-substitutionᴮ H B v x (sym q) W)))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just S , q) | no r = expr (FunctionCallMismatch (λ s r (trans (cong orBot (sym q)) (trans (sym (typeOfᴱⱽ v)) (trans (sym s) (cong src (cong orBot (cong typeOfᴹᴼ p))))))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) with typeOf-val-not-bot v
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) | ok r = CONTRADICTION (r (trans (cong orBot (sym q)) (sym (typeOfᴱⱽ v))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) | warning W = expr (app₂ W)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) with remember (typeOfⱽ H v)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just S , r) with S ≡ᵀ T
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just T , r) | yes refl = heap (addr a p (FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ H B v x (sym r))))))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just S , r) | no s = expr (FunctionCallMismatch (λ t s (trans (cong orBot (sym r)) (trans (sym t) (cong src (cong orBot (cong typeOfᴹᴼ p)))))))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) with typeOf-val-not-bot v
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) | ok s = CONTRADICTION (s (cong orBot (sym r)))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) | warning W = expr (app₂ W)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) with remember (typeOfⱽ H v)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just S , q) with S ≡ᵀ T
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just T , q) | yes refl = heap (addr a p (function₁ (reflect-substitutionᴮ H B v x (sym q) W)))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just S , q) | no r = expr (FunctionCallMismatch (λ s r (trans (cong orBot (sym q)) (trans (sym s) (cong src (cong orBot (cong typeOfᴹᴼ p)))))))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) with typeOf-val-not-bot v
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) | ok r = CONTRADICTION (r (cong orBot (sym q)))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) | warning W = expr (app₂ W)
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) with preservationᴮ H B s
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) | ok q = expr (BlockMismatch (λ r p (trans r q)))
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) | warning (heap W) = heap W
@ -330,24 +342,25 @@ reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ W) | heap W = h
reflectᴱ H (block var b T is B end) (block s) (block₁ W) | block W = expr (block₁ W)
reflectᴱ H (block var b T is B end) (return v) W = expr (block₁ (return W))
reflectᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (UnallocatedAddress ())
reflectᴱ H (binexp M op N) (binOp₁ s) (BinopMismatch₁ p) with preservationᴱ H M s
reflectᴱ H (binexp M op N) (binOp₁ s) (BinopMismatch₁ p) | ok q = expr (BinopMismatch₁ (λ r p (trans (sym q) r)))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinopMismatch₁ p) | warning (heap W) = heap W
reflectᴱ H (binexp M op N) (binOp₁ s) (BinopMismatch₁ p) | warning (expr W) = expr (bin₁ W)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinopMismatch₂ p) with heap-weakeningᴱ H N (rednᴱ⊑ s)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinopMismatch₂ p) | ok q = expr (BinopMismatch₂ (λ r p (trans (sym q) r)))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinopMismatch₂ p) | warning W = expr (bin₂ W)
reflectᴱ H (binexp M op N) (binOp₀ ()) (UnallocatedAddress p)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) with preservationᴱ H M s
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | ok q = expr (BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | warning (heap W) = heap W
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | warning (expr W) = expr (bin₁ W)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) with heap-weakeningᴱ H N (rednᴱ⊑ s)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) | ok q = expr (BinOpMismatch₂ ((subst₁ (BinOpWarning op) (sym q) p)))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) | warning W = expr (bin₂ W)
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W) with reflectᴱ H M s W
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W) | heap W = heap W
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W) | expr W = expr (bin₁ W)
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₂ W) = expr (bin₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinopMismatch₁ p) with heap-weakeningᴱ H M (rednᴱ⊑ s)
reflectᴱ H (binexp M op N) (binOp₂ s) (BinopMismatch₁ p) | ok q = expr (BinopMismatch₁ (λ r p (trans (sym q) r)))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinopMismatch₁ p) | warning W = expr (bin₁ W)
reflectᴱ H (binexp M op N) (binOp₂ s) (BinopMismatch₂ p) with preservationᴱ H N s
reflectᴱ H (binexp M op N) (binOp₂ s) (BinopMismatch₂ p) | ok q = expr (BinopMismatch₂ (λ r p (trans (sym q) r)))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinopMismatch₂ p) | warning (heap W) = heap W
reflectᴱ H (binexp M op N) (binOp₂ s) (BinopMismatch₂ p) | warning (expr W) = expr (bin₂ W)
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) with heap-weakeningᴱ H M (rednᴱ⊑ s)
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) | ok q = expr (BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) | warning W = expr (bin₁ W)
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) with preservationᴱ H N s
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | ok q = expr (BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym q) p))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | warning (heap W) = heap W
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | warning (expr W) = expr (bin₂ W)
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₁ W) = expr (bin₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W))
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W) with reflectᴱ H N s W
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W) | heap W = heap W
@ -364,9 +377,9 @@ reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₂ W) = block (
reflectᴮ H (local var x T M B) (subst v) W with remember (typeOfⱽ H v)
reflectᴮ H (local var x T M B) (subst v) W | (just S , p) with S ≡ᵀ T
reflectᴮ H (local var x T M B) (subst v) W | (just T , p) | yes refl = block (local₂ (reflect-substitutionᴮ H B v x (sym p) W))
reflectᴮ H (local var x T M B) (subst v) W | (just S , p) | no q = block (LocalVarMismatch (λ r q (trans (cong orBot (sym p)) (trans (sym (typeOfᴱⱽ v)) (sym r)))))
reflectᴮ H (local var x T M B) (subst v) W | (just S , p) | no q = block (LocalVarMismatch (λ r q (trans (cong orBot (sym p)) (sym r))))
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) with typeOf-val-not-bot v
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) | ok r = CONTRADICTION (r (trans (cong orBot (sym p)) (sym (typeOfᴱⱽ v))))
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) | ok r = CONTRADICTION (r (cong orBot (sym p)))
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) | warning W = block (local₁ W)
reflectᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) W = block (function₂ (reflect-weakeningᴮ H B (snoc defn) (reflect-substitutionᴮ _ B (addr a) f refl W)))
reflectᴮ H (return M B) (return s) (return W) with reflectᴱ H M s W
@ -395,7 +408,7 @@ reflectᴴᴱ H (block var b ∈ T is B end) (block s) (heap W) | heap W = he
reflectᴴᴱ H (block var b T is B end) (block s) (heap W) | block W = expr (block₁ W)
reflectᴴᴱ H (block var b T is return N B end) (return v) (heap W) = heap W
reflectᴴᴱ H (block var b T is done end) done (heap W) = heap W
reflectᴴᴱ H (binexp M op N) (binOpEval m n) (heap W) = heap W
reflectᴴᴱ H (binexp M op N) (binOp s) (heap W) = heap W
reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W) with reflectᴴᴱ H M s (heap W)
reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W) | heap W = heap W
reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W) | expr W = expr (bin₁ W)
@ -422,19 +435,29 @@ reflect* : ∀ H B {H B} → (H ⊢ B ⟶* B ⊣ H) → Warningᴴ
reflect* H B refl W = W
reflect* H B (step s t) W = reflectᴴᴮ H B s (reflect* _ _ t W)
runtimeBinOpWarning : H {op} v BinOpError op (valueType v) BinOpWarning op (orBot (typeOfⱽ H v))
runtimeBinOpWarning H v (+ p) = + (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (- p) = - (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (* p) = * (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (/ p) = / (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (< p) = < (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (> p) = > (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (<= p) = <= (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (>= p) = >= (λ q p (mustBeNumber H v q))
runtimeWarningᴱ : H M RuntimeErrorᴱ H M Warningᴱ H (typeCheckᴱ H M)
runtimeWarningᴮ : H B RuntimeErrorᴮ H B Warningᴮ H (typeCheckᴮ H B)
runtimeWarningᴱ H (var x) UnboundVariable = UnboundVariable refl
runtimeWarningᴱ H (addr a) (SEGV p) = UnallocatedAddress p
runtimeWarningᴱ H (val (addr a)) (SEGV p) = UnallocatedAddress p
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) with typeOf-val-not-bot w
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | ok q = FunctionCallMismatch (λ r p (mustBeFunction H v (λ r q (trans r r))))
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | warning W = app₂ W
runtimeWarningᴱ H (M $ N) (app₁ err) = app₁ (runtimeWarningᴱ H M err)
runtimeWarningᴱ H (M $ N) (app₂ err) = app₂ (runtimeWarningᴱ H N err)
runtimeWarningᴱ H (block var b T is B end) (block err) = block₁ (runtimeWarningᴮ H B err)
runtimeWarningᴱ H (binexp M op N) (BinopMismatch₁ v w p) = BinopMismatch₁ (λ q p (mustBeNumber H v (sym q)))
runtimeWarningᴱ H (binexp M op N) (BinopMismatch₂ v w p) = BinopMismatch₂ (λ q p (mustBeNumber H w (sym q)))
runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₁ v w p) = BinOpMismatch₁ (runtimeBinOpWarning H v p)
runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₂ v w p) = BinOpMismatch₂ (runtimeBinOpWarning H w p)
runtimeWarningᴱ H (binexp M op N) (bin₁ err) = bin₁ (runtimeWarningᴱ H M err)
runtimeWarningᴱ H (binexp M op N) (bin₂ err) = bin₂ (runtimeWarningᴱ H N err)

View file

@ -8,14 +8,13 @@ open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Bool using (Bool; true; false)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import FFI.Data.Either using (Either)
open import Luau.TypeCheck(m) using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; ⊢ᴼ_; ⊢ᴴ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; nil; var; addr; number; true; false; app; function; block; binexp; done; return; local; nothing; orBot)
open import Luau.Syntax using (Block; Expr; yes; nil; var; addr; number; true; false; binexp; _$_; function_is_end; block_is_end; _∙_; return; done; local_←_; _⟨_⟩; _⟨_⟩∈_; var_∈_; name; fun; arg)
open import Luau.TypeCheck(m) using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; ⊢ᴼ_; ⊢ᴴ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; nil; var; addr; number; bool; app; function; block; binexp; done; return; local; nothing; orBot; tgtBinOp)
open import Luau.Syntax using (Block; Expr; Value; BinaryOperator; yes; nil; addr; number; bool; val; var; binexp; _$_; function_is_end; block_is_end; _∙_; return; done; local_←_; _⟨_⟩; _⟨_⟩∈_; var_∈_; name; fun; arg; +; -; *; /; <; >; ==; ~=; <=; >=)
open import Luau.Type using (Type; nil; top; bot; number; boolean; _⇒_; tgt)
open import Luau.RuntimeType using (RuntimeType; nil; number; function; valueType)
open import Luau.VarCtxt using (VarCtxt; ∅; _↦_; _⊕_↦_; _⋒_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import Luau.Addr using (Addr)
open import Luau.Var using (Var; _≡ⱽ_)
open import Luau.Value using (Value; nil; addr; number; bool; val)
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.Dec using (yes; no)
@ -42,29 +41,18 @@ typeOfⱽ H (number n) = just number
typeOfᴱ : Heap yes VarCtxt (Expr yes) Type
typeOfᴮ : Heap yes VarCtxt (Block yes) Type
typeOfᴱ H Γ nil = nil
typeOfᴱ H Γ (var x) = orBot(Γ [ x ]ⱽ)
typeOfᴱ H Γ (addr a) = orBot(typeOfᴹᴼ (H [ a ]ᴴ))
typeOfᴱ H Γ (number n) = number
typeOfᴱ H Γ true = boolean
typeOfᴱ H Γ false = boolean
typeOfᴱ H Γ (val v) = orBot(typeOfⱽ H v)
typeOfᴱ H Γ (M $ N) = tgt(typeOfᴱ H Γ M)
typeOfᴱ H Γ (function f var x S ⟩∈ T is B end) = S T
typeOfᴱ H Γ (block var b T is B end) = T
typeOfᴱ H Γ (binexp M op N) = number
typeOfᴱ H Γ (binexp M op N) = tgtBinOp op
typeOfᴮ H Γ (function f var x S ⟩∈ T is C end B) = typeOfᴮ H (Γ f (S T)) B
typeOfᴮ H Γ (local var x T M B) = typeOfᴮ H (Γ x T) B
typeOfᴮ H Γ (return M B) = typeOfᴱ H Γ M
typeOfᴮ H Γ done = nil
typeOfᴱⱽ : {H Γ} v (typeOfᴱ H Γ (val v) orBot(typeOfⱽ H v))
typeOfᴱⱽ nil = refl
typeOfᴱⱽ (bool true) = refl
typeOfᴱⱽ (bool false) = refl
typeOfᴱⱽ (addr a) = refl
typeOfᴱⱽ (number n) = refl
mustBeFunction : H Γ v (bot src (typeOfᴱ H Γ (val v))) (function valueType(v))
mustBeFunction H Γ nil p = CONTRADICTION (p refl)
mustBeFunction H Γ (addr a) p = refl
@ -72,12 +60,12 @@ mustBeFunction H Γ (number n) p = CONTRADICTION (p refl)
mustBeFunction H Γ (bool true) p = CONTRADICTION (p refl)
mustBeFunction H Γ (bool false) p = CONTRADICTION (p refl)
mustBeNumber : H Γ v (number typeOfᴱ H Γ (val v)) (number valueType(v))
mustBeNumber : H Γ v (typeOfᴱ H Γ (val v) number) (valueType(v) number)
mustBeNumber H Γ nil ()
mustBeNumber H Γ (addr a) p with remember (H [ a ]ᴴ)
mustBeNumber H Γ (addr a) p | (just O , q) with trans p (cong orBot (cong typeOfᴹᴼ q))
mustBeNumber H Γ (addr a) p | (just O , q) with trans (cong orBot (cong typeOfᴹᴼ (sym q))) p
mustBeNumber H Γ (addr a) p | (just function f var x T ⟩∈ U is B end , q) | ()
mustBeNumber H Γ (addr a) p | (nothing , q) with trans p (cong orBot (cong typeOfᴹᴼ q))
mustBeNumber H Γ (addr a) p | (nothing , q) with trans (cong orBot (cong typeOfᴹᴼ (sym q))) p
mustBeNumber H Γ (addr a) p | nothing , q | ()
mustBeNumber H Γ (number n) p = refl
mustBeNumber H Γ (bool true) ()
@ -86,12 +74,11 @@ mustBeNumber H Γ (bool false) ()
typeCheckᴱ : H Γ M (Γ ⊢ᴱ M (typeOfᴱ H Γ M))
typeCheckᴮ : H Γ B (Γ ⊢ᴮ B (typeOfᴮ H Γ B))
typeCheckᴱ H Γ nil = nil
typeCheckᴱ H Γ (var x) = var refl
typeCheckᴱ H Γ (addr a) = addr (orBot (typeOfᴹᴼ (H [ a ]ᴴ)))
typeCheckᴱ H Γ (number n) = number
typeCheckᴱ H Γ true = true
typeCheckᴱ H Γ false = false
typeCheckᴱ H Γ (val nil) = nil
typeCheckᴱ H Γ (val (addr a)) = addr (orBot (typeOfᴹᴼ (H [ a ]ᴴ)))
typeCheckᴱ H Γ (val (number n)) = number
typeCheckᴱ H Γ (val (bool b)) = bool
typeCheckᴱ H Γ (M $ N) = app (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N)
typeCheckᴱ H Γ (function f var x T ⟩∈ U is B end) = function (typeCheckᴮ H (Γ x T) B)
typeCheckᴱ H Γ (block var b T is B end) = block (typeCheckᴮ H Γ B)