mirror of
https://github.com/luau-lang/luau.git
synced 2025-05-04 10:33:46 +01:00
WIP
This commit is contained in:
parent
02e65d8888
commit
a3866d544f
5 changed files with 85 additions and 49 deletions
|
@ -13,7 +13,7 @@ open import Properties.Contradiction using (CONTRADICTION; ¬)
|
|||
open import Properties.Functions using (_∘_)
|
||||
open import Properties.Subtyping using (<:-refl; <:-trans; ≮:-trans-<:; <:-trans-≮:; <:-never; <:-unknown; <:-∪-left; <:-∪-right; <:-∪-lub; ≮:-∪-left; ≮:-∪-right; <:-∩-left; <:-∩-right; <:-∩-glb; ≮:-∩-left; ≮:-∩-right; dec-language; scalar-<:; <:-everything; <:-function; ≮:-function-left; ≮:-function-right; <:-impl-¬≮:; <:-intersect; <:-function-∩-∪; <:-function-∩; <:-function-never; <:-union; ≮:-left-∪; ≮:-right-∪; <:-∩-distr-∪; <:-impl-⊇; language-comp)
|
||||
open import Properties.TypeNormalization using (FunType; Normal; never; unknown; _∩_; _∪_; _⇒_; normal; <:-normalize; normalize-<:; normal-∩ⁿ; normal-∪ⁿ; ∪-<:-∪ⁿ; ∪ⁿ-<:-∪; ∩ⁿ-<:-∩; ∩-<:-∩ⁿ; normalᶠ; function-top)
|
||||
open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; defn; here; left; right; ov-language; ov-<:; saturated; normal-saturate; normal-overload-src; normal-overload-tgt; saturate-<:; <:-saturate)
|
||||
open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; _<:ᵒ_; defn; here; left; right; ov-language; ov-<:; saturated; normal-saturate; normal-overload-src; normal-overload-tgt; saturate-<:; <:-saturate; <:ᵒ-impl-<:; _>>=ˡ_; _>>=ʳ_)
|
||||
open import Properties.Equality using (_≢_)
|
||||
|
||||
fun-function : ∀ {F} → FunType F → Language F function
|
||||
|
@ -30,9 +30,10 @@ fun-¬scalar s (F ∩ G) (p₁ , p₂) = fun-¬scalar s G p₂
|
|||
-- Honest this terminates, since saturation maintains the depth of nested arrows
|
||||
{-# TERMINATING #-}
|
||||
dec-subtypingˢⁿ : ∀ {T U} → Scalar T → Normal U → Either (T ≮: U) (T <: U)
|
||||
dec-subtypingˢᶠ : ∀ {T U} → FunType T → Saturated T → FunType U → Either (T ≮: U) (T <: U)
|
||||
dec-subtypingᶠ : ∀ {T U} → FunType T → FunType U → Either (T ≮: U) (T <: U)
|
||||
dec-subtypingᶠⁿ : ∀ {T U} → FunType T → Normal U → Either (T ≮: U) (T <: U)
|
||||
dec-subtypingˢᶠᵒ : ∀ {F S T} → FunType F → Saturated F → FunType (S ⇒ T) → (S ≮: never) → Either (F ≮: (S ⇒ T)) (F <:ᵒ (S ⇒ T))
|
||||
dec-subtypingˢᶠ : ∀ {F G} → FunType F → Saturated F → FunType G → Either (F ≮: G) (F <: G)
|
||||
dec-subtypingᶠ : ∀ {F G} → FunType F → FunType G → Either (F ≮: G) (F <: G)
|
||||
dec-subtypingᶠⁿ : ∀ {F U} → FunType F → Normal U → Either (F ≮: U) (F <: U)
|
||||
dec-subtypingⁿ : ∀ {T U} → Normal T → Normal U → Either (T ≮: U) (T <: U)
|
||||
dec-subtyping : ∀ T U → Either (T ≮: U) (T <: U)
|
||||
|
||||
|
@ -40,13 +41,7 @@ dec-subtypingˢⁿ T U with dec-language _ (scalar T)
|
|||
dec-subtypingˢⁿ T U | Left p = Left (witness (scalar T) (scalar T) p)
|
||||
dec-subtypingˢⁿ T U | Right p = Right (scalar-<: T p)
|
||||
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) with dec-subtypingˢᶠ F Fˢ G | dec-subtypingˢᶠ F Fˢ H
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) | Left F≮:G | _ = Left (≮:-∩-left F≮:G)
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) | _ | Left F≮:H = Left (≮:-∩-right F≮:H)
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) | Right F<:G | Right F<:H = Right (<:-∩-glb F<:G F<:H)
|
||||
dec-subtypingˢᶠ F (defn sat-∩ sat-∪) (S ⇒ T) with dec-subtypingⁿ S never
|
||||
dec-subtypingˢᶠ F (defn sat-∩ sat-∪) (S ⇒ T) | Right S<:never = Right (<:-trans (function-top F) (<:-trans <:-function-never (<:-function S<:never <:-refl)))
|
||||
dec-subtypingˢᶠ {F} {S ⇒ T} Fᶠ (defn sat-∩ sat-∪) (Sⁿ ⇒ Tⁿ) | Left (witness s₀ Ss₀ never) = result (top Fᶠ (λ o → o)) where
|
||||
dec-subtypingˢᶠᵒ {F} {S} {T} Fᶠ (defn sat-∩ sat-∪) (Sⁿ ⇒ Tⁿ) (witness s₀ Ss₀ never) = result (top Fᶠ (λ o → o)) where
|
||||
|
||||
data Top G : Set where
|
||||
|
||||
|
@ -64,7 +59,7 @@ dec-subtypingˢᶠ {F} {S ⇒ T} Fᶠ (defn sat-∩ sat-∪) (Sⁿ ⇒ Tⁿ) | L
|
|||
top (Gᶠ ∩ Hᶠ) G⊆F | defn Rᵗ Sᵗ p p₁ | defn Tᵗ Uᵗ q q₁ | defn n r r₁ = defn _ _ n
|
||||
(λ { (left o) → <:-trans (<:-trans (p₁ o) <:-∪-left) r ; (right o) → <:-trans (<:-trans (q₁ o) <:-∪-right) r })
|
||||
|
||||
result : Top F → Either (F ≮: (S ⇒ T)) (F <: (S ⇒ T))
|
||||
result : Top F → Either (F ≮: (S ⇒ T)) (F <:ᵒ (S ⇒ T))
|
||||
result (defn Sᵗ Tᵗ oᵗ srcᵗ) with dec-subtypingⁿ Sⁿ (normal-overload-src Fᶠ oᵗ)
|
||||
result (defn Sᵗ Tᵗ oᵗ srcᵗ) | Left (witness s Ss ¬Sᵗs) = Left (witness (function-err s) (ov-language Fᶠ (λ o → function-err (<:-impl-⊇ (srcᵗ o) s ¬Sᵗs))) (function-err Ss))
|
||||
result (defn Sᵗ Tᵗ oᵗ srcᵗ) | Right S<:Sᵗ = result₀ (largest Fᶠ (λ o → o)) where
|
||||
|
@ -104,10 +99,10 @@ dec-subtypingˢᶠ {F} {S ⇒ T} Fᶠ (defn sat-∩ sat-∪) (Sⁿ ⇒ Tⁿ) | L
|
|||
; (right o) T′<:T → <:-trans (src₂ o T′<:T) (<:-trans <:-∪-right src)
|
||||
})
|
||||
|
||||
result₀ : LargestSrc F → Either (F ≮: (S ⇒ T)) (F <: (S ⇒ T))
|
||||
result₀ : LargestSrc F → Either (F ≮: (S ⇒ T)) (F <:ᵒ (S ⇒ T))
|
||||
result₀ (no S₀ T₀ o₀ (witness t T₀t ¬Tt) tgt₀) = Left (witness (function-ok s₀ t) (ov-language Fᶠ (λ o → function-ok₂ (tgt₀ o t T₀t))) (function-ok Ss₀ ¬Tt))
|
||||
result₀ (yes S₀ T₀ o₀ T₀<:T src₀) with dec-subtypingⁿ Sⁿ (normal-overload-src Fᶠ o₀)
|
||||
result₀ (yes S₀ T₀ o₀ T₀<:T src₀) | Right S<:S₀ = Right (ov-<: Fᶠ o₀ (<:-function S<:S₀ T₀<:T))
|
||||
result₀ (yes S₀ T₀ o₀ T₀<:T src₀) | Right S<:S₀ = Right (defn o₀ S<:S₀ T₀<:T)
|
||||
result₀ (yes S₀ T₀ o₀ T₀<:T src₀) | Left (witness s Ss ¬S₀s) = Left (result₁ (smallest Fᶠ (λ o → o))) where
|
||||
|
||||
data SmallestTgt (G : Type) : Set where
|
||||
|
@ -141,6 +136,16 @@ dec-subtypingˢᶠ {F} {S ⇒ T} Fᶠ (defn sat-∩ sat-∪) (Sⁿ ⇒ Tⁿ) | L
|
|||
lemma {S′} o | Left ¬S′s = function-ok₁ ¬S′s
|
||||
lemma {S′} o | Right S′s = function-ok₂ (tgt₁ o S′s t T₁t)
|
||||
|
||||
dec-subtypingˢᶠ F Fˢ (S ⇒ T) with dec-subtypingⁿ S never
|
||||
dec-subtypingˢᶠ F Fˢ (S ⇒ T) | Right S<:never = Right (<:-trans (function-top F) (<:-trans <:-function-never (<:-function S<:never <:-refl)))
|
||||
dec-subtypingˢᶠ F Fˢ (S ⇒ T) | Left S≮:never with dec-subtypingˢᶠᵒ F Fˢ (S ⇒ T) S≮:never
|
||||
dec-subtypingˢᶠ F Fˢ (S ⇒ T) | Left S≮:never | Left F≮:S⇒T = Left F≮:S⇒T
|
||||
dec-subtypingˢᶠ F Fˢ (S ⇒ T) | Left S≮:never | Right F<:ᵒS⇒T = Right (<:ᵒ-impl-<: F F<:ᵒS⇒T)
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) with dec-subtypingˢᶠ F Fˢ G | dec-subtypingˢᶠ F Fˢ H
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) | Left F≮:G | _ = Left (≮:-∩-left F≮:G)
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) | _ | Left F≮:H = Left (≮:-∩-right F≮:H)
|
||||
dec-subtypingˢᶠ F Fˢ (G ∩ H) | Right F<:G | Right F<:H = Right (<:-∩-glb F<:G F<:H)
|
||||
|
||||
dec-subtypingᶠ F G with dec-subtypingˢᶠ (normal-saturate F) (saturated F) G
|
||||
dec-subtypingᶠ F G | Left H≮:G = Left (<:-trans-≮: (saturate-<: F) H≮:G)
|
||||
dec-subtypingᶠ F G | Right H<:G = Right (<:-trans (<:-saturate F) H<:G)
|
||||
|
@ -176,3 +181,12 @@ dec-subtypingⁿ (S ∪ T) U | Right p | Right q = Right (<:-∪-lub p q)
|
|||
dec-subtyping T U with dec-subtypingⁿ (normal T) (normal U)
|
||||
dec-subtyping T U | Left p = Left (<:-trans-≮: (normalize-<: T) (≮:-trans-<: p (<:-normalize U)))
|
||||
dec-subtyping T U | Right p = Right (<:-trans (<:-normalize T) (<:-trans p (normalize-<: U)))
|
||||
|
||||
-- As a corollary, for saturated functions
|
||||
-- <:ᵒ coincides with <:, that is F is a subtype of (S ⇒ T) precisely
|
||||
-- when one of its overloads is.
|
||||
|
||||
<:-impl-<:ᵒ : ∀ {F S T} → FunType F → Saturated F → (S ≮: never) → (F <: (S ⇒ T)) → (F <:ᵒ (S ⇒ T))
|
||||
<:-impl-<:ᵒ {F} {S} {T} Fᶠ Fˢ S≮:never F<:S⇒T with dec-subtypingˢᶠᵒ Fᶠ Fˢ (normal S ⇒ normal T) (<:-trans-≮: (<:-normalize S) S≮:never)
|
||||
<:-impl-<:ᵒ {F} {S} {T} Fᶠ Fˢ S≮:never F<:S⇒T | Left F≮:S⇒T = CONTRADICTION (<:-impl-¬≮: (<:-trans F<:S⇒T (<:-normalize (S ⇒ T))) F≮:S⇒T)
|
||||
<:-impl-<:ᵒ {F} {S} {T} Fᶠ Fˢ S≮:never F<:S⇒T | Right F<:ᵒS⇒T = F<:ᵒS⇒T >>=ˡ <:-normalize S >>=ʳ normalize-<: T
|
||||
|
|
|
@ -3,15 +3,15 @@
|
|||
module Properties.ResolveOverloads where
|
||||
|
||||
open import FFI.Data.Either using (Left; Right)
|
||||
open import Luau.Subtyping using (_<:_; _≮:_)
|
||||
open import Luau.Subtyping using (_<:_; _≮:_; Language; witness; scalar; unknown; never; function-ok)
|
||||
open import Luau.Type using (Type ; _⇒_; unknown; never)
|
||||
open import Luau.TypeSaturation using (saturate)
|
||||
open import Properties.Contradiction using (CONTRADICTION)
|
||||
open import Properties.DecSubtyping using (dec-subtypingⁿ)
|
||||
open import Properties.DecSubtyping using (dec-subtyping; dec-subtypingⁿ; <:-impl-<:ᵒ)
|
||||
open import Properties.Functions using (_∘_)
|
||||
open import Properties.Subtyping using (<:-refl; <:-trans; <:-∩-left; <:-∩-right; <:-∩-glb; <:-impl-¬≮:; <:-unknown; function-≮:-never)
|
||||
open import Properties.TypeNormalization using (Normal; FunType; normal; _⇒_; _∩_; _∪_; never; unknown; <:-normalize)
|
||||
open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; normal-saturate; saturated; defn; here; left; right)
|
||||
open import Properties.Subtyping using (<:-refl; <:-trans; <:-trans-≮:; ≮:-trans-<:; <:-∩-left; <:-∩-right; <:-∩-glb; <:-∪-right; <:-impl-¬≮:; <:-unknown; <:-function; function-≮:-never; <:-never; unknown-≮:-function; scalar-≮:-function)
|
||||
open import Properties.TypeNormalization using (Normal; FunType; normal; _⇒_; _∩_; _∪_; never; unknown; <:-normalize; normalize-<:)
|
||||
open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; _<:ᵒ_; normal-saturate; saturated; <:-saturate; saturate-<:; defn; here; left; right)
|
||||
|
||||
data ResolvedTo F G R : Set where
|
||||
|
||||
|
@ -29,15 +29,13 @@ data ResolvedTo F G R : Set where
|
|||
--------------------------------------------
|
||||
ResolvedTo F G R
|
||||
|
||||
never :
|
||||
|
||||
(F <: never) →
|
||||
--------------------------------------------
|
||||
ResolvedTo F G R
|
||||
|
||||
Resolved : Type → Type → Set
|
||||
Resolved F R = ResolvedTo F F R
|
||||
|
||||
target : ∀ {F R} → Resolved F R → Type
|
||||
target (yes _ T _ _ _) = T
|
||||
target (no _) = unknown
|
||||
|
||||
resolveˢ : ∀ {F G R} → FunType G → Saturated F → Normal R → (G ⊆ᵒ F) → ResolvedTo F G R
|
||||
resolveˢ (Sⁿ ⇒ Tⁿ) (defn sat-∩ sat-∪) Rⁿ G⊆F with dec-subtypingⁿ Rⁿ Sⁿ
|
||||
resolveˢ (Sⁿ ⇒ Tⁿ) (defn sat-∩ sat-∪) Rⁿ G⊆F | Left R≮:S = no (λ { here → R≮:S })
|
||||
|
@ -52,27 +50,46 @@ resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Rⁿ G⊆F | no src₁ | yes S
|
|||
yes _ _ o₂ R<:S₂ (λ { (left o) p → CONTRADICTION (<:-impl-¬≮: p (src₁ o)) ; (right o) p → tgt₂ o p })
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Rⁿ G⊆F | no src₁ | no src₂ =
|
||||
no (λ { (left o) → src₁ o ; (right o) → src₂ o })
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Rⁿ G⊆F | _ | never q = never q
|
||||
resolveˢ (Gᶠ ∩ Hᶠ) (defn sat-∩ sat-∪) Rⁿ G⊆F | never p | _ = never p
|
||||
|
||||
resolveᶠ : ∀ {F R} → FunType F → Normal R → Resolved (saturate F) R
|
||||
resolveᶠ Fᶠ Rⁿ = resolveˢ (normal-saturate Fᶠ) (saturated Fᶠ) Rⁿ (λ o → o)
|
||||
|
||||
resolveⁿ : ∀ {F R} → Normal F → Normal R → Resolved (saturate F) R
|
||||
resolveⁿ (Sⁿ ⇒ Tⁿ) Rⁿ = resolveᶠ (Sⁿ ⇒ Tⁿ) Rⁿ
|
||||
resolveⁿ (Fᶠ ∩ Gᶠ) Rⁿ = resolveᶠ (Fᶠ ∩ Gᶠ) Rⁿ
|
||||
resolveⁿ (Sⁿ ∪ Tˢ) Rⁿ = no (λ ())
|
||||
resolveⁿ never Rⁿ = never <:-refl
|
||||
resolveⁿ unknown Rⁿ = no (λ ())
|
||||
resolveⁿ : ∀ {F R} → Normal F → Normal R → Type
|
||||
resolveⁿ (Sⁿ ⇒ Tⁿ) Rⁿ = target (resolveᶠ (Sⁿ ⇒ Tⁿ) Rⁿ)
|
||||
resolveⁿ (Fᶠ ∩ Gᶠ) Rⁿ = target (resolveᶠ (Fᶠ ∩ Gᶠ) Rⁿ)
|
||||
resolveⁿ (Sⁿ ∪ Tˢ) Rⁿ = unknown
|
||||
resolveⁿ unknown Rⁿ = unknown
|
||||
resolveⁿ never Rⁿ = never
|
||||
|
||||
resolve : Type → Type → Type
|
||||
resolve F R with resolveⁿ (normal F) (normal R)
|
||||
resolve F R | yes S T o R<:S p = T
|
||||
resolve F R | no p = unknown
|
||||
resolve F R | never p = never
|
||||
resolve F R = resolveⁿ (normal F) (normal R)
|
||||
|
||||
<:-target-⇒ : ∀ {R S T} → (r : Resolved (S ⇒ T) R) → (T <: target r)
|
||||
<:-target-⇒ (yes Sʳ Tʳ here x₁ x₂) = <:-refl
|
||||
<:-target-⇒ (no x) = <:-unknown
|
||||
|
||||
<:-resolveⁿ : ∀ {R S T} → (Fⁿ : Normal (S ⇒ T)) → (Rⁿ : Normal R) → T <: resolveⁿ Fⁿ Rⁿ
|
||||
<:-resolveⁿ (Sⁿ ⇒ Tⁿ) Rⁿ = <:-target-⇒ (resolveˢ (Sⁿ ⇒ Tⁿ) (saturated (Sⁿ ⇒ Tⁿ)) Rⁿ (λ o → o))
|
||||
|
||||
<:-resolve : ∀ {R S T} → T <: resolve (S ⇒ T) R
|
||||
<:-resolve {R} {S} {T} with resolveⁿ (normal (S ⇒ T)) (normal R)
|
||||
<:-resolve {R} {S} {T} | yes Sⁿ Tⁿ here Rⁿ<:Sʳ p = <:-normalize T
|
||||
<:-resolve {R} {S} {T} | no p = <:-unknown
|
||||
<:-resolve {R} {S} {T} | never p = CONTRADICTION (<:-impl-¬≮: p function-≮:-never)
|
||||
<:-resolve {R} {S} {T} = <:-trans (<:-normalize T) (<:-resolveⁿ (normal (S ⇒ T)) (normal R))
|
||||
|
||||
resolveˢ-<:-⇒ : ∀ {F R U} → (FunType F) → (Saturated F) → (r : Resolved F R) → (R ≮: never) → (F <: (R ⇒ U)) → (target r <: U)
|
||||
resolveˢ-<:-⇒ Fᶠ Fˢ r R≮:never F<:R⇒U with <:-impl-<:ᵒ Fᶠ Fˢ R≮:never F<:R⇒U
|
||||
resolveˢ-<:-⇒ Fᶠ Fˢ (yes Sʳ Tʳ oʳ R<:Sʳ tgtʳ) R≮:never F<:R⇒U | defn o o₁ o₂ = <:-trans (tgtʳ o o₁) o₂
|
||||
resolveˢ-<:-⇒ Fᶠ Fˢ (no tgtʳ) R≮:never F<:R⇒U | defn o o₁ o₂ = CONTRADICTION (<:-impl-¬≮: o₁ (tgtʳ o))
|
||||
|
||||
resolveⁿ-<:-⇒ : ∀ {F R U} → (Fⁿ : Normal F) → (Rⁿ : Normal R) → (R ≮: never) → (F <: (R ⇒ U)) → (resolveⁿ Fⁿ Rⁿ <: U)
|
||||
resolveⁿ-<:-⇒ (Sⁿ ⇒ Tⁿ) Rⁿ R≮:never F<:R⇒U = resolveˢ-<:-⇒ (normal-saturate (Sⁿ ⇒ Tⁿ)) (saturated (Sⁿ ⇒ Tⁿ)) (resolveˢ (normal-saturate (Sⁿ ⇒ Tⁿ)) (saturated (Sⁿ ⇒ Tⁿ)) Rⁿ (λ o → o)) R≮:never F<:R⇒U
|
||||
resolveⁿ-<:-⇒ (Fⁿ ∩ Gⁿ) Rⁿ R≮:never F<:R⇒U = resolveˢ-<:-⇒ (normal-saturate (Fⁿ ∩ Gⁿ)) (saturated (Fⁿ ∩ Gⁿ)) (resolveˢ (normal-saturate (Fⁿ ∩ Gⁿ)) (saturated (Fⁿ ∩ Gⁿ)) Rⁿ (λ o → o)) R≮:never (<:-trans (saturate-<: (Fⁿ ∩ Gⁿ)) F<:R⇒U)
|
||||
resolveⁿ-<:-⇒ (Sⁿ ∪ Tˢ) Rⁿ R≮:never F<:R⇒U = CONTRADICTION (<:-impl-¬≮: F<:R⇒U (<:-trans-≮: <:-∪-right (scalar-≮:-function Tˢ)))
|
||||
resolveⁿ-<:-⇒ never Rⁿ R≮:never F<:R⇒U = <:-never
|
||||
resolveⁿ-<:-⇒ unknown Rⁿ R≮:never F<:R⇒U = CONTRADICTION (<:-impl-¬≮: F<:R⇒U unknown-≮:-function)
|
||||
|
||||
resolve-<:-⇒ : ∀ {F R U} → (R ≮: never) → (F <: (R ⇒ U)) → (resolve F R <: U)
|
||||
resolve-<:-⇒ {F} {R} R≮:never F<:R⇒U = resolveⁿ-<:-⇒ (normal F) (normal R) (<:-trans-≮: (<:-normalize R) R≮:never) (<:-trans (normalize-<: F) (<:-trans F<:R⇒U (<:-function (normalize-<: R) <:-refl)))
|
||||
|
||||
resolve-≮:-⇒ : ∀ {F R U} → (R ≮: never) → (resolve F R ≮: U) → (F ≮: (R ⇒ U))
|
||||
resolve-≮:-⇒ {F} {R} {U} R≮:never FR≮:U with dec-subtyping F (R ⇒ U)
|
||||
resolve-≮:-⇒ {F} {R} {U} R≮:never FR≮:U | Left F≮:R⇒U = F≮:R⇒U
|
||||
resolve-≮:-⇒ {F} {R} {U} R≮:never FR≮:U | Right F<:R⇒U = CONTRADICTION (<:-impl-¬≮: (resolve-<:-⇒ R≮:never F<:R⇒U) FR≮:U)
|
||||
|
|
|
@ -9,7 +9,7 @@ open import FFI.Data.Maybe using (Maybe; just; nothing)
|
|||
open import Luau.Heap using (Heap; Object; function_is_end; defn; alloc; ok; next; lookup-not-allocated) renaming (_≡_⊕_↦_ to _≡ᴴ_⊕_↦_; _[_] to _[_]ᴴ; ∅ to ∅ᴴ)
|
||||
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr)
|
||||
open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_)
|
||||
open import Luau.Subtyping using (_≮:_; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_; Tree; Language; ¬Language)
|
||||
open import Luau.Subtyping using (_<:_; _≮:_; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_; Tree; Language; ¬Language)
|
||||
open import Luau.Syntax using (Expr; yes; var; val; var_∈_; _⟨_⟩∈_; _$_; addr; number; bool; string; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name; ==; ~=)
|
||||
open import Luau.FunctionTypes using (src; tgt)
|
||||
open import Luau.Type using (Type; nil; number; boolean; string; _⇒_; never; unknown; _∩_; _∪_; _≡ᵀ_; _≡ᴹᵀ_)
|
||||
|
@ -26,7 +26,7 @@ open import Properties.Functions using (_∘_)
|
|||
open import Properties.DecSubtyping using (dec-subtyping)
|
||||
open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; ≮:-trans; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never)
|
||||
open import Properties.FunctionTypes using (src-unknown-≮:; unknown-src-≮:)
|
||||
open import Properties.ResolveOverloads using (resolve; <:-resolve)
|
||||
open import Properties.ResolveOverloads using (resolve; <:-resolve; resolve-≮:-⇒)
|
||||
open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; ≮:-trans; <:-trans-≮:; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never)
|
||||
open import Properties.TypeCheck using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴ)
|
||||
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
|
||||
|
@ -37,7 +37,6 @@ open import Luau.RuntimeType using (RuntimeType; valueType; number; string; bool
|
|||
|
||||
postulate
|
||||
resolve⁻¹ : Type → Type → Type
|
||||
resolve-≮:-⇒ : ∀ {F V U} → (resolve F V ≮: U) → (F ≮: (V ⇒ U))
|
||||
⇒-≮:-resolve : ∀ {F V U} → (F ≮: (V ⇒ U)) → (resolve F V ≮: U)
|
||||
⇒-≮:-resolve⁻¹ : ∀ {F V U} → (F ≮: (V ⇒ U)) → (V ≮: resolve⁻¹ F U)
|
||||
resolve⁻¹-≮:-⇒ : ∀ {F V U} → (V ≮: resolve⁻¹ F U) → (F ≮: (V ⇒ U))
|
||||
|
@ -87,7 +86,7 @@ heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) p | no r = ≡-trans-≮:
|
|||
heap-weakeningᴱ Γ H (val (number x)) h p = p
|
||||
heap-weakeningᴱ Γ H (val (bool x)) h p = p
|
||||
heap-weakeningᴱ Γ H (val (string x)) h p = p
|
||||
heap-weakeningᴱ Γ H (M $ N) h p = ⇒-≮:-resolve (resolve⁻¹-≮:-⇒ (heap-weakeningᴱ Γ H N h (⇒-≮:-resolve⁻¹ (heap-weakeningᴱ Γ H M h (resolve-≮:-⇒ p)))))
|
||||
heap-weakeningᴱ Γ H (M $ N) h p = ⇒-≮:-resolve (resolve⁻¹-≮:-⇒ (heap-weakeningᴱ Γ H N h (⇒-≮:-resolve⁻¹ (heap-weakeningᴱ Γ H M h (resolve-≮:-⇒ ? p)))))
|
||||
heap-weakeningᴱ Γ H (function f ⟨ var x ∈ T ⟩∈ U is B end) h p = p
|
||||
heap-weakeningᴱ Γ H (block var b ∈ T is B end) h p = p
|
||||
heap-weakeningᴱ Γ H (binexp M op N) h p = p
|
||||
|
@ -108,7 +107,7 @@ substitutivityᴮ-unless-no : ∀ {Γ Γ′ T V} H B v x y (r : x ≢ y) → (Γ
|
|||
substitutivityᴱ H (var y) v x p = substitutivityᴱ-whenever H v x y (x ≡ⱽ y) p
|
||||
substitutivityᴱ H (val w) v x p = Left p
|
||||
substitutivityᴱ H (binexp M op N) v x p = Left p
|
||||
substitutivityᴱ H (M $ N) v x p with substitutivityᴱ H M v x (resolve-≮:-⇒ p)
|
||||
substitutivityᴱ H (M $ N) v x p with substitutivityᴱ H M v x (resolve-≮:-⇒ ? p)
|
||||
substitutivityᴱ H (M $ N) v x p | Left q with substitutivityᴱ H N v x (⇒-≮:-resolve⁻¹ q)
|
||||
substitutivityᴱ H (M $ N) v x p | Left q | Left r = Left (⇒-≮:-resolve (resolve⁻¹-≮:-⇒ r))
|
||||
substitutivityᴱ H (M $ N) v x p | Left q | Right r = Right r
|
||||
|
@ -143,13 +142,13 @@ binOpPreservation H (·· v w) = refl
|
|||
reflect-subtypingᴱ : ∀ H M {H′ M′ T} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (typeOfᴱ H′ ∅ M′ ≮: T) → Either (typeOfᴱ H ∅ M ≮: T) (Warningᴱ H (typeCheckᴱ H ∅ M))
|
||||
reflect-subtypingᴮ : ∀ H B {H′ B′ T} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (typeOfᴮ H′ ∅ B′ ≮: T) → Either (typeOfᴮ H ∅ B ≮: T) (Warningᴮ H (typeCheckᴮ H ∅ B))
|
||||
|
||||
reflect-subtypingᴱ H (M $ N) (app₁ s) p with reflect-subtypingᴱ H M s (resolve-≮:-⇒ p)
|
||||
reflect-subtypingᴱ H (M $ N) (app₁ s) p with reflect-subtypingᴱ H M s (resolve-≮:-⇒ ? p)
|
||||
reflect-subtypingᴱ H (M $ N) (app₁ s) p | Left q = Left (⇒-≮:-resolve (resolve⁻¹-≮:-⇒ (heap-weakeningᴱ ∅ H N (rednᴱ⊑ s) (⇒-≮:-resolve⁻¹ q))))
|
||||
reflect-subtypingᴱ H (M $ N) (app₁ s) p | Right W = Right (app₁ W)
|
||||
reflect-subtypingᴱ H (M $ N) (app₂ v s) p with reflect-subtypingᴱ H N s (⇒-≮:-resolve⁻¹ (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) (resolve-≮:-⇒ p)))
|
||||
reflect-subtypingᴱ H (M $ N) (app₂ v s) p with reflect-subtypingᴱ H N s (⇒-≮:-resolve⁻¹ (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) (resolve-≮:-⇒ ? p)))
|
||||
reflect-subtypingᴱ H (M $ N) (app₂ v s) p | Left q = Left (⇒-≮:-resolve (resolve⁻¹-≮:-⇒ q))
|
||||
reflect-subtypingᴱ H (M $ N) (app₂ v s) p | Right W = Right (app₂ W)
|
||||
reflect-subtypingᴱ H (M $ N) {T = T} (beta (function f ⟨ var y ∈ S ⟩∈ U is B end) v refl q) p = Left (≡-trans-≮: (cong (λ F → resolve F (typeOfᴱ H ∅ N)) (cong orUnknown (cong typeOfᴹᴼ q))) (<:-trans-≮: (<:-resolve {typeOfᴱ H ∅ N}) p))
|
||||
reflect-subtypingᴱ H (M $ N) {T = T} (beta (function f ⟨ var y ∈ S ⟩∈ U is B end) v refl q) p = Left (≡-trans-≮: (cong (λ F → resolve F (typeOfᴱ H ∅ N)) (cong orUnknown (cong typeOfᴹᴼ q))) (<:-trans-≮: (<:-resolve {typeOfᴱ H ∅ N} {S} {U}) p))
|
||||
reflect-subtypingᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) p = Left p
|
||||
reflect-subtypingᴱ H (block var b ∈ T is B end) (block s) p = Left p
|
||||
reflect-subtypingᴱ H (block var b ∈ T is return (val v) ∙ B end) (return v) p = mapR BlockMismatch (swapLR (≮:-trans p))
|
||||
|
|
|
@ -337,6 +337,9 @@ never-≮: (witness t p q) = witness t p never
|
|||
unknown-≮:-never : (unknown ≮: never)
|
||||
unknown-≮:-never = witness (scalar nil) unknown never
|
||||
|
||||
unknown-≮:-function : ∀ {S T} → (unknown ≮: (S ⇒ T))
|
||||
unknown-≮:-function = witness (scalar nil) unknown (function-scalar nil)
|
||||
|
||||
function-≮:-never : ∀ {T U} → ((T ⇒ U) ≮: never)
|
||||
function-≮:-never = witness function function never
|
||||
|
||||
|
|
|
@ -233,6 +233,9 @@ ov-<: F here p = p
|
|||
ov-<: (F ∩ G) (left o) p = <:-trans <:-∩-left (ov-<: F o p)
|
||||
ov-<: (F ∩ G) (right o) p = <:-trans <:-∩-right (ov-<: G o p)
|
||||
|
||||
<:ᵒ-impl-<: : ∀ {F S T} → FunType F → F <:ᵒ (S ⇒ T) → F <: (S ⇒ T)
|
||||
<:ᵒ-impl-<: F (defn o o₁ o₂) = ov-<: F o (<:-function o₁ o₂)
|
||||
|
||||
⊂:-overloads-left : ∀ {F G} → Overloads F ⊂: Overloads (F ∩ G)
|
||||
⊂:-overloads-left p = just (left p)
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue