Prototyping function overload resolution (#508)

This commit is contained in:
Alan Jeffrey 2022-06-14 22:03:43 -05:00 committed by GitHub
parent da01056022
commit 948f678f93
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
17 changed files with 1207 additions and 380 deletions

View file

@ -1,38 +0,0 @@
{-# OPTIONS --rewriting #-}
open import FFI.Data.Either using (Either; Left; Right)
open import Luau.Type using (Type; nil; number; string; boolean; never; unknown; _⇒_; __; _∩_)
open import Luau.TypeNormalization using (normalize)
module Luau.FunctionTypes where
-- The domain of a normalized type
srcⁿ : Type Type
srcⁿ (S T) = S
srcⁿ (S T) = srcⁿ S srcⁿ T
srcⁿ never = unknown
srcⁿ T = never
-- To get the domain of a type, we normalize it first We need to do
-- this, since if we try to use it on non-normalized types, we get
--
-- src(number ∩ string) = src(number) src(string) = never never
-- src(never) = unknown
--
-- so src doesn't respect type equivalence.
src : Type Type
src (S T) = S
src T = srcⁿ(normalize T)
-- The codomain of a type
tgt : Type Type
tgt nil = never
tgt (S T) = T
tgt never = never
tgt unknown = unknown
tgt number = never
tgt boolean = never
tgt string = never
tgt (S T) = (tgt S) (tgt T)
tgt (S T) = (tgt S) (tgt T)

View file

@ -0,0 +1,98 @@
{-# OPTIONS --rewriting #-}
module Luau.ResolveOverloads where
open import FFI.Data.Either using (Left; Right)
open import Luau.Subtyping using (_<:_; _≮:_; Language; witness; scalar; unknown; never; function-ok)
open import Luau.Type using (Type ; _⇒_; _∩_; __; unknown; never)
open import Luau.TypeSaturation using (saturate)
open import Luau.TypeNormalization using (normalize)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.DecSubtyping using (dec-subtyping; dec-subtypingⁿ; <:-impl-<:ᵒ)
open import Properties.Functions using (_∘_)
open import Properties.Subtyping using (<:-refl; <:-trans; <:-trans-≮:; ≮:-trans-<:; <:-∩-left; <:-∩-right; <:-∩-glb; <:-impl-¬≮:; <:-unknown; <:-function; function-≮:-never; <:-never; unknown-≮:-function; scalar-≮:-function; ≮:--right; scalar-≮:-never; <:--left; <:--right)
open import Properties.TypeNormalization using (Normal; FunType; normal; _⇒_; _∩_; __; never; unknown; <:-normalize; normalize-<:; fun-≮:-never; unknown-≮:-fun; scalar-≮:-fun)
open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; _<:ᵒ_; normal-saturate; saturated; <:-saturate; saturate-<:; defn; here; left; right)
-- The domain of a normalized type
srcⁿ : Type Type
srcⁿ (S T) = S
srcⁿ (S T) = srcⁿ S srcⁿ T
srcⁿ never = unknown
srcⁿ T = never
-- To get the domain of a type, we normalize it first We need to do
-- this, since if we try to use it on non-normalized types, we get
--
-- src(number ∩ string) = src(number) src(string) = never never
-- src(never) = unknown
--
-- so src doesn't respect type equivalence.
src : Type Type
src (S T) = S
src T = srcⁿ(normalize T)
-- Calculate the result of applying a function type `F` to an argument type `V`.
-- We do this by finding an overload of `F` that has the most precise type,
-- that is an overload `(Sʳ ⇒ Tʳ)` where `V <: Sʳ` and moreover
-- for any other such overload `(S ⇒ T)` we have that `Tʳ <: T`.
-- For example if `F` is `(number -> number) & (nil -> nil) & (number? -> number?)`
-- then to resolve `F` with argument type `number`, we pick the `number -> number`
-- overload, but if the argument is `number?`, we pick `number? -> number?`./
-- Not all types have such a most precise overload, but saturated ones do.
data ResolvedTo F G V : Set where
yes :
Overloads F ( )
(V <: )
( {S T} Overloads G (S T) (V <: S) ( <: T))
--------------------------------------------
ResolvedTo F G V
no :
( {S T} Overloads G (S T) (V ≮: S))
--------------------------------------------
ResolvedTo F G V
Resolved : Type Type Set
Resolved F V = ResolvedTo F F V
target : {F V} Resolved F V Type
target (yes _ T _ _ _) = T
target (no _) = unknown
-- We can resolve any saturated function type
resolveˢ : {F G V} FunType G Saturated F Normal V (G ⊆ᵒ F) ResolvedTo F G V
resolveˢ (Sⁿ Tⁿ) (defn sat-∩ sat-) Vⁿ G⊆F with dec-subtypingⁿ Vⁿ Sⁿ
resolveˢ (Sⁿ Tⁿ) (defn sat-∩ sat-) Vⁿ G⊆F | Left V≮:S = no (λ { here V≮:S })
resolveˢ (Sⁿ Tⁿ) (defn sat-∩ sat-) Vⁿ G⊆F | Right V<:S = yes _ _ (G⊆F here) V<:S (λ { here _ <:-refl })
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F with resolveˢ Gᶠ (defn sat-∩ sat-) Vⁿ (G⊆F left) | resolveˢ Hᶠ (defn sat-∩ sat-) Vⁿ (G⊆F right)
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ with sat-∩ o₁ o₂
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ | defn o p₁ p₂ =
yes _ _ o (<:-trans (<:-∩-glb V<:S₁ V<:S₂) p₁) (λ { (left o) p <:-trans p₂ (<:-trans <:-∩-left (tgt₁ o p)) ; (right o) p <:-trans p₂ (<:-trans <:-∩-right (tgt₂ o p)) })
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | no src₂ =
yes _ _ o₁ V<:S₁ (λ { (left o) p tgt₁ o p ; (right o) p CONTRADICTION (<:-impl-¬≮: p (src₂ o)) })
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F | no src₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ =
yes _ _ o₂ V<:S₂ (λ { (left o) p CONTRADICTION (<:-impl-¬≮: p (src₁ o)) ; (right o) p tgt₂ o p })
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F | no src₁ | no src₂ =
no (λ { (left o) src₁ o ; (right o) src₂ o })
-- Which means we can resolve any normalized type, by saturating it first
resolveᶠ : {F V} FunType F Normal V Type
resolveᶠ Fᶠ Vⁿ = target (resolveˢ (normal-saturate Fᶠ) (saturated Fᶠ) Vⁿ (λ o o))
resolveⁿ : {F V} Normal F Normal V Type
resolveⁿ (Sⁿ Tⁿ) Vⁿ = resolveᶠ (Sⁿ Tⁿ) Vⁿ
resolveⁿ (Fᶠ Gᶠ) Vⁿ = resolveᶠ (Fᶠ Gᶠ) Vⁿ
resolveⁿ (Sⁿ ) Vⁿ = unknown
resolveⁿ unknown Vⁿ = unknown
resolveⁿ never Vⁿ = never
-- Which means we can resolve any type, by normalizing it first
resolve : Type Type Type
resolve F V = resolveⁿ (normal F) (normal V)

View file

@ -5,8 +5,8 @@ module Luau.StrictMode where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; var; binexp; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; +; -; *; /; <; >; <=; >=; ··)
open import Luau.FunctionTypes using (src; tgt)
open import Luau.Type using (Type; nil; number; string; boolean; _⇒_; __; _∩_)
open import Luau.ResolveOverloads using (src; resolve)
open import Luau.Subtyping using (_≮:_)
open import Luau.Heap using (Heap; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)

View file

@ -4,7 +4,7 @@ module Luau.StrictMode.ToString where
open import Agda.Builtin.Nat using (Nat; suc)
open import FFI.Data.String using (String; _++_)
open import Luau.Subtyping using (_≮:_; Tree; witness; scalar; function; function-ok; function-err)
open import Luau.Subtyping using (_≮:_; Tree; witness; scalar; function; function-ok; function-err; function-tgt)
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; FunctionDefnMismatch; BlockMismatch; app₁; app₂; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; block₁; return; LocalVarMismatch; local₁; local₂; function₁; function₂; heap; expr; block; addr)
open import Luau.Syntax using (Expr; val; yes; var; var_∈_; _⟨_⟩∈_; _$_; addr; number; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name)
open import Luau.Type using (number; boolean; string; nil)
@ -27,8 +27,9 @@ treeToString (scalar boolean) n v = v ++ " is a boolean"
treeToString (scalar string) n v = v ++ " is a string"
treeToString (scalar nil) n v = v ++ " is nil"
treeToString function n v = v ++ " is a function"
treeToString (function-ok t) n v = treeToString t n (v ++ "()")
treeToString (function-ok s t) n v = treeToString t (suc n) (v ++ "(" ++ w ++ ")") ++ " when\n " ++ treeToString s (suc n) w where w = tmp n
treeToString (function-err t) n v = v ++ "(" ++ w ++ ") can error when\n " ++ treeToString t (suc n) w where w = tmp n
treeToString (function-tgt t) n v = treeToString t n (v ++ "()")
subtypeWarningToString : {T U} (T ≮: U) String
subtypeWarningToString (witness t p q) = "\n because provided type contains v, where " ++ treeToString t 0 "v"

View file

@ -13,8 +13,9 @@ data Tree : Set where
scalar : {T} Scalar T Tree
function : Tree
function-ok : Tree Tree
function-ok : Tree Tree Tree
function-err : Tree Tree
function-tgt : Tree Tree
data Language : Type Tree Set
data ¬Language : Type Tree Set
@ -23,8 +24,10 @@ data Language where
scalar : {T} (s : Scalar T) Language T (scalar s)
function : {T U} Language (T U) function
function-ok : {T U u} (Language U u) Language (T U) (function-ok u)
function-ok₁ : {T U t u} (¬Language T t) Language (T U) (function-ok t u)
function-ok₂ : {T U t u} (Language U u) Language (T U) (function-ok t u)
function-err : {T U t} (¬Language T t) Language (T U) (function-err t)
function-tgt : {T U t} (Language U t) Language (T U) (function-tgt t)
left : {T U t} Language T t Language (T U) t
right : {T U u} Language U u Language (T U) u
_,_ : {T U t} Language T t Language U t Language (T U) t
@ -34,11 +37,13 @@ data ¬Language where
scalar-scalar : {S T} (s : Scalar S) (Scalar T) (S T) ¬Language T (scalar s)
scalar-function : {S} (Scalar S) ¬Language S function
scalar-function-ok : {S u} (Scalar S) ¬Language S (function-ok u)
scalar-function-ok : {S t u} (Scalar S) ¬Language S (function-ok t u)
scalar-function-err : {S t} (Scalar S) ¬Language S (function-err t)
scalar-function-tgt : {S t} (Scalar S) ¬Language S (function-tgt t)
function-scalar : {S T U} (s : Scalar S) ¬Language (T U) (scalar s)
function-ok : {T U u} (¬Language U u) ¬Language (T U) (function-ok u)
function-ok : {T U t u} (Language T t) (¬Language U u) ¬Language (T U) (function-ok t u)
function-err : {T U t} (Language T t) ¬Language (T U) (function-err t)
function-tgt : {T U t} (¬Language U t) ¬Language (T U) (function-tgt t)
_,_ : {T U t} ¬Language T t ¬Language U t ¬Language (T U) t
left : {T U t} ¬Language T t ¬Language (T U) t
right : {T U u} ¬Language U u ¬Language (T U) u

View file

@ -3,16 +3,18 @@
module Luau.TypeCheck where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Either using (Either; Left; Right)
open import FFI.Data.Maybe using (Maybe; just)
open import Luau.ResolveOverloads using (resolve)
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; number; bool; string; val; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
open import Luau.FunctionTypes using (src; tgt)
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.Type using (Type; nil; unknown; number; boolean; string; _⇒_)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import FFI.Data.Vector using (Vector)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Properties.DecSubtyping using (dec-subtyping)
open import Properties.Product using (_×_; _,_)
orUnknown : Maybe Type Type
@ -113,8 +115,8 @@ data _⊢ᴱ_∈_ where
Γ ⊢ᴱ M T
Γ ⊢ᴱ N U
----------------------
Γ ⊢ᴱ (M $ N) (tgt T)
----------------------------
Γ ⊢ᴱ (M $ N) (resolve T U)
function : {f x B T U V Γ}

View file

@ -2,11 +2,7 @@ module Luau.TypeNormalization where
open import Luau.Type using (Type; nil; number; string; boolean; never; unknown; _⇒_; __; _∩_)
-- The top non-function type
¬function : Type
¬function = number (string (nil boolean))
-- Unions and intersections of normalized types
-- Operations on normalized types
_ᶠ_ : Type Type Type
_ⁿˢ_ : Type Type Type
_∩ⁿˢ_ : Type Type Type
@ -23,8 +19,8 @@ F ∪ᶠ G = F G
S ∪ⁿ (T₁ T₂) = (S ∪ⁿ T₁) T₂
S ∪ⁿ unknown = unknown
S ∪ⁿ never = S
unknown ∪ⁿ T = unknown
never ∪ⁿ T = T
unknown ∪ⁿ T = unknown
(S₁ S₂) ∪ⁿ G = (S₁ ∪ⁿ G) S₂
F ∪ⁿ G = F ∪ᶠ G

View file

@ -0,0 +1,66 @@
module Luau.TypeSaturation where
open import Luau.Type using (Type; _⇒_; _∩_; __)
open import Luau.TypeNormalization using (_ⁿ_; _∩ⁿ_)
-- So, there's a problem with overloaded functions
-- (of the form (S_1 ⇒ T_1) ∩⋯∩ (S_n ⇒ T_n))
-- which is that it's not good enough to compare them
-- for subtyping by comparing all of their overloads.
-- For example (nil → nil) is a subtype of (number? → number?) ∩ (string? → string?)
-- but not a subtype of any of its overloads.
-- To fix this, we adapt the semantic subtyping algorithm for
-- function types, given in
-- https://www.irif.fr/~gc/papers/covcon-again.pdf and
-- https://pnwamk.github.io/sst-tutorial/
-- A function type is *intersection-saturated* if for any overloads
-- (S₁ ⇒ T₁) and (S₂ ⇒ T₂), there exists an overload which is a subtype
-- of ((S₁ ∩ S₂) ⇒ (T₁ ∩ T₂)).
-- A function type is *union-saturated* if for any overloads
-- (S₁ ⇒ T₁) and (S₂ ⇒ T₂), there exists an overload which is a subtype
-- of ((S₁ S₂) ⇒ (T₁ T₂)).
-- A function type is *saturated* if it is both intersection- and
-- union-saturated.
-- For example (number? → number?) ∩ (string? → string?)
-- is not saturated, but (number? → number?) ∩ (string? → string?) ∩ (nil → nil) ∩ ((number string)? → (number string)?)
-- is.
-- Saturated function types have the nice property that they can ber
-- compared by just comparing their overloads: F <: G whenever for any
-- overload of G, there is an overload os F which is a subtype of it.
-- Forunately every function type can be saturated!
_⋓_ : Type Type Type
(S₁ T₁) (S₂ T₂) = (S₁ ∪ⁿ S₂) (T₁ ∪ⁿ T₂)
(F₁ G₁) F₂ = (F₁ F₂) (G₁ F₂)
F₁ (F₂ G₂) = (F₁ F₂) (F₁ G₂)
F G = F G
_⋒_ : Type Type Type
(S₁ T₁) (S₂ T₂) = (S₁ ∩ⁿ S₂) (T₁ ∩ⁿ T₂)
(F₁ G₁) F₂ = (F₁ F₂) (G₁ F₂)
F₁ (F₂ G₂) = (F₁ F₂) (F₁ G₂)
F G = F G
_∩ᵘ_ : Type Type Type
F ∩ᵘ G = (F G) (F G)
_∩ⁱ_ : Type Type Type
F ∩ⁱ G = (F G) (F G)
-saturate : Type Type
-saturate (F G) = (-saturate F ∩ᵘ -saturate G)
-saturate F = F
∩-saturate : Type Type
∩-saturate (F G) = (∩-saturate F ∩ⁱ ∩-saturate G)
∩-saturate F = F
saturate : Type Type
saturate F = -saturate (∩-saturate F)

View file

@ -7,7 +7,6 @@ import Properties.Dec
import Properties.DecSubtyping
import Properties.Equality
import Properties.Functions
import Properties.FunctionTypes
import Properties.Remember
import Properties.Step
import Properties.StrictMode

View file

@ -4,21 +4,23 @@ module Properties.DecSubtyping where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond)
open import Luau.FunctionTypes using (src; srcⁿ; tgt)
open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_)
open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-function-tgt; scalar-scalar; function-scalar; function-ok; function-ok₁; function-ok₂; function-err; function-tgt; left; right; _,_)
open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; __; _∩_)
open import Luau.TypeNormalization using (_ⁿ_; _∩ⁿ_)
open import Luau.TypeSaturation using (saturate)
open import Properties.Contradiction using (CONTRADICTION; ¬)
open import Properties.Functions using (_∘_)
open import Properties.Subtyping using (<:-refl; <:-trans; ≮:-trans-<:; <:-trans-≮:; <:-never; <:-unknown; <:--left; <:--right; <:--lub; ≮:--left; ≮:--right; <:-∩-left; <:-∩-right; <:-∩-glb; ≮:-∩-left; ≮:-∩-right; dec-language; scalar-<:; <:-everything; <:-function; ≮:-function-left; ≮:-function-right)
open import Properties.TypeNormalization using (FunType; Normal; never; unknown; _∩_; __; _⇒_; normal; <:-normalize; normalize-<:)
open import Properties.FunctionTypes using (fun-¬scalar; ¬fun-scalar; fun-function; src-unknown-≮:; tgt-never-≮:; src-tgtᶠ-<:)
open import Properties.Subtyping using (<:-refl; <:-trans; ≮:-trans-<:; <:-trans-≮:; <:-never; <:-unknown; <:--left; <:--right; <:--lub; ≮:--left; ≮:--right; <:-∩-left; <:-∩-right; <:-∩-glb; ≮:-∩-left; ≮:-∩-right; dec-language; scalar-<:; <:-everything; <:-function; ≮:-function-left; ≮:-function-right; <:-impl-¬≮:; <:-intersect; <:-function-∩-; <:-function-∩; <:-union; ≮:-left-; ≮:-right-; <:-∩-distr-; <:-impl-⊇; language-comp)
open import Properties.TypeNormalization using (FunType; Normal; never; unknown; _∩_; __; _⇒_; normal; <:-normalize; normalize-<:; normal-∩ⁿ; normal-∪ⁿ; -<:-∪ⁿ; ∪ⁿ-<:-; ∩ⁿ-<:-∩; ∩-<:-∩ⁿ; normalᶠ; fun-top; fun-function; fun-¬scalar)
open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; _<:ᵒ_; defn; here; left; right; ov-language; ov-<:; saturated; normal-saturate; normal-overload-src; normal-overload-tgt; saturate-<:; <:-saturate; <:ᵒ-impl-<:; _>>=ˡ_; _>>=ʳ_)
open import Properties.Equality using (_≢_)
-- Honest this terminates, since src and tgt reduce the depth of nested arrows
-- Honest this terminates, since saturation maintains the depth of nested arrows
{-# TERMINATING #-}
dec-subtypingˢⁿ : {T U} Scalar T Normal U Either (T ≮: U) (T <: U)
dec-subtypingᶠ : {T U} FunType T FunType U Either (T ≮: U) (T <: U)
dec-subtypingᶠⁿ : {T U} FunType T Normal U Either (T ≮: U) (T <: U)
dec-subtypingˢᶠ : {F G} FunType F Saturated F FunType G Either (F ≮: G) (F <:ᵒ G)
dec-subtypingᶠ : {F G} FunType F FunType G Either (F ≮: G) (F <: G)
dec-subtypingᶠⁿ : {F U} FunType F Normal U Either (F ≮: U) (F <: U)
dec-subtypingⁿ : {T U} Normal T Normal U Either (T ≮: U) (T <: U)
dec-subtyping : T U Either (T ≮: U) (T <: U)
@ -26,22 +28,116 @@ dec-subtypingˢⁿ T U with dec-language _ (scalar T)
dec-subtypingˢⁿ T U | Left p = Left (witness (scalar T) (scalar T) p)
dec-subtypingˢⁿ T U | Right p = Right (scalar-<: T p)
dec-subtypingᶠ {T = T} _ (U V) with dec-subtypingⁿ U (normal (src T)) | dec-subtypingⁿ (normal (tgt T)) V
dec-subtypingᶠ {T = T} _ (U V) | Left p | q = Left (≮:-trans-<: (src-unknown-≮: (≮:-trans-<: p (<:-normalize (src T)))) (<:-function <:-refl <:-unknown))
dec-subtypingᶠ {T = T} _ (U V) | Right p | Left q = Left (≮:-trans-<: (tgt-never-≮: (<:-trans-≮: (normalize-<: (tgt T)) q)) (<:-trans (<:-function <:-never <:-refl) <:--right))
dec-subtypingᶠ T (U V) | Right p | Right q = Right (src-tgtᶠ-<: T (<:-trans p (normalize-<: _)) (<:-trans (<:-normalize _) q))
dec-subtypingˢᶠ {F} {S T} Fᶠ (defn sat-∩ sat-) (Sⁿ Tⁿ) = result (top Fᶠ (λ o o)) where
dec-subtypingᶠ T (U V) with dec-subtypingᶠ T U | dec-subtypingᶠ T V
dec-subtypingᶠ T (U V) | Left p | q = Left (≮:-∩-left p)
dec-subtypingᶠ T (U V) | Right p | Left q = Left (≮:-∩-right q)
dec-subtypingᶠ T (U V) | Right p | Right q = Right (<:-∩-glb p q)
data Top G : Set where
defn : Sᵗ Tᵗ
Overloads F (Sᵗ Tᵗ)
( {S T} Overloads G (S T) (S <: Sᵗ))
-------------
Top G
top : {G} (FunType G) (G ⊆ᵒ F) Top G
top {S T} _ G⊆F = defn S T (G⊆F here) (λ { here <:-refl })
top (Gᶠ Hᶠ) G⊆F with top Gᶠ (G⊆F left) | top Hᶠ (G⊆F right)
top (Gᶠ Hᶠ) G⊆F | defn Rᵗ Sᵗ p p₁ | defn Tᵗ Uᵗ q q₁ with sat- p q
top (Gᶠ Hᶠ) G⊆F | defn Rᵗ Sᵗ p p₁ | defn Tᵗ Uᵗ q q₁ | defn n r r₁ = defn _ _ n
(λ { (left o) <:-trans (<:-trans (p₁ o) <:--left) r ; (right o) <:-trans (<:-trans (q₁ o) <:--right) r })
result : Top F Either (F ≮: (S T)) (F <:ᵒ (S T))
result (defn Sᵗ Tᵗ oᵗ srcᵗ) with dec-subtypingⁿ Sⁿ (normal-overload-src Fᶠ oᵗ)
result (defn Sᵗ Tᵗ oᵗ srcᵗ) | Left (witness s Ss ¬Sᵗs) = Left (witness (function-err s) (ov-language Fᶠ (λ o function-err (<:-impl-⊇ (srcᵗ o) s ¬Sᵗs))) (function-err Ss))
result (defn Sᵗ Tᵗ oᵗ srcᵗ) | Right S<:Sᵗ = result₀ (largest Fᶠ (λ o o)) where
data LargestSrc (G : Type) : Set where
yes : S₀ T₀
Overloads F (S₀ T₀)
T₀ <: T
( {S T} Overloads G (S T) T <: T (S <: S₀))
-----------------------
LargestSrc G
no : S₀ T₀
Overloads F (S₀ T₀)
T₀ ≮: T
( {S T} Overloads G (S T) T₀ <: T)
-----------------------
LargestSrc G
largest : {G} (FunType G) (G ⊆ᵒ F) LargestSrc G
largest {S T} (S T) G⊆F with dec-subtypingⁿ T Tⁿ
largest {S T} (S T) G⊆F | Left T≮:T = no S T (G⊆F here) T≮:T λ { here <:-refl }
largest {S T} (S T) G⊆F | Right T<:T = yes S T (G⊆F here) T<:T (λ { here _ <:-refl })
largest (Gᶠ Hᶠ) GH⊆F with largest Gᶠ (GH⊆F left) | largest Hᶠ (GH⊆F right)
largest (Gᶠ Hᶠ) GH⊆F | no S₁ T₁ o₁ T₁≮:T tgt₁ | no S₂ T₂ o₂ T₂≮:T tgt₂ with sat-∩ o₁ o₂
largest (Gᶠ Hᶠ) GH⊆F | no S₁ T₁ o₁ T₁≮:T tgt₁ | no S₂ T₂ o₂ T₂≮:T tgt₂ | defn o src tgt with dec-subtypingⁿ (normal-overload-tgt Fᶠ o) Tⁿ
largest (Gᶠ Hᶠ) GH⊆F | no S₁ T₁ o₁ T₁≮:T tgt₁ | no S₂ T₂ o₂ T₂≮:T tgt₂ | defn o src tgt | Left T₀≮:T = no _ _ o T₀≮:T (λ { (left o) <:-trans tgt (<:-trans <:-∩-left (tgt₁ o)) ; (right o) <:-trans tgt (<:-trans <:-∩-right (tgt₂ o)) })
largest (Gᶠ Hᶠ) GH⊆F | no S₁ T₁ o₁ T₁≮:T tgt₁ | no S₂ T₂ o₂ T₂≮:T tgt₂ | defn o src tgt | Right T₀<:T = yes _ _ o T₀<:T (λ { (left o) p CONTRADICTION (<:-impl-¬≮: p (<:-trans-≮: (tgt₁ o) T₁≮:T)) ; (right o) p CONTRADICTION (<:-impl-¬≮: p (<:-trans-≮: (tgt₂ o) T₂≮:T)) })
largest (Gᶠ Hᶠ) GH⊆F | no S₁ T₁ o₁ T₁≮:T tgt₁ | yes S₂ T₂ o₂ T₂<:T src₂ = yes S₂ T₂ o₂ T₂<:T (λ { (left o) p CONTRADICTION (<:-impl-¬≮: p (<:-trans-≮: (tgt₁ o) T₁≮:T)) ; (right o) p src₂ o p })
largest (Gᶠ Hᶠ) GH⊆F | yes S₁ T₁ o₁ T₁<:T src₁ | no S₂ T₂ o₂ T₂≮:T tgt₂ = yes S₁ T₁ o₁ T₁<:T (λ { (left o) p src₁ o p ; (right o) p CONTRADICTION (<:-impl-¬≮: p (<:-trans-≮: (tgt₂ o) T₂≮:T)) })
largest (Gᶠ Hᶠ) GH⊆F | yes S₁ T₁ o₁ T₁<:T src₁ | yes S₂ T₂ o₂ T₂<:T src₂ with sat- o₁ o₂
largest (Gᶠ Hᶠ) GH⊆F | yes S₁ T₁ o₁ T₁<:T src₁ | yes S₂ T₂ o₂ T₂<:T src₂ | defn o src tgt = yes _ _ o (<:-trans tgt (<:--lub T₁<:T T₂<:T))
(λ { (left o) T<:T <:-trans (src₁ o T<:T) (<:-trans <:--left src)
; (right o) T<:T <:-trans (src₂ o T<:T) (<:-trans <:--right src)
})
result₀ : LargestSrc F Either (F ≮: (S T)) (F <:ᵒ (S T))
result₀ (no S₀ T₀ o₀ (witness t T₀t ¬Tt) tgt₀) = Left (witness (function-tgt t) (ov-language Fᶠ (λ o function-tgt (tgt₀ o t T₀t))) (function-tgt ¬Tt))
result₀ (yes S₀ T₀ o₀ T₀<:T src₀) with dec-subtypingⁿ Sⁿ (normal-overload-src Fᶠ o₀)
result₀ (yes S₀ T₀ o₀ T₀<:T src₀) | Right S<:S₀ = Right λ { here defn o₀ S<:S₀ T₀<:T }
result₀ (yes S₀ T₀ o₀ T₀<:T src₀) | Left (witness s Ss ¬S₀s) = Left (result₁ (smallest Fᶠ (λ o o))) where
data SmallestTgt (G : Type) : Set where
defn : S₁ T₁
Overloads F (S₁ T₁)
Language S₁ s
( {S T} Overloads G (S T) Language S s (T₁ <: T))
-----------------------
SmallestTgt G
smallest : {G} (FunType G) (G ⊆ᵒ F) SmallestTgt G
smallest {S T} _ G⊆F with dec-language S s
smallest {S T} _ G⊆F | Left ¬Ss = defn Sᵗ Tᵗ oᵗ (S<:Sᵗ s Ss) λ { here Ss CONTRADICTION (language-comp s ¬Ss Ss) }
smallest {S T} _ G⊆F | Right Ss = defn S T (G⊆F here) Ss (λ { here _ <:-refl })
smallest (Gᶠ Hᶠ) GH⊆F with smallest Gᶠ (GH⊆F left) | smallest Hᶠ (GH⊆F right)
smallest (Gᶠ Hᶠ) GH⊆F | defn S₁ T₁ o₁ R₁s tgt₁ | defn S₂ T₂ o₂ R₂s tgt₂ with sat-∩ o₁ o₂
smallest (Gᶠ Hᶠ) GH⊆F | defn S₁ T₁ o₁ R₁s tgt₁ | defn S₂ T₂ o₂ R₂s tgt₂ | defn o src tgt = defn _ _ o (src s (R₁s , R₂s))
(λ { (left o) Ss <:-trans (<:-trans tgt <:-∩-left) (tgt₁ o Ss)
; (right o) Ss <:-trans (<:-trans tgt <:-∩-right) (tgt₂ o Ss)
})
result₁ : SmallestTgt F (F ≮: (S T))
result₁ (defn S₁ T₁ o₁ S₁s tgt₁) with dec-subtypingⁿ (normal-overload-tgt Fᶠ o₁) Tⁿ
result₁ (defn S₁ T₁ o₁ S₁s tgt₁) | Right T₁<:T = CONTRADICTION (language-comp s ¬S₀s (src₀ o₁ T₁<:T s S₁s))
result₁ (defn S₁ T₁ o₁ S₁s tgt₁) | Left (witness t T₁t ¬Tt) = witness (function-ok s t) (ov-language Fᶠ lemma) (function-ok Ss ¬Tt) where
lemma : {S T} Overloads F (S T) Language (S T) (function-ok s t)
lemma {S} o with dec-language S s
lemma {S} o | Left ¬Ss = function-ok₁ ¬Ss
lemma {S} o | Right Ss = function-ok₂ (tgt₁ o Ss t T₁t)
dec-subtypingˢᶠ F (G H) with dec-subtypingˢᶠ F G | dec-subtypingˢᶠ F H
dec-subtypingˢᶠ F (G H) | Left F≮:G | _ = Left (≮:-∩-left F≮:G)
dec-subtypingˢᶠ F (G H) | _ | Left F≮:H = Left (≮:-∩-right F≮:H)
dec-subtypingˢᶠ F (G H) | Right F<:G | Right F<:H = Right (λ { (left o) F<:G o ; (right o) F<:H o })
dec-subtypingᶠ F G with dec-subtypingˢᶠ (normal-saturate F) (saturated F) G
dec-subtypingᶠ F G | Left H≮:G = Left (<:-trans-≮: (saturate-<: F) H≮:G)
dec-subtypingᶠ F G | Right H<:G = Right (<:-trans (<:-saturate F) (<:ᵒ-impl-<: (normal-saturate F) G H<:G))
dec-subtypingᶠⁿ T never = Left (witness function (fun-function T) never)
dec-subtypingᶠⁿ T unknown = Right <:-unknown
dec-subtypingᶠⁿ T (U V) = dec-subtypingᶠ T (U V)
dec-subtypingᶠⁿ T (U V) = dec-subtypingᶠ T (U V)
dec-subtypingᶠⁿ T (U V) with dec-subtypingᶠⁿ T U
dec-subtypingᶠⁿ T (U V) | Left (witness t p q) = Left (witness t p (q , ¬fun-scalar V T p))
dec-subtypingᶠⁿ T (U V) | Left (witness t p q) = Left (witness t p (q , fun-¬scalar V T p))
dec-subtypingᶠⁿ T (U V) | Right p = Right (<:-trans p <:--left)
dec-subtypingⁿ never U = Right <:-never
@ -68,3 +164,11 @@ dec-subtyping T U with dec-subtypingⁿ (normal T) (normal U)
dec-subtyping T U | Left p = Left (<:-trans-≮: (normalize-<: T) (≮:-trans-<: p (<:-normalize U)))
dec-subtyping T U | Right p = Right (<:-trans (<:-normalize T) (<:-trans p (normalize-<: U)))
-- As a corollary, for saturated functions
-- <:ᵒ coincides with <:, that is F is a subtype of (S ⇒ T) precisely
-- when one of its overloads is.
<:-impl-<:ᵒ : {F G} FunType F Saturated F FunType G (F <: G) (F <:ᵒ G)
<:-impl-<: {F} {G} Fᶠ Gᶠ F<:G with dec-subtypingˢᶠ Fᶠ Gᶠ
<:-impl-<: {F} {G} Fᶠ Gᶠ F<:G | Left F≮:G = CONTRADICTION (<:-impl-¬≮: F<:G F≮:G)
<:-impl-<: {F} {G} Fᶠ Gᶠ F<:G | Right F<:ᵒG = F<:ᵒG

View file

@ -1,150 +0,0 @@
{-# OPTIONS --rewriting #-}
module Properties.FunctionTypes where
open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond)
open import Luau.FunctionTypes using (srcⁿ; src; tgt)
open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_)
open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; __; _∩_; skalar)
open import Properties.Contradiction using (CONTRADICTION; ¬; )
open import Properties.Functions using (_∘_)
open import Properties.Subtyping using (<:-refl; ≮:-refl; <:-trans-≮:; skalar-scalar; <:-impl-⊇; skalar-function-ok; language-comp)
open import Properties.TypeNormalization using (FunType; Normal; never; unknown; _∩_; __; _⇒_; normal; <:-normalize; normalize-<:)
-- Properties of src
function-err-srcⁿ : {T t} (FunType T) (¬Language (srcⁿ T) t) Language T (function-err t)
function-err-srcⁿ (S T) p = function-err p
function-err-srcⁿ (S T) (p₁ , p₂) = (function-err-srcⁿ S p₁ , function-err-srcⁿ T p₂)
¬function-err-srcᶠ : {T t} (FunType T) (Language (srcⁿ T) t) ¬Language T (function-err t)
¬function-err-srcᶠ (S T) p = function-err p
¬function-err-srcᶠ (S T) (left p) = left (¬function-err-srcᶠ S p)
¬function-err-srcᶠ (S T) (right p) = right (¬function-err-srcᶠ T p)
¬function-err-srcⁿ : {T t} (Normal T) (Language (srcⁿ T) t) ¬Language T (function-err t)
¬function-err-srcⁿ never p = never
¬function-err-srcⁿ unknown (scalar ())
¬function-err-srcⁿ (S T) p = function-err p
¬function-err-srcⁿ (S T) (left p) = left (¬function-err-srcᶠ S p)
¬function-err-srcⁿ (S T) (right p) = right (¬function-err-srcᶠ T p)
¬function-err-srcⁿ (S T) (scalar ())
¬function-err-src : {T t} (Language (src T) t) ¬Language T (function-err t)
¬function-err-src {T = S T} p = function-err p
¬function-err-src {T = nil} p = scalar-function-err nil
¬function-err-src {T = never} p = never
¬function-err-src {T = unknown} (scalar ())
¬function-err-src {T = boolean} p = scalar-function-err boolean
¬function-err-src {T = number} p = scalar-function-err number
¬function-err-src {T = string} p = scalar-function-err string
¬function-err-src {T = S T} p = <:-impl-⊇ (<:-normalize (S T)) _ (¬function-err-srcⁿ (normal (S T)) p)
¬function-err-src {T = S T} p = <:-impl-⊇ (<:-normalize (S T)) _ (¬function-err-srcⁿ (normal (S T)) p)
src-¬function-errᶠ : {T t} (FunType T) Language T (function-err t) (¬Language (srcⁿ T) t)
src-¬function-errᶠ (S T) (function-err p) = p
src-¬function-errᶠ (S T) (p₁ , p₂) = (src-¬function-errᶠ S p₁ , src-¬function-errᶠ T p₂)
src-¬function-errⁿ : {T t} (Normal T) Language T (function-err t) (¬Language (srcⁿ T) t)
src-¬function-errⁿ unknown p = never
src-¬function-errⁿ (S T) (function-err p) = p
src-¬function-errⁿ (S T) (p₁ , p₂) = (src-¬function-errᶠ S p₁ , src-¬function-errᶠ T p₂)
src-¬function-errⁿ (S T) p = never
src-¬function-err : {T t} Language T (function-err t) (¬Language (src T) t)
src-¬function-err {T = S T} (function-err p) = p
src-¬function-err {T = unknown} p = never
src-¬function-err {T = S T} p = src-¬function-errⁿ (normal (S T)) (<:-normalize (S T) _ p)
src-¬function-err {T = S T} p = src-¬function-errⁿ (normal (S T)) (<:-normalize (S T) _ p)
fun-¬scalar : {S T} (s : Scalar S) FunType T ¬Language T (scalar s)
fun-¬scalar s (S T) = function-scalar s
fun-¬scalar s (S T) = left (fun-¬scalar s S)
¬fun-scalar : {S T t} (s : Scalar S) FunType T Language T t ¬Language S t
¬fun-scalar s (S T) function = scalar-function s
¬fun-scalar s (S T) (function-ok p) = scalar-function-ok s
¬fun-scalar s (S T) (function-err p) = scalar-function-err s
¬fun-scalar s (S T) (p₁ , p₂) = ¬fun-scalar s T p₂
fun-function : {T} FunType T Language T function
fun-function (S T) = function
fun-function (S T) = (fun-function S , fun-function T)
srcⁿ-¬scalar : {S T t} (s : Scalar S) Normal T Language T (scalar s) (¬Language (srcⁿ T) t)
srcⁿ-¬scalar s never (scalar ())
srcⁿ-¬scalar s unknown p = never
srcⁿ-¬scalar s (S T) (scalar ())
srcⁿ-¬scalar s (S T) (p₁ , p₂) = CONTRADICTION (language-comp (scalar s) (fun-¬scalar s S) p₁)
srcⁿ-¬scalar s (S T) p = never
src-¬scalar : {S T t} (s : Scalar S) Language T (scalar s) (¬Language (src T) t)
src-¬scalar {T = nil} s p = never
src-¬scalar {T = T U} s (scalar ())
src-¬scalar {T = never} s (scalar ())
src-¬scalar {T = unknown} s p = never
src-¬scalar {T = boolean} s p = never
src-¬scalar {T = number} s p = never
src-¬scalar {T = string} s p = never
src-¬scalar {T = T U} s p = srcⁿ-¬scalar s (normal (T U)) (<:-normalize (T U) (scalar s) p)
src-¬scalar {T = T U} s p = srcⁿ-¬scalar s (normal (T U)) (<:-normalize (T U) (scalar s) p)
srcⁿ-unknown-≮: : {T U} (Normal U) (T ≮: srcⁿ U) (U ≮: (T unknown))
srcⁿ-unknown-≮: never (witness t p q) = CONTRADICTION (language-comp t q unknown)
srcⁿ-unknown-≮: unknown (witness t p q) = witness (function-err t) unknown (function-err p)
srcⁿ-unknown-≮: (U V) (witness t p q) = witness (function-err t) (function-err q) (function-err p)
srcⁿ-unknown-≮: (U V) (witness t p q) = witness (function-err t) (function-err-srcⁿ (U V) q) (function-err p)
srcⁿ-unknown-≮: (U V) (witness t p q) = witness (scalar V) (right (scalar V)) (function-scalar V)
src-unknown-≮: : {T U} (T ≮: src U) (U ≮: (T unknown))
src-unknown-≮: {U = nil} (witness t p q) = witness (scalar nil) (scalar nil) (function-scalar nil)
src-unknown-≮: {U = T U} (witness t p q) = witness (function-err t) (function-err q) (function-err p)
src-unknown-≮: {U = never} (witness t p q) = CONTRADICTION (language-comp t q unknown)
src-unknown-≮: {U = unknown} (witness t p q) = witness (function-err t) unknown (function-err p)
src-unknown-≮: {U = boolean} (witness t p q) = witness (scalar boolean) (scalar boolean) (function-scalar boolean)
src-unknown-≮: {U = number} (witness t p q) = witness (scalar number) (scalar number) (function-scalar number)
src-unknown-≮: {U = string} (witness t p q) = witness (scalar string) (scalar string) (function-scalar string)
src-unknown-≮: {U = T U} p = <:-trans-≮: (normalize-<: (T U)) (srcⁿ-unknown-≮: (normal (T U)) p)
src-unknown-≮: {U = T U} p = <:-trans-≮: (normalize-<: (T U)) (srcⁿ-unknown-≮: (normal (T U)) p)
unknown-src-≮: : {S T U} (U ≮: S) (T ≮: (U unknown)) (U ≮: src T)
unknown-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p)
unknown-src-≮: r (witness (function-ok (scalar s)) p (function-ok (scalar-scalar s () q)))
unknown-src-≮: r (witness (function-ok (function-ok _)) p (function-ok (scalar-function-ok ())))
unknown-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p)
-- Properties of tgt
tgt-function-ok : {T t} (Language (tgt T) t) Language T (function-ok t)
tgt-function-ok {T = nil} (scalar ())
tgt-function-ok {T = T₁ T₂} p = function-ok p
tgt-function-ok {T = never} (scalar ())
tgt-function-ok {T = unknown} p = unknown
tgt-function-ok {T = boolean} (scalar ())
tgt-function-ok {T = number} (scalar ())
tgt-function-ok {T = string} (scalar ())
tgt-function-ok {T = T₁ T₂} (left p) = left (tgt-function-ok p)
tgt-function-ok {T = T₁ T₂} (right p) = right (tgt-function-ok p)
tgt-function-ok {T = T₁ T₂} (p₁ , p₂) = (tgt-function-ok p₁ , tgt-function-ok p₂)
function-ok-tgt : {T t} Language T (function-ok t) (Language (tgt T) t)
function-ok-tgt (function-ok p) = p
function-ok-tgt (left p) = left (function-ok-tgt p)
function-ok-tgt (right p) = right (function-ok-tgt p)
function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂)
function-ok-tgt unknown = unknown
tgt-never-≮: : {T U} (tgt T ≮: U) (T ≮: (skalar (never U)))
tgt-never-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q)
never-tgt-≮: : {T U} (T ≮: (skalar (never U))) (tgt T ≮: U)
never-tgt-≮: (witness (scalar s) p (q₁ , q₂)) = CONTRADICTION (≮:-refl (witness (scalar s) (skalar-scalar s) q₁))
never-tgt-≮: (witness function p (q₁ , scalar-function ()))
never-tgt-≮: (witness (function-ok t) p (q₁ , function-ok q₂)) = witness t (function-ok-tgt p) q₂
never-tgt-≮: (witness (function-err (scalar s)) p (q₁ , function-err (scalar ())))
src-tgtᶠ-<: : {T U V} (FunType T) (U <: src T) (tgt T <: V) (T <: (U V))
src-tgtᶠ-<: T p q (scalar s) r = CONTRADICTION (language-comp (scalar s) (fun-¬scalar s T) r)
src-tgtᶠ-<: T p q function r = function
src-tgtᶠ-<: T p q (function-ok s) r = function-ok (q s (function-ok-tgt r))
src-tgtᶠ-<: T p q (function-err s) r = function-err (<:-impl-⊇ p s (src-¬function-err r))

View file

@ -0,0 +1,189 @@
{-# OPTIONS --rewriting #-}
module Properties.ResolveOverloads where
open import FFI.Data.Either using (Left; Right)
open import Luau.ResolveOverloads using (Resolved; src; srcⁿ; resolve; resolveⁿ; resolveᶠ; resolveˢ; target; yes; no)
open import Luau.Subtyping using (_<:_; _≮:_; Language; ¬Language; witness; scalar; unknown; never; function; function-ok; function-err; function-tgt; function-scalar; function-ok₁; function-ok₂; scalar-scalar; scalar-function; scalar-function-ok; scalar-function-err; scalar-function-tgt; _,_; left; right)
open import Luau.Type using (Type ; Scalar; _⇒_; _∩_; __; nil; boolean; number; string; unknown; never)
open import Luau.TypeSaturation using (saturate)
open import Luau.TypeNormalization using (normalize)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.DecSubtyping using (dec-subtyping; dec-subtypingⁿ; <:-impl-<:ᵒ)
open import Properties.Functions using (_∘_)
open import Properties.Subtyping using (<:-refl; <:-trans; <:-trans-≮:; ≮:-trans-<:; <:-∩-left; <:-∩-right; <:-∩-glb; <:-impl-¬≮:; <:-unknown; <:-function; function-≮:-never; <:-never; unknown-≮:-function; scalar-≮:-function; ≮:--right; scalar-≮:-never; <:--left; <:--right; <:-impl-⊇; language-comp)
open import Properties.TypeNormalization using (Normal; FunType; normal; _⇒_; _∩_; __; never; unknown; <:-normalize; normalize-<:; fun-≮:-never; unknown-≮:-fun; scalar-≮:-fun)
open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; _<:ᵒ_; normal-saturate; saturated; <:-saturate; saturate-<:; defn; here; left; right)
-- Properties of src
function-err-srcⁿ : {T t} (FunType T) (¬Language (srcⁿ T) t) Language T (function-err t)
function-err-srcⁿ (S T) p = function-err p
function-err-srcⁿ (S T) (p₁ , p₂) = (function-err-srcⁿ S p₁ , function-err-srcⁿ T p₂)
¬function-err-srcᶠ : {T t} (FunType T) (Language (srcⁿ T) t) ¬Language T (function-err t)
¬function-err-srcᶠ (S T) p = function-err p
¬function-err-srcᶠ (S T) (left p) = left (¬function-err-srcᶠ S p)
¬function-err-srcᶠ (S T) (right p) = right (¬function-err-srcᶠ T p)
¬function-err-srcⁿ : {T t} (Normal T) (Language (srcⁿ T) t) ¬Language T (function-err t)
¬function-err-srcⁿ never p = never
¬function-err-srcⁿ unknown (scalar ())
¬function-err-srcⁿ (S T) p = function-err p
¬function-err-srcⁿ (S T) (left p) = left (¬function-err-srcᶠ S p)
¬function-err-srcⁿ (S T) (right p) = right (¬function-err-srcᶠ T p)
¬function-err-srcⁿ (S T) (scalar ())
¬function-err-src : {T t} (Language (src T) t) ¬Language T (function-err t)
¬function-err-src {T = S T} p = function-err p
¬function-err-src {T = nil} p = scalar-function-err nil
¬function-err-src {T = never} p = never
¬function-err-src {T = unknown} (scalar ())
¬function-err-src {T = boolean} p = scalar-function-err boolean
¬function-err-src {T = number} p = scalar-function-err number
¬function-err-src {T = string} p = scalar-function-err string
¬function-err-src {T = S T} p = <:-impl-⊇ (<:-normalize (S T)) _ (¬function-err-srcⁿ (normal (S T)) p)
¬function-err-src {T = S T} p = <:-impl-⊇ (<:-normalize (S T)) _ (¬function-err-srcⁿ (normal (S T)) p)
src-¬function-errᶠ : {T t} (FunType T) Language T (function-err t) (¬Language (srcⁿ T) t)
src-¬function-errᶠ (S T) (function-err p) = p
src-¬function-errᶠ (S T) (p₁ , p₂) = (src-¬function-errᶠ S p₁ , src-¬function-errᶠ T p₂)
src-¬function-errⁿ : {T t} (Normal T) Language T (function-err t) (¬Language (srcⁿ T) t)
src-¬function-errⁿ unknown p = never
src-¬function-errⁿ (S T) (function-err p) = p
src-¬function-errⁿ (S T) (p₁ , p₂) = (src-¬function-errᶠ S p₁ , src-¬function-errᶠ T p₂)
src-¬function-errⁿ (S T) p = never
src-¬function-err : {T t} Language T (function-err t) (¬Language (src T) t)
src-¬function-err {T = S T} (function-err p) = p
src-¬function-err {T = unknown} p = never
src-¬function-err {T = S T} p = src-¬function-errⁿ (normal (S T)) (<:-normalize (S T) _ p)
src-¬function-err {T = S T} p = src-¬function-errⁿ (normal (S T)) (<:-normalize (S T) _ p)
fun-¬scalar : {S T} (s : Scalar S) FunType T ¬Language T (scalar s)
fun-¬scalar s (S T) = function-scalar s
fun-¬scalar s (S T) = left (fun-¬scalar s S)
¬fun-scalar : {S T t} (s : Scalar S) FunType T Language T t ¬Language S t
¬fun-scalar s (S T) function = scalar-function s
¬fun-scalar s (S T) (function-ok₁ p) = scalar-function-ok s
¬fun-scalar s (S T) (function-ok₂ p) = scalar-function-ok s
¬fun-scalar s (S T) (function-err p) = scalar-function-err s
¬fun-scalar s (S T) (function-tgt p) = scalar-function-tgt s
¬fun-scalar s (S T) (p₁ , p₂) = ¬fun-scalar s T p₂
fun-function : {T} FunType T Language T function
fun-function (S T) = function
fun-function (S T) = (fun-function S , fun-function T)
srcⁿ-¬scalar : {S T t} (s : Scalar S) Normal T Language T (scalar s) (¬Language (srcⁿ T) t)
srcⁿ-¬scalar s never (scalar ())
srcⁿ-¬scalar s unknown p = never
srcⁿ-¬scalar s (S T) (scalar ())
srcⁿ-¬scalar s (S T) (p₁ , p₂) = CONTRADICTION (language-comp (scalar s) (fun-¬scalar s S) p₁)
srcⁿ-¬scalar s (S T) p = never
src-¬scalar : {S T t} (s : Scalar S) Language T (scalar s) (¬Language (src T) t)
src-¬scalar {T = nil} s p = never
src-¬scalar {T = T U} s (scalar ())
src-¬scalar {T = never} s (scalar ())
src-¬scalar {T = unknown} s p = never
src-¬scalar {T = boolean} s p = never
src-¬scalar {T = number} s p = never
src-¬scalar {T = string} s p = never
src-¬scalar {T = T U} s p = srcⁿ-¬scalar s (normal (T U)) (<:-normalize (T U) (scalar s) p)
src-¬scalar {T = T U} s p = srcⁿ-¬scalar s (normal (T U)) (<:-normalize (T U) (scalar s) p)
srcⁿ-unknown-≮: : {T U} (Normal U) (T ≮: srcⁿ U) (U ≮: (T unknown))
srcⁿ-unknown-≮: never (witness t p q) = CONTRADICTION (language-comp t q unknown)
srcⁿ-unknown-≮: unknown (witness t p q) = witness (function-err t) unknown (function-err p)
srcⁿ-unknown-≮: (U V) (witness t p q) = witness (function-err t) (function-err q) (function-err p)
srcⁿ-unknown-≮: (U V) (witness t p q) = witness (function-err t) (function-err-srcⁿ (U V) q) (function-err p)
srcⁿ-unknown-≮: (U V) (witness t p q) = witness (scalar V) (right (scalar V)) (function-scalar V)
src-unknown-≮: : {T U} (T ≮: src U) (U ≮: (T unknown))
src-unknown-≮: {U = nil} (witness t p q) = witness (scalar nil) (scalar nil) (function-scalar nil)
src-unknown-≮: {U = T U} (witness t p q) = witness (function-err t) (function-err q) (function-err p)
src-unknown-≮: {U = never} (witness t p q) = CONTRADICTION (language-comp t q unknown)
src-unknown-≮: {U = unknown} (witness t p q) = witness (function-err t) unknown (function-err p)
src-unknown-≮: {U = boolean} (witness t p q) = witness (scalar boolean) (scalar boolean) (function-scalar boolean)
src-unknown-≮: {U = number} (witness t p q) = witness (scalar number) (scalar number) (function-scalar number)
src-unknown-≮: {U = string} (witness t p q) = witness (scalar string) (scalar string) (function-scalar string)
src-unknown-≮: {U = T U} p = <:-trans-≮: (normalize-<: (T U)) (srcⁿ-unknown-≮: (normal (T U)) p)
src-unknown-≮: {U = T U} p = <:-trans-≮: (normalize-<: (T U)) (srcⁿ-unknown-≮: (normal (T U)) p)
unknown-src-≮: : {S T U} (U ≮: S) (T ≮: (U unknown)) (U ≮: src T)
unknown-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p)
unknown-src-≮: r (witness (function-ok s .(scalar s₁)) p (function-ok x (scalar-scalar s₁ () x₂)))
unknown-src-≮: r (witness (function-ok s .function) p (function-ok x (scalar-function ())))
unknown-src-≮: r (witness (function-ok s .(function-ok _ _)) p (function-ok x (scalar-function-ok ())))
unknown-src-≮: r (witness (function-ok s .(function-err _)) p (function-ok x (scalar-function-err ())))
unknown-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p)
unknown-src-≮: r (witness (function-tgt t) p (function-tgt (scalar-function-tgt ())))
-- Properties of resolve
resolveˢ-<:-⇒ : {F V U} (FunType F) (Saturated F) (FunType (V U)) (r : Resolved F V) (F <: (V U)) (target r <: U)
resolveˢ-<:-⇒ Fᶠ V⇒Uᶠ r F<:V⇒U with <:-impl-<:ᵒ Fᶠ V⇒Uᶠ F<:V⇒U here
resolveˢ-<:-⇒ Fᶠ V⇒Uᶠ (yes V<:Sʳ tgtʳ) F<:V⇒U | defn o o₁ o₂ = <:-trans (tgtʳ o o₁) o₂
resolveˢ-<:-⇒ Fᶠ V⇒Uᶠ (no tgtʳ) F<:V⇒U | defn o o₁ o₂ = CONTRADICTION (<:-impl-¬≮: o₁ (tgtʳ o))
resolveⁿ-<:-⇒ : {F V U} (Fⁿ : Normal F) (Vⁿ : Normal V) (Uⁿ : Normal U) (F <: (V U)) (resolveⁿ Fⁿ Vⁿ <: U)
resolveⁿ-<:-⇒ (Sⁿ Tⁿ) Vⁿ Uⁿ F<:V⇒U = resolveˢ-<:-⇒ (normal-saturate (Sⁿ Tⁿ)) (saturated (Sⁿ Tⁿ)) (Vⁿ Uⁿ) (resolveˢ (normal-saturate (Sⁿ Tⁿ)) (saturated (Sⁿ Tⁿ)) Vⁿ (λ o o)) F<:V⇒U
resolveⁿ-<:-⇒ (Fⁿ Gⁿ) Vⁿ Uⁿ F<:V⇒U = resolveˢ-<:-⇒ (normal-saturate (Fⁿ Gⁿ)) (saturated (Fⁿ Gⁿ)) (Vⁿ Uⁿ) (resolveˢ (normal-saturate (Fⁿ Gⁿ)) (saturated (Fⁿ Gⁿ)) Vⁿ (λ o o)) (<:-trans (saturate-<: (Fⁿ Gⁿ)) F<:V⇒U)
resolveⁿ-<:-⇒ (Sⁿ ) Vⁿ Uⁿ F<:V⇒U = CONTRADICTION (<:-impl-¬≮: F<:V⇒U (<:-trans-≮: <:--right (scalar-≮:-function )))
resolveⁿ-<:-⇒ never Vⁿ Uⁿ F<:V⇒U = <:-never
resolveⁿ-<:-⇒ unknown Vⁿ Uⁿ F<:V⇒U = CONTRADICTION (<:-impl-¬≮: F<:V⇒U unknown-≮:-function)
resolve-<:-⇒ : {F V U} (F <: (V U)) (resolve F V <: U)
resolve-<:-⇒ {F} {V} {U} F<:V⇒U = <:-trans (resolveⁿ-<:-⇒ (normal F) (normal V) (normal U) (<:-trans (normalize-<: F) (<:-trans F<:V⇒U (<:-normalize (V U))))) (normalize-<: U)
resolve-≮:-⇒ : {F V U} (resolve F V ≮: U) (F ≮: (V U))
resolve-≮:-⇒ {F} {V} {U} FV≮:U with dec-subtyping F (V U)
resolve-≮:-⇒ {F} {V} {U} FV≮:U | Left F≮:V⇒U = F≮:V⇒U
resolve-≮:-⇒ {F} {V} {U} FV≮:U | Right F<:V⇒U = CONTRADICTION (<:-impl-¬≮: (resolve-<:-⇒ F<:V⇒U) FV≮:U)
<:-resolveˢ-⇒ : {S T V} (r : Resolved (S T) V) (V <: S) T <: target r
<:-resolveˢ-⇒ (yes S T here _ _) V<:S = <:-refl
<:-resolveˢ-⇒ (no _) V<:S = <:-unknown
<:-resolveⁿ-⇒ : {S T V} (Sⁿ : Normal S) (Tⁿ : Normal T) (Vⁿ : Normal V) (V <: S) T <: resolveⁿ (Sⁿ Tⁿ) Vⁿ
<:-resolveⁿ-⇒ Sⁿ Tⁿ Vⁿ V<:S = <:-resolveˢ-⇒ (resolveˢ (Sⁿ Tⁿ) (saturated (Sⁿ Tⁿ)) Vⁿ (λ o o)) V<:S
<:-resolve-⇒ : {S T V} (V <: S) T <: resolve (S T) V
<:-resolve-⇒ {S} {T} {V} V<:S = <:-trans (<:-normalize T) (<:-resolveⁿ-⇒ (normal S) (normal T) (normal V) (<:-trans (normalize-<: V) (<:-trans V<:S (<:-normalize S))))
<:-resolveˢ : {F G V W} (r : Resolved F V) (s : Resolved G W) (F <:ᵒ G) (V <: W) target r <: target s
<:-resolveˢ (yes V<:Sʳ tgtʳ) (yes W<:Sˢ tgtˢ) F<:G V<:W with F<:G
<:-resolveˢ (yes V<:Sʳ tgtʳ) (yes W<:Sˢ tgtˢ) F<:G V<:W | defn o o₁ o₂ = <:-trans (tgtʳ o (<:-trans (<:-trans V<:W W<:Sˢ) o₁)) o₂
<:-resolveˢ (no r) (yes W<:Sˢ tgtˢ) F<:G V<:W with F<:G
<:-resolveˢ (no r) (yes W<:Sˢ tgtˢ) F<:G V<:W | defn o o₁ o₂ = CONTRADICTION (<:-impl-¬≮: (<:-trans V<:W (<:-trans W<:Sˢ o₁)) (r o))
<:-resolveˢ r (no s) F<:G V<:W = <:-unknown
<:-resolveᶠ : {F G V W} (Fᶠ : FunType F) (Gᶠ : FunType G) (Vⁿ : Normal V) (Wⁿ : Normal W) (F <: G) (V <: W) resolveᶠ Fᶠ Vⁿ <: resolveᶠ Gᶠ Wⁿ
<:-resolveᶠ Fᶠ Gᶠ Vⁿ Wⁿ F<:G V<:W = <:-resolveˢ
(resolveˢ (normal-saturate Fᶠ) (saturated Fᶠ) Vⁿ (λ o o))
(resolveˢ (normal-saturate Gᶠ) (saturated Gᶠ) Wⁿ (λ o o))
(<:-impl-<:ᵒ (normal-saturate Fᶠ) (saturated Fᶠ) (normal-saturate Gᶠ) (<:-trans (saturate-<: Fᶠ) (<:-trans F<:G (<:-saturate Gᶠ))))
V<:W
<:-resolveⁿ : {F G V W} (Fⁿ : Normal F) (Gⁿ : Normal G) (Vⁿ : Normal V) (Wⁿ : Normal W) (F <: G) (V <: W) resolveⁿ Fⁿ Vⁿ <: resolveⁿ Gⁿ Wⁿ
<:-resolveⁿ (Rⁿ Sⁿ) (Tⁿ Uⁿ) Vⁿ Wⁿ F<:G V<:W = <:-resolveᶠ (Rⁿ Sⁿ) (Tⁿ Uⁿ) Vⁿ Wⁿ F<:G V<:W
<:-resolveⁿ (Rⁿ Sⁿ) (Gⁿ Hⁿ) Vⁿ Wⁿ F<:G V<:W = <:-resolveᶠ (Rⁿ Sⁿ) (Gⁿ Hⁿ) Vⁿ Wⁿ F<:G V<:W
<:-resolveⁿ (Eⁿ Fⁿ) (Tⁿ Uⁿ) Vⁿ Wⁿ F<:G V<:W = <:-resolveᶠ (Eⁿ Fⁿ) (Tⁿ Uⁿ) Vⁿ Wⁿ F<:G V<:W
<:-resolveⁿ (Eⁿ Fⁿ) (Gⁿ Hⁿ) Vⁿ Wⁿ F<:G V<:W = <:-resolveᶠ (Eⁿ Fⁿ) (Gⁿ Hⁿ) Vⁿ Wⁿ F<:G V<:W
<:-resolveⁿ (Fⁿ ) (Tⁿ Uⁿ) Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (≮:--right (scalar-≮:-function )))
<:-resolveⁿ unknown (Tⁿ Uⁿ) Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G unknown-≮:-function)
<:-resolveⁿ (Fⁿ ) (Gⁿ Hⁿ) Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (≮:--right (scalar-≮:-fun (Gⁿ Hⁿ) )))
<:-resolveⁿ unknown (Gⁿ Hⁿ) Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (unknown-≮:-fun (Gⁿ Hⁿ)))
<:-resolveⁿ (Rⁿ Sⁿ) never Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (fun-≮:-never (Rⁿ Sⁿ)))
<:-resolveⁿ (Eⁿ Fⁿ) never Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (fun-≮:-never (Eⁿ Fⁿ)))
<:-resolveⁿ (Fⁿ ) never Vⁿ Wⁿ F<:G V<:W = CONTRADICTION (<:-impl-¬≮: F<:G (≮:--right (scalar-≮:-never )))
<:-resolveⁿ unknown never Vⁿ Wⁿ F<:G V<:W = F<:G
<:-resolveⁿ never Gⁿ Vⁿ Wⁿ F<:G V<:W = <:-never
<:-resolveⁿ Fⁿ (Gⁿ ) Vⁿ Wⁿ F<:G V<:W = <:-unknown
<:-resolveⁿ Fⁿ unknown Vⁿ Wⁿ F<:G V<:W = <:-unknown
<:-resolve : {F G V W} (F <: G) (V <: W) resolve F V <: resolve G W
<:-resolve {F} {G} {V} {W} F<:G V<:W = <:-resolveⁿ (normal F) (normal G) (normal V) (normal W)
(<:-trans (normalize-<: F) (<:-trans F<:G (<:-normalize G)))
(<:-trans (normalize-<: V) (<:-trans V<:W (<:-normalize W)))

View file

@ -7,11 +7,11 @@ open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Either using (Either; Left; Right; mapL; mapR; mapLR; swapLR; cond)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Luau.Heap using (Heap; Object; function_is_end; defn; alloc; ok; next; lookup-not-allocated) renaming (_≡_⊕_↦_ to _≡ᴴ_⊕_↦_; _[_] to _[_]ᴴ; to ∅ᴴ)
open import Luau.ResolveOverloads using (src; resolve)
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr)
open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_)
open import Luau.Subtyping using (_≮:_; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_; Tree; Language; ¬Language)
open import Luau.Subtyping using (_<:_; _≮:_; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_; Tree; Language; ¬Language)
open import Luau.Syntax using (Expr; yes; var; val; var_∈_; _⟨_⟩∈_; _$_; addr; number; bool; string; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name; ==; ~=)
open import Luau.FunctionTypes using (src; tgt)
open import Luau.Type using (Type; nil; number; boolean; string; _⇒_; never; unknown; _∩_; __; _≡ᵀ_; _≡ᴹᵀ_)
open import Luau.TypeCheck using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orUnknown; srcBinOp; tgtBinOp)
open import Luau.Var using (_≡ⱽ_)
@ -23,8 +23,10 @@ open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Contradiction using (CONTRADICTION; ¬)
open import Properties.Functions using (_∘_)
open import Properties.FunctionTypes using (never-tgt-≮:; tgt-never-≮:; src-unknown-≮:; unknown-src-≮:)
open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; ≮:-trans; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never)
open import Properties.DecSubtyping using (dec-subtyping)
open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; ≮:-trans; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never; <:-refl; <:-unknown; <:-impl-¬≮:)
open import Properties.ResolveOverloads using (src-unknown-≮:; unknown-src-≮:; <:-resolve; resolve-<:-⇒; <:-resolve-⇒)
open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; ≮:-trans; <:-trans-≮:; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never; ≡-impl-<:; ≡-trans-<:; <:-trans-≡; ≮:-trans-<:; <:-trans)
open import Properties.TypeCheck using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴ)
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return; +; -; *; /; <; >; <=; >=; ··)
@ -63,51 +65,32 @@ lookup-⊑-nothing {H} a (snoc defn) p with a ≡ᴬ next H
lookup-⊑-nothing {H} a (snoc defn) p | yes refl = refl
lookup-⊑-nothing {H} a (snoc o) p | no q = trans (lookup-not-allocated o q) p
heap-weakeningᴱ : Γ H M {H U} (H H) (typeOfᴱ H Γ M ≮: U) (typeOfᴱ H Γ M ≮: U)
heap-weakeningᴱ Γ H (var x) h p = p
heap-weakeningᴱ Γ H (val nil) h p = p
heap-weakeningᴱ Γ H (val (addr a)) refl p = p
heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) p with a ≡ᴬ b
heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = a} defn) p | yes refl = unknown-≮: p
heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) p | no r = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ (lookup-not-allocated q r))) p
heap-weakeningᴱ Γ H (val (number x)) h p = p
heap-weakeningᴱ Γ H (val (bool x)) h p = p
heap-weakeningᴱ Γ H (val (string x)) h p = p
heap-weakeningᴱ Γ H (M $ N) h p = never-tgt-≮: (heap-weakeningᴱ Γ H M h (tgt-never-≮: p))
heap-weakeningᴱ Γ H (function f var x T ⟩∈ U is B end) h p = p
heap-weakeningᴱ Γ H (block var b T is B end) h p = p
heap-weakeningᴱ Γ H (binexp M op N) h p = p
<:-heap-weakeningᴱ : Γ H M {H} (H H) (typeOfᴱ H Γ M <: typeOfᴱ H Γ M)
<:-heap-weakeningᴱ Γ H (var x) h = <:-refl
<:-heap-weakeningᴱ Γ H (val nil) h = <:-refl
<:-heap-weakeningᴱ Γ H (val (addr a)) refl = <:-refl
<:-heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) with a ≡ᴬ b
<:-heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = a} defn) | yes refl = <:-unknown
<:-heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) | no r = ≡-impl-<: (sym (cong orUnknown (cong typeOfᴹᴼ (lookup-not-allocated q r))))
<:-heap-weakeningᴱ Γ H (val (number n)) h = <:-refl
<:-heap-weakeningᴱ Γ H (val (bool b)) h = <:-refl
<:-heap-weakeningᴱ Γ H (val (string s)) h = <:-refl
<:-heap-weakeningᴱ Γ H (M $ N) h = <:-resolve (<:-heap-weakeningᴱ Γ H M h) (<:-heap-weakeningᴱ Γ H N h)
<:-heap-weakeningᴱ Γ H (function f var x S ⟩∈ T is B end) h = <:-refl
<:-heap-weakeningᴱ Γ H (block var b T is N end) h = <:-refl
<:-heap-weakeningᴱ Γ H (binexp M op N) h = <:-refl
heap-weakeningᴮ : Γ H B {H U} (H H) (typeOfᴮ H Γ B ≮: U) (typeOfᴮ H Γ B ≮: U)
heap-weakeningᴮ Γ H (function f var x T ⟩∈ U is C end B) h p = heap-weakeningᴮ (Γ f (T U)) H B h p
heap-weakeningᴮ Γ H (local var x T M B) h p = heap-weakeningᴮ (Γ x T) H B h p
heap-weakeningᴮ Γ H (return M B) h p = heap-weakeningᴱ Γ H M h p
heap-weakeningᴮ Γ H done h p = p
<:-heap-weakeningᴮ : Γ H B {H} (H H) (typeOfᴮ H Γ B <: typeOfᴮ H Γ B)
<:-heap-weakeningᴮ Γ H (function f var x T ⟩∈ U is C end B) h = <:-heap-weakeningᴮ (Γ f (T U)) H B h
<:-heap-weakeningᴮ Γ H (local var x T M B) h = <:-heap-weakeningᴮ (Γ x T) H B h
<:-heap-weakeningᴮ Γ H (return M B) h = <:-heap-weakeningᴱ Γ H M h
<:-heap-weakeningᴮ Γ H done h = <:-refl
substitutivityᴱ : {Γ T U} H M v x (typeOfᴱ H Γ (M [ v / x ]ᴱ) ≮: U) Either (typeOfᴱ H (Γ x T) M ≮: U) (typeOfᴱ H (val v) ≮: T)
substitutivityᴱ-whenever : {Γ T U} H v x y (r : Dec(x y)) (typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever r) ≮: U) Either (typeOfᴱ H (Γ x T) (var y) ≮: U) (typeOfᴱ H (val v) ≮: T)
substitutivityᴮ : {Γ T U} H B v x (typeOfᴮ H Γ (B [ v / x ]ᴮ) ≮: U) Either (typeOfᴮ H (Γ x T) B ≮: U) (typeOfᴱ H (val v) ≮: T)
substitutivityᴮ-unless : {Γ T U V} H B v x y (r : Dec(x y)) (typeOfᴮ H (Γ y U) (B [ v / x ]ᴮunless r) ≮: V) Either (typeOfᴮ H ((Γ x T) y U) B ≮: V) (typeOfᴱ H (val v) ≮: T)
substitutivityᴮ-unless-yes : {Γ Γ′ T V} H B v x y (r : x y) (Γ′ Γ) (typeOfᴮ H Γ (B [ v / x ]ᴮunless yes r) ≮: V) Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H (val v) ≮: T)
substitutivityᴮ-unless-no : {Γ Γ′ T V} H B v x y (r : x y) (Γ′ Γ x T) (typeOfᴮ H Γ (B [ v / x ]ᴮunless no r) ≮: V) Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H (val v) ≮: T)
≮:-heap-weakeningᴱ : Γ H M {H U} (H H) (typeOfᴱ H Γ M ≮: U) (typeOfᴱ H Γ M ≮: U)
:-heap-weakeningᴱ Γ H M h p = <:-trans-≮: (<:-heap-weakeningᴱ Γ H M h) p
substitutivityᴱ H (var y) v x p = substitutivityᴱ-whenever H v x y (x ≡ⱽ y) p
substitutivityᴱ H (val w) v x p = Left p
substitutivityᴱ H (binexp M op N) v x p = Left p
substitutivityᴱ H (M $ N) v x p = mapL never-tgt-≮: (substitutivityᴱ H M v x (tgt-never-≮: p))
substitutivityᴱ H (function f var y T ⟩∈ U is B end) v x p = Left p
substitutivityᴱ H (block var b T is B end) v x p = Left p
substitutivityᴱ-whenever H v x x (yes refl) q = swapLR (≮:-trans q)
substitutivityᴱ-whenever H v x y (no p) q = Left (≡-trans-≮: (cong orUnknown (sym (⊕-lookup-miss x y _ _ p))) q)
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p = substitutivityᴮ-unless H B v x f (x ≡ⱽ f) p
substitutivityᴮ H (local var y T M B) v x p = substitutivityᴮ-unless H B v x y (x ≡ⱽ y) p
substitutivityᴮ H (return M B) v x p = substitutivityᴱ H M v x p
substitutivityᴮ H done v x p = Left p
substitutivityᴮ-unless H B v x y (yes p) q = substitutivityᴮ-unless-yes H B v x y p (⊕-over p) q
substitutivityᴮ-unless H B v x y (no p) q = substitutivityᴮ-unless-no H B v x y p (⊕-swap p) q
substitutivityᴮ-unless-yes H B v x y refl refl p = Left p
substitutivityᴮ-unless-no H B v x y p refl q = substitutivityᴮ H B v x q
≮:-heap-weakeningᴮ : Γ H B {H U} (H H) (typeOfᴮ H Γ B ≮: U) (typeOfᴮ H Γ B ≮: U)
:-heap-weakeningᴮ Γ H B h p = <:-trans-≮: (<:-heap-weakeningᴮ Γ H B h) p
binOpPreservation : H {op v w x} (v op w x) (tgtBinOp op typeOfᴱ H (val x))
binOpPreservation H (+ m n) = refl
@ -122,24 +105,78 @@ binOpPreservation H (== v w) = refl
binOpPreservation H (~= v w) = refl
binOpPreservation H (·· v w) = refl
reflect-subtypingᴱ : H M {H M T} (H M ⟶ᴱ M H) (typeOfᴱ H M ≮: T) Either (typeOfᴱ H M ≮: T) (Warningᴱ H (typeCheckᴱ H M))
reflect-subtypingᴮ : H B {H B T} (H B ⟶ᴮ B H) (typeOfᴮ H B ≮: T) Either (typeOfᴮ H B ≮: T) (Warningᴮ H (typeCheckᴮ H B))
<:-substitutivityᴱ : {Γ T} H M v x (typeOfᴱ H (val v) <: T) (typeOfᴱ H Γ (M [ v / x ]ᴱ) <: typeOfᴱ H (Γ x T) M)
<:-substitutivityᴱ-whenever : {Γ T} H v x y (r : Dec(x y)) (typeOfᴱ H (val v) <: T) (typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever r) <: typeOfᴱ H (Γ x T) (var y))
<:-substitutivityᴮ : {Γ T} H B v x (typeOfᴱ H (val v) <: T) (typeOfᴮ H Γ (B [ v / x ]ᴮ) <: typeOfᴮ H (Γ x T) B)
<:-substitutivityᴮ-unless : {Γ T U} H B v x y (r : Dec(x y)) (typeOfᴱ H (val v) <: T) (typeOfᴮ H (Γ y U) (B [ v / x ]ᴮunless r) <: typeOfᴮ H ((Γ x T) y U) B)
<:-substitutivityᴮ-unless-yes : {Γ Γ′} H B v x y (r : x y) (Γ′ Γ) (typeOfᴮ H Γ (B [ v / x ]ᴮunless yes r) <: typeOfᴮ H Γ′ B)
<:-substitutivityᴮ-unless-no : {Γ Γ′ T} H B v x y (r : x y) (Γ′ Γ x T) (typeOfᴱ H (val v) <: T) (typeOfᴮ H Γ (B [ v / x ]ᴮunless no r) <: typeOfᴮ H Γ′ B)
reflect-subtypingᴱ H (M $ N) (app₁ s) p = mapLR never-tgt-≮: app₁ (reflect-subtypingᴱ H M s (tgt-never-≮: p))
reflect-subtypingᴱ H (M $ N) (app₂ v s) p = Left (never-tgt-≮: (heap-weakeningᴱ H M (rednᴱ⊑ s) (tgt-never-≮: p)))
reflect-subtypingᴱ H (M $ N) (beta (function f var y T ⟩∈ U is B end) v refl q) p = Left (≡-trans-≮: (cong tgt (cong orUnknown (cong typeOfᴹᴼ q))) p)
reflect-subtypingᴱ H (function f var x T ⟩∈ U is B end) (function a defn) p = Left p
reflect-subtypingᴱ H (block var b T is B end) (block s) p = Left p
reflect-subtypingᴱ H (block var b T is return (val v) B end) (return v) p = mapR BlockMismatch (swapLR (≮:-trans p))
reflect-subtypingᴱ H (block var b T is done end) done p = mapR BlockMismatch (swapLR (≮:-trans p))
reflect-subtypingᴱ H (binexp M op N) (binOp₀ s) p = Left (≡-trans-≮: (binOpPreservation H s) p)
reflect-subtypingᴱ H (binexp M op N) (binOp₁ s) p = Left p
reflect-subtypingᴱ H (binexp M op N) (binOp₂ s) p = Left p
<:-substitutivityᴱ H (var y) v x p = <:-substitutivityᴱ-whenever H v x y (x ≡ⱽ y) p
<:-substitutivityᴱ H (val w) v x p = <:-refl
<:-substitutivityᴱ H (binexp M op N) v x p = <:-refl
<:-substitutivityᴱ H (M $ N) v x p = <:-resolve (<:-substitutivityᴱ H M v x p) (<:-substitutivityᴱ H N v x p)
<:-substitutivityᴱ H (function f var y T ⟩∈ U is B end) v x p = <:-refl
<:-substitutivityᴱ H (block var b T is B end) v x p = <:-refl
<:-substitutivityᴱ-whenever H v x x (yes refl) p = p
<:-substitutivityᴱ-whenever H v x y (no o) p = (≡-impl-<: (cong orUnknown (⊕-lookup-miss x y _ _ o)))
reflect-subtypingᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) p = mapLR (heap-weakeningᴮ _ _ B (snoc defn)) (CONTRADICTION ≮:-refl) (substitutivityᴮ _ B (addr a) f p)
reflect-subtypingᴮ H (local var x T M B) (local s) p = Left (heap-weakeningᴮ (x T) H B (rednᴱ⊑ s) p)
reflect-subtypingᴮ H (local var x T M B) (subst v) p = mapR LocalVarMismatch (substitutivityᴮ H B v x p)
reflect-subtypingᴮ H (return M B) (return s) p = mapR return (reflect-subtypingᴱ H M s p)
<:-substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p = <:-substitutivityᴮ-unless H B v x f (x ≡ⱽ f) p
<:-substitutivityᴮ H (local var y T M B) v x p = <:-substitutivityᴮ-unless H B v x y (x ≡ⱽ y) p
<:-substitutivityᴮ H (return M B) v x p = <:-substitutivityᴱ H M v x p
<:-substitutivityᴮ H done v x p = <:-refl
<:-substitutivityᴮ-unless H B v x y (yes r) p = <:-substitutivityᴮ-unless-yes H B v x y r (⊕-over r)
<:-substitutivityᴮ-unless H B v x y (no r) p = <:-substitutivityᴮ-unless-no H B v x y r (⊕-swap r) p
<:-substitutivityᴮ-unless-yes H B v x y refl refl = <:-refl
<:-substitutivityᴮ-unless-no H B v x y r refl p = <:-substitutivityᴮ H B v x p
≮:-substitutivityᴱ : {Γ T U} H M v x (typeOfᴱ H Γ (M [ v / x ]ᴱ) ≮: U) Either (typeOfᴱ H (Γ x T) M ≮: U) (typeOfᴱ H (val v) ≮: T)
:-substitutivityᴱ {T = T} H M v x p with dec-subtyping (typeOfᴱ H (val v)) T
:-substitutivityᴱ H M v x p | Left q = Right q
:-substitutivityᴱ H M v x p | Right q = Left (<:-trans-≮: (<:-substitutivityᴱ H M v x q) p)
≮:-substitutivityᴮ : {Γ T U} H B v x (typeOfᴮ H Γ (B [ v / x ]ᴮ) ≮: U) Either (typeOfᴮ H (Γ x T) B ≮: U) (typeOfᴱ H (val v) ≮: T)
:-substitutivityᴮ {T = T} H M v x p with dec-subtyping (typeOfᴱ H (val v)) T
:-substitutivityᴮ H M v x p | Left q = Right q
:-substitutivityᴮ H M v x p | Right q = Left (<:-trans-≮: (<:-substitutivityᴮ H M v x q) p)
≮:-substitutivityᴮ-unless : {Γ T U V} H B v x y (r : Dec(x y)) (typeOfᴮ H (Γ y U) (B [ v / x ]ᴮunless r) ≮: V) Either (typeOfᴮ H ((Γ x T) y U) B ≮: V) (typeOfᴱ H (val v) ≮: T)
:-substitutivityᴮ-unless {T = T} H B v x y r p with dec-subtyping (typeOfᴱ H (val v)) T
:-substitutivityᴮ-unless H B v x y r p | Left q = Right q
:-substitutivityᴮ-unless H B v x y r p | Right q = Left (<:-trans-≮: (<:-substitutivityᴮ-unless H B v x y r q) p)
<:-reductionᴱ : H M {H M} (H M ⟶ᴱ M H) Either (typeOfᴱ H M <: typeOfᴱ H M) (Warningᴱ H (typeCheckᴱ H M))
<:-reductionᴮ : H B {H B} (H B ⟶ᴮ B H) Either (typeOfᴮ H B <: typeOfᴮ H B) (Warningᴮ H (typeCheckᴮ H B))
<:-reductionᴱ H (M $ N) (app₁ s) = mapLR (λ p <:-resolve p (<:-heap-weakeningᴱ H N (rednᴱ⊑ s))) app₁ (<:-reductionᴱ H M s)
<:-reductionᴱ H (M $ N) (app₂ q s) = mapLR (λ p <:-resolve (<:-heap-weakeningᴱ H M (rednᴱ⊑ s)) p) app₂ (<:-reductionᴱ H N s)
<:-reductionᴱ H (M $ N) (beta (function f var y S ⟩∈ U is B end) v refl q) with dec-subtyping (typeOfᴱ H (val v)) S
<:-reductionᴱ H (M $ N) (beta (function f var y S ⟩∈ U is B end) v refl q) | Left r = Right (FunctionCallMismatch (≮:-trans-≡ r (cong src (cong orUnknown (cong typeOfᴹᴼ (sym q))))))
<:-reductionᴱ H (M $ N) (beta (function f var y S ⟩∈ U is B end) v refl q) | Right r = Left (<:-trans-≡ (<:-resolve-⇒ r) (cong (λ F resolve F (typeOfᴱ H N)) (cong orUnknown (cong typeOfᴹᴼ (sym q)))))
<:-reductionᴱ H (function f var x T ⟩∈ U is B end) (function a defn) = Left <:-refl
<:-reductionᴱ H (block var b T is B end) (block s) = Left <:-refl
<:-reductionᴱ H (block var b T is return (val v) B end) (return v) with dec-subtyping (typeOfᴱ H (val v)) T
<:-reductionᴱ H (block var b T is return (val v) B end) (return v) | Left p = Right (BlockMismatch p)
<:-reductionᴱ H (block var b T is return (val v) B end) (return v) | Right p = Left p
<:-reductionᴱ H (block var b T is done end) done with dec-subtyping nil T
<:-reductionᴱ H (block var b T is done end) done | Left p = Right (BlockMismatch p)
<:-reductionᴱ H (block var b T is done end) done | Right p = Left p
<:-reductionᴱ H (binexp M op N) (binOp₀ s) = Left (≡-impl-<: (sym (binOpPreservation H s)))
<:-reductionᴱ H (binexp M op N) (binOp₁ s) = Left <:-refl
<:-reductionᴱ H (binexp M op N) (binOp₂ s) = Left <:-refl
<:-reductionᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) = Left (<:-trans (<:-substitutivityᴮ _ B (addr a) f <:-refl) (<:-heap-weakeningᴮ (f (T U)) H B (snoc defn)))
<:-reductionᴮ H (local var x T M B) (local s) = Left (<:-heap-weakeningᴮ (x T) H B (rednᴱ⊑ s))
<:-reductionᴮ H (local var x T M B) (subst v) with dec-subtyping (typeOfᴱ H (val v)) T
<:-reductionᴮ H (local var x T M B) (subst v) | Left p = Right (LocalVarMismatch p)
<:-reductionᴮ H (local var x T M B) (subst v) | Right p = Left (<:-substitutivityᴮ H B v x p)
<:-reductionᴮ H (return M B) (return s) = mapR return (<:-reductionᴱ H M s)
≮:-reductionᴱ : H M {H M T} (H M ⟶ᴱ M H) (typeOfᴱ H M ≮: T) Either (typeOfᴱ H M ≮: T) (Warningᴱ H (typeCheckᴱ H M))
:-reductionᴱ H M s p = mapL (λ q <:-trans-≮: q p) (<:-reductionᴱ H M s)
≮:-reductionᴮ : H B {H B T} (H B ⟶ᴮ B H) (typeOfᴮ H B ≮: T) Either (typeOfᴮ H B ≮: T) (Warningᴮ H (typeCheckᴮ H B))
:-reductionᴮ H B s p = mapL (λ q <:-trans-≮: q p) (<:-reductionᴮ H B s)
reflect-substitutionᴱ : {Γ T} H M v x Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) Either (Warningᴱ H (typeCheckᴱ H (Γ x T) M)) (Either (Warningᴱ H (typeCheckᴱ H (val v))) (typeOfᴱ H (val v) ≮: T))
reflect-substitutionᴱ-whenever : {Γ T} H v x y (p : Dec(x y)) Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever p)) Either (Warningᴱ H (typeCheckᴱ H (Γ x T) (var y))) (Either (Warningᴱ H (typeCheckᴱ H (val v))) (typeOfᴱ H (val v) ≮: T))
@ -150,29 +187,29 @@ reflect-substitutionᴮ-unless-no : ∀ {Γ Γ′ T} H B v x y (r : x ≢ y) →
reflect-substitutionᴱ H (var y) v x W = reflect-substitutionᴱ-whenever H v x y (x ≡ⱽ y) W
reflect-substitutionᴱ H (val (addr a)) v x (UnallocatedAddress r) = Left (UnallocatedAddress r)
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) with substitutivityᴱ H N v x p
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) with ≮:-substitutivityᴱ H N v x p
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Right W = Right (Right W)
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q with substitutivityᴱ H M v x (src-unknown-≮: q)
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q with ≮:-substitutivityᴱ H M v x (src-unknown-≮: q)
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Left r = Left ((FunctionCallMismatch unknown-src-≮: q) r)
reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Right W = Right (Right W)
reflect-substitutionᴱ H (M $ N) v x (app₁ W) = mapL app₁ (reflect-substitutionᴱ H M v x W)
reflect-substitutionᴱ H (M $ N) v x (app₂ W) = mapL app₂ (reflect-substitutionᴱ H N v x W)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H B v x y (x ≡ⱽ y) q)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (≮:-substitutivityᴮ-unless H B v x y (x ≡ⱽ y) q)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W)
reflect-substitutionᴱ H (block var b T is B end) v x (BlockMismatch q) = mapLR BlockMismatch Right (substitutivityᴮ H B v x q)
reflect-substitutionᴱ H (block var b T is B end) v x (BlockMismatch q) = mapLR BlockMismatch Right (≮:-substitutivityᴮ H B v x q)
reflect-substitutionᴱ H (block var b T is B end) v x (block₁ W) = mapL block₁ (reflect-substitutionᴮ H B v x W)
reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₁ q) = mapLR BinOpMismatch₁ Right (substitutivityᴱ H M v x q)
reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₂ q) = mapLR BinOpMismatch₂ Right (substitutivityᴱ H N v x q)
reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₁ q) = mapLR BinOpMismatch₁ Right (≮:-substitutivityᴱ H M v x q)
reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₂ q) = mapLR BinOpMismatch₂ Right (≮:-substitutivityᴱ H N v x q)
reflect-substitutionᴱ H (binexp M op N) v x (bin₁ W) = mapL bin₁ (reflect-substitutionᴱ H M v x W)
reflect-substitutionᴱ H (binexp M op N) v x (bin₂ W) = mapL bin₂ (reflect-substitutionᴱ H N v x W)
reflect-substitutionᴱ-whenever H a x x (yes refl) (UnallocatedAddress p) = Right (Left (UnallocatedAddress p))
reflect-substitutionᴱ-whenever H v x y (no p) (UnboundVariable q) = Left (UnboundVariable (trans (sym (⊕-lookup-miss x y _ _ p)) q))
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H C v x y (x ≡ⱽ y) q)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (≮:-substitutivityᴮ-unless H C v x y (x ≡ⱽ y) q)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H C v x y (x ≡ⱽ y) W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x (function₂ W) = mapL function₂ (reflect-substitutionᴮ-unless H B v x f (x ≡ⱽ f) W)
reflect-substitutionᴮ H (local var y T M B) v x (LocalVarMismatch q) = mapLR LocalVarMismatch Right (substitutivityᴱ H M v x q)
reflect-substitutionᴮ H (local var y T M B) v x (LocalVarMismatch q) = mapLR LocalVarMismatch Right (≮:-substitutivityᴱ H M v x q)
reflect-substitutionᴮ H (local var y T M B) v x (local₁ W) = mapL local₁ (reflect-substitutionᴱ H M v x W)
reflect-substitutionᴮ H (local var y T M B) v x (local₂ W) = mapL local₂ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W)
reflect-substitutionᴮ H (return M B) v x (return W) = mapL return (reflect-substitutionᴱ H M v x W)
@ -187,61 +224,61 @@ reflect-weakeningᴮ : ∀ Γ H B {H} → (H ⊑ H) → Warningᴮ H (t
reflect-weakeningᴱ Γ H (var x) h (UnboundVariable p) = (UnboundVariable p)
reflect-weakeningᴱ Γ H (val (addr a)) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p)
reflect-weakeningᴱ Γ H (M $ N) h (FunctionCallMismatch p) = FunctionCallMismatch (heap-weakeningᴱ Γ H N h (unknown-src-≮: p (heap-weakeningᴱ Γ H M h (src-unknown-≮: p))))
reflect-weakeningᴱ Γ H (M $ N) h (FunctionCallMismatch p) = FunctionCallMismatch (≮:-heap-weakeningᴱ Γ H N h (unknown-src-≮: p (≮:-heap-weakeningᴱ Γ H M h (src-unknown-≮: p))))
reflect-weakeningᴱ Γ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ Γ H M h W)
reflect-weakeningᴱ Γ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ Γ H N h W)
reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₁ p) = BinOpMismatch₁ (heap-weakeningᴱ Γ H M h p)
reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₂ p) = BinOpMismatch₂ (heap-weakeningᴱ Γ H N h p)
reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₁ p) = BinOpMismatch₁ (≮:-heap-weakeningᴱ Γ H M h p)
reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₂ p) = BinOpMismatch₂ (≮:-heap-weakeningᴱ Γ H N h p)
reflect-weakeningᴱ Γ H (binexp M op N) h (bin₁ W) = bin₁ (reflect-weakeningᴱ Γ H M h W)
reflect-weakeningᴱ Γ H (binexp M op N) h (bin₂ W) = bin₂ (reflect-weakeningᴱ Γ H N h W)
reflect-weakeningᴱ Γ H (function f var y T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (Γ y T) H B h p)
reflect-weakeningᴱ Γ H (function f var y T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (≮:-heap-weakeningᴮ (Γ y T) H B h p)
reflect-weakeningᴱ Γ H (function f var y T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ y T) H B h W)
reflect-weakeningᴱ Γ H (block var b T is B end) h (BlockMismatch p) = BlockMismatch (heap-weakeningᴮ Γ H B h p)
reflect-weakeningᴱ Γ H (block var b T is B end) h (BlockMismatch p) = BlockMismatch (≮:-heap-weakeningᴮ Γ H B h p)
reflect-weakeningᴱ Γ H (block var b T is B end) h (block₁ W) = block₁ (reflect-weakeningᴮ Γ H B h W)
reflect-weakeningᴮ Γ H (return M B) h (return W) = return (reflect-weakeningᴱ Γ H M h W)
reflect-weakeningᴮ Γ H (local var y T M B) h (LocalVarMismatch p) = LocalVarMismatch (heap-weakeningᴱ Γ H M h p)
reflect-weakeningᴮ Γ H (local var y T M B) h (LocalVarMismatch p) = LocalVarMismatch (≮:-heap-weakeningᴱ Γ H M h p)
reflect-weakeningᴮ Γ H (local var y T M B) h (local₁ W) = local₁ (reflect-weakeningᴱ Γ H M h W)
reflect-weakeningᴮ Γ H (local var y T M B) h (local₂ W) = local₂ (reflect-weakeningᴮ (Γ y T) H B h W)
reflect-weakeningᴮ Γ H (function f var x T ⟩∈ U is C end B) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (Γ x T) H C h p)
reflect-weakeningᴮ Γ H (function f var x T ⟩∈ U is C end B) h (FunctionDefnMismatch p) = FunctionDefnMismatch (≮:-heap-weakeningᴮ (Γ x T) H C h p)
reflect-weakeningᴮ Γ H (function f var x T ⟩∈ U is C end B) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ x T) H C h W)
reflect-weakeningᴮ Γ H (function f var x T ⟩∈ U is C end B) h (function₂ W) = function₂ (reflect-weakeningᴮ (Γ f (T U)) H B h W)
reflect-weakeningᴼ : H O {H} (H H) Warningᴼ H (typeCheckᴼ H O) Warningᴼ H (typeCheckᴼ H O)
reflect-weakeningᴼ H (just function f var x T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (x T) H B h p)
reflect-weakeningᴼ H (just function f var x T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (≮:-heap-weakeningᴮ (x T) H B h p)
reflect-weakeningᴼ H (just function f var x T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (x T) H B h W)
reflectᴱ : H M {H M} (H M ⟶ᴱ M H) Warningᴱ H (typeCheckᴱ H M) Either (Warningᴱ H (typeCheckᴱ H M)) (Warningᴴ H (typeCheckᴴ H))
reflectᴮ : H B {H B} (H B ⟶ᴮ B H) Warningᴮ H (typeCheckᴮ H B) Either (Warningᴮ H (typeCheckᴮ H B)) (Warningᴴ H (typeCheckᴴ H))
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) = cond (Left FunctionCallMismatch heap-weakeningᴱ H N (rednᴱ⊑ s) unknown-src-≮: p) (Left app₁) (reflect-subtyping H M s (src-unknown-≮: p))
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) = cond (Left FunctionCallMismatch ≮:-heap-weakeningᴱ H N (rednᴱ⊑ s) unknown-src-≮: p) (Left app₁) (≮:-reduction H M s (src-unknown-≮: p))
reflectᴱ H (M $ N) (app₁ s) (app₁ W) = mapL app₁ (reflectᴱ H M s W)
reflectᴱ H (M $ N) (app₁ s) (app₂ W) = Left (app₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W))
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch q) = cond (λ r Left (FunctionCallMismatch (unknown-src-≮: r (heap-weakeningᴱ H M (rednᴱ⊑ s) (src-unknown-≮: r))))) (Left app₂) (reflect-subtyping H N s q)
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch q) = cond (λ r Left (FunctionCallMismatch (unknown-src-≮: r (≮:-heap-weakeningᴱ H M (rednᴱ⊑ s) (src-unknown-≮: r))))) (Left app₂) (≮:-reduction H N s q)
reflectᴱ H (M $ N) (app₂ p s) (app₁ W) = Left (app₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W))
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) = mapL app₂ (reflectᴱ H N s W)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) with substitutivityᴮ H B v x q
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) with ≮:-substitutivityᴮ H B v x q
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Left r = Right (addr a p (FunctionDefnMismatch r))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Right r = Left (FunctionCallMismatch (≮:-trans-≡ r ((cong src (cong orUnknown (cong typeOfᴹᴼ (sym p)))))))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) with reflect-substitutionᴮ _ B v x W
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | Left W = Right (addr a p (function₁ W))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | Right (Left W) = Left (app₂ W)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | Right (Right q) = Left (FunctionCallMismatch (≮:-trans-≡ q (cong src (cong orUnknown (cong typeOfᴹᴼ (sym p))))))
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) = Left (cond BlockMismatch block₁ (reflect-subtyping H B s p))
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) = Left (cond BlockMismatch block₁ (≮:-reduction H B s p))
reflectᴱ H (block var b T is B end) (block s) (block₁ W) = mapL block₁ (reflectᴮ H B s W)
reflectᴱ H (block var b T is B end) (return v) W = Left (block₁ (return W))
reflectᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (UnallocatedAddress ())
reflectᴱ H (binexp M op N) (binOp₀ ()) (UnallocatedAddress p)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) = Left (cond BinOpMismatch₁ bin₁ (reflect-subtyping H M s p))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) = Left (BinOpMismatch₂ (heap-weakeningᴱ H N (rednᴱ⊑ s) p))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) = Left (cond BinOpMismatch₁ bin₁ (≮:-reduction H M s p))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) = Left (BinOpMismatch₂ (≮:-heap-weakeningᴱ H N (rednᴱ⊑ s) p))
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W) = mapL bin₁ (reflectᴱ H M s W)
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₂ W) = Left (bin₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) = Left (BinOpMismatch₁ (heap-weakeningᴱ H M (rednᴱ⊑ s) p))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) = Left (cond BinOpMismatch₂ bin₂ (reflect-subtyping H N s p))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) = Left (BinOpMismatch₁ (≮:-heap-weakeningᴱ H M (rednᴱ⊑ s) p))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) = Left (cond BinOpMismatch₂ bin₂ (≮:-reduction H N s p))
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₁ W) = Left (bin₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W))
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W) = mapL bin₂ (reflectᴱ H N s W)
reflectᴮ H (local var x T M B) (local s) (LocalVarMismatch p) = Left (cond LocalVarMismatch local₁ (reflect-subtyping H M s p))
reflectᴮ H (local var x T M B) (local s) (LocalVarMismatch p) = Left (cond LocalVarMismatch local₁ (≮:-reduction H M s p))
reflectᴮ H (local var x T M B) (local s) (local₁ W) = mapL local₁ (reflectᴱ H M s W)
reflectᴮ H (local var x T M B) (local s) (local₂ W) = Left (local₂ (reflect-weakeningᴮ (x T) H B (rednᴱ⊑ s) W))
reflectᴮ H (local var x T M B) (subst v) W = Left (cond local₂ (cond local₁ LocalVarMismatch) (reflect-substitutionᴮ H B v x W))
@ -258,7 +295,7 @@ reflectᴴᴱ H (M $ N) (app₁ s) W = mapL app₁ (reflectᴴᴱ H M s W)
reflectᴴᴱ H (M $ N) (app₂ v s) W = mapL app₂ (reflectᴴᴱ H N s W)
reflectᴴᴱ H (M $ N) (beta O v refl p) W = Right W
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a p) (addr b refl W) with b ≡ᴬ a
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakeningᴮ (x T) H B (snoc defn) p))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (≮:-heap-weakeningᴮ (x T) H B (snoc defn) p))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x T) H B (snoc defn) W))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W))
reflectᴴᴱ H (block var b T is B end) (block s) W = mapL block₁ (reflectᴴᴮ H B s W)
@ -269,7 +306,7 @@ reflectᴴᴱ H (binexp M op N) (binOp₁ s) W = mapL bin₁ (reflectᴴᴱ H M
reflectᴴᴱ H (binexp M op N) (binOp₂ s) W = mapL bin₂ (reflectᴴᴱ H N s W)
reflectᴴᴮ H (function f var x T ⟩∈ U is C end B) (function a p) (addr b refl W) with b ≡ᴬ a
reflectᴴᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakeningᴮ (x T) H C (snoc defn) p))
reflectᴴᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (≮:-heap-weakeningᴮ (x T) H C (snoc defn) p))
reflectᴴᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x T) H C (snoc defn) W))
reflectᴴᴮ H (function f var x T ⟩∈ U is C end B) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W))
reflectᴴᴮ H (local var x T M B) (local s) W = mapL local₁ (reflectᴴᴱ H M s W)

View file

@ -5,7 +5,7 @@ module Properties.Subtyping where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_)
open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-function-tgt; scalar-scalar; function-scalar; function-ok; function-ok₁; function-ok₂; function-err; function-tgt; left; right; _,_)
open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; __; _∩_; skalar)
open import Properties.Contradiction using (CONTRADICTION; ¬; )
open import Properties.Equality using (_≢_)
@ -19,37 +19,42 @@ dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ()))
dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ()))
dec-language nil (scalar nil) = Right (scalar nil)
dec-language nil function = Left (scalar-function nil)
dec-language nil (function-ok t) = Left (scalar-function-ok nil)
dec-language nil (function-ok s t) = Left (scalar-function-ok nil)
dec-language nil (function-err t) = Left (scalar-function-err nil)
dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ()))
dec-language boolean (scalar boolean) = Right (scalar boolean)
dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ()))
dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ()))
dec-language boolean function = Left (scalar-function boolean)
dec-language boolean (function-ok t) = Left (scalar-function-ok boolean)
dec-language boolean (function-ok s t) = Left (scalar-function-ok boolean)
dec-language boolean (function-err t) = Left (scalar-function-err boolean)
dec-language number (scalar number) = Right (scalar number)
dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ()))
dec-language number (scalar string) = Left (scalar-scalar string number (λ ()))
dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ()))
dec-language number function = Left (scalar-function number)
dec-language number (function-ok t) = Left (scalar-function-ok number)
dec-language number (function-ok s t) = Left (scalar-function-ok number)
dec-language number (function-err t) = Left (scalar-function-err number)
dec-language string (scalar number) = Left (scalar-scalar number string (λ ()))
dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ()))
dec-language string (scalar string) = Right (scalar string)
dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ()))
dec-language string function = Left (scalar-function string)
dec-language string (function-ok t) = Left (scalar-function-ok string)
dec-language string (function-ok s t) = Left (scalar-function-ok string)
dec-language string (function-err t) = Left (scalar-function-err string)
dec-language (T₁ T₂) (scalar s) = Left (function-scalar s)
dec-language (T₁ T₂) function = Right function
dec-language (T₁ T₂) (function-ok t) = mapLR function-ok function-ok (dec-language T₂ t)
dec-language (T₁ T₂) (function-ok s t) = cond (Right function-ok₁) (λ p mapLR (function-ok p) function-ok (dec-language T₂ t)) (dec-language T₁ s)
dec-language (T₁ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t))
dec-language never t = Left never
dec-language unknown t = Right unknown
dec-language (T₁ T₂) t = cond (λ p cond (Left _,_ p) (Right right) (dec-language T₂ t)) (Right left) (dec-language T₁ t)
dec-language (T₁ T₂) t = cond (Left left) (λ p cond (Left right) (Right _,_ p) (dec-language T₂ t)) (dec-language T₁ t)
dec-language nil (function-tgt t) = Left (scalar-function-tgt nil)
dec-language (T₁ T₂) (function-tgt t) = mapLR function-tgt function-tgt (dec-language T₂ t)
dec-language boolean (function-tgt t) = Left (scalar-function-tgt boolean)
dec-language number (function-tgt t) = Left (scalar-function-tgt number)
dec-language string (function-tgt t) = Left (scalar-function-tgt string)
-- ¬Language T is the complement of Language T
language-comp : {T} t ¬Language T t ¬(Language T t)
@ -61,9 +66,12 @@ language-comp (scalar s) (scalar-scalar s p₁ p₂) (scalar s) = p₂ refl
language-comp (scalar s) (function-scalar s) (scalar s) = language-comp function (scalar-function s) function
language-comp (scalar s) never (scalar ())
language-comp function (scalar-function ()) function
language-comp (function-ok t) (scalar-function-ok ()) (function-ok q)
language-comp (function-ok t) (function-ok p) (function-ok q) = language-comp t p q
language-comp (function-ok s t) (scalar-function-ok ()) (function-ok₁ p)
language-comp (function-ok s t) (function-ok p₁ p₂) (function-ok₁ q) = language-comp s q p₁
language-comp (function-ok s t) (function-ok p₁ p₂) (function-ok₂ q) = language-comp t p₂ q
language-comp (function-err t) (function-err p) (function-err q) = language-comp t q p
language-comp (function-tgt t) (scalar-function-tgt ()) (function-tgt q)
language-comp (function-tgt t) (function-tgt p) (function-tgt q) = language-comp t p q
-- ≮: is the complement of <:
¬≮:-impl-<: : {T U} ¬(T ≮: U) (T <: U)
@ -90,9 +98,18 @@ language-comp (function-err t) (function-err p) (function-err q) = language-comp
≮:-trans-≡ : {S T U} (S ≮: T) (T U) (S ≮: U)
:-trans-≡ p refl = p
<:-trans-≡ : {S T U} (S <: T) (T U) (S <: U)
<:-trans-≡ p refl = p
≡-impl-<: : {T U} (T U) (T <: U)
≡-impl-<: refl = <:-refl
≡-trans-≮: : {S T U} (S T) (T ≮: U) (S ≮: U)
≡-trans-≮: refl p = p
≡-trans-<: : {S T U} (S T) (T <: U) (S <: U)
≡-trans-<: refl p = p
≮:-trans : {S T U} (S ≮: U) Either (S ≮: T) (T ≮: U)
:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z witness t z q) (dec-language T t)
@ -141,6 +158,12 @@ language-comp (function-err t) (function-err p) (function-err q) = language-comp
≮:--right : {S T U} (T ≮: U) ((S T) ≮: U)
:--right (witness t p q) = witness t (right p) q
≮:-left- : {S T U} (S ≮: (T U)) (S ≮: T)
:-left- (witness t p (q₁ , q₂)) = witness t p q₁
≮:-right- : {S T U} (S ≮: (T U)) (S ≮: U)
:-right- (witness t p (q₁ , q₂)) = witness t p q₂
-- Properties of intersection
<:-intersect : {R S T U} (R <: T) (S <: U) ((R S) <: (T U))
@ -158,6 +181,12 @@ language-comp (function-err t) (function-err p) (function-err q) = language-comp
<:-∩-symm : {T U} (T U) <: (U T)
<:-∩-symm t (p₁ , p₂) = (p₂ , p₁)
<:-∩-assocl : {S T U} (S (T U)) <: ((S T) U)
<:-∩-assocl t (p , (p₁ , p₂)) = (p , p₁) , p₂
<:-∩-assocr : {S T U} ((S T) U) <: (S (T U))
<:-∩-assocr t ((p , p₁) , p₂) = p , (p₁ , p₂)
≮:-∩-left : {S T U} (S ≮: T) (S ≮: (T U))
:-∩-left (witness t p q) = witness t p (left q)
@ -199,47 +228,84 @@ language-comp (function-err t) (function-err p) (function-err q) = language-comp
-distr-∩-<: t (left p₁ , right p₂) = right p₂
-distr-∩-<: t (right p₁ , p₂) = right p₁
∩-<:- : {S T} (S T) <: (S T)
∩-<:- t (p , _) = left p
-- Properties of functions
<:-function : {R S T U} (R <: S) (T <: U) (S T) <: (R U)
<:-function p q function function = function
<:-function p q (function-ok t) (function-ok r) = function-ok (q t r)
<:-function p q (function-ok s t) (function-ok₁ r) = function-ok₁ (<:-impl-⊇ p s r)
<:-function p q (function-ok s t) (function-ok₂ r) = function-ok₂ (q t r)
<:-function p q (function-err s) (function-err r) = function-err (<:-impl-⊇ p s r)
<:-function p q (function-tgt t) (function-tgt r) = function-tgt (q t r)
<:-function-∩-∩ : {R S T U} ((R T) (S U)) <: ((R S) (T U))
<:-function-∩-∩ function (function , function) = function
<:-function-∩-∩ (function-ok s t) (function-ok₁ p , q) = function-ok₁ (left p)
<:-function-∩-∩ (function-ok s t) (function-ok₂ p , function-ok₁ q) = function-ok₁ (right q)
<:-function-∩-∩ (function-ok s t) (function-ok₂ p , function-ok₂ q) = function-ok₂ (p , q)
<:-function-∩-∩ (function-err s) (function-err p , q) = function-err (left p)
<:-function-∩-∩ (function-tgt s) (function-tgt p , function-tgt q) = function-tgt (p , q)
<:-function-∩- : {R S T U} ((R T) (S U)) <: ((R S) (T U))
<:-function-∩- function (function , function) = function
<:-function-∩- (function-ok t) (function-ok p₁ , function-ok p₂) = function-ok (right p₂)
<:-function-∩- (function-err _) (function-err p₁ , function-err q₂) = function-err (p₁ , q₂)
<:-function-∩- (function-ok s t) (function-ok₁ p₁ , function-ok₁ p₂) = function-ok₁ (p₁ , p₂)
<:-function-∩- (function-ok s t) (p₁ , function-ok₂ p₂) = function-ok₂ (right p₂)
<:-function-∩- (function-ok s t) (function-ok₂ p₁ , p₂) = function-ok₂ (left p₁)
<:-function-∩- (function-err s) (function-err p₁ , function-err q₂) = function-err (p₁ , q₂)
<:-function-∩- (function-tgt t) (function-tgt p , q) = function-tgt (left p)
<:-function-∩ : {S T U} ((S T) (S U)) <: (S (T U))
<:-function-∩ function (function , function) = function
<:-function-∩ (function-ok t) (function-ok p₁ , function-ok p₂) = function-ok (p₁ , p₂)
<:-function-∩ (function-ok s t) (p₁ , function-ok₁ p₂) = function-ok₁ p₂
<:-function-∩ (function-ok s t) (function-ok₁ p₁ , p₂) = function-ok₁ p₁
<:-function-∩ (function-ok s t) (function-ok₂ p₁ , function-ok₂ p₂) = function-ok₂ (p₁ , p₂)
<:-function-∩ (function-err s) (function-err p₁ , function-err p₂) = function-err p₂
<:-function-∩ (function-tgt t) (function-tgt p₁ , function-tgt p₂) = function-tgt (p₁ , p₂)
<:-function- : {R S T U} ((R S) (T U)) <: ((R T) (S U))
<:-function- function (left function) = function
<:-function- (function-ok t) (left (function-ok p)) = function-ok (left p)
<:-function- (function-ok s t) (left (function-ok₁ p)) = function-ok₁ (left p)
<:-function- (function-ok s t) (left (function-ok₂ p)) = function-ok₂ (left p)
<:-function- (function-err s) (left (function-err p)) = function-err (left p)
<:-function- (scalar s) (left (scalar ()))
<:-function- function (right function) = function
<:-function- (function-ok t) (right (function-ok p)) = function-ok (right p)
<:-function- (function-ok s t) (right (function-ok₁ p)) = function-ok₁ (right p)
<:-function- (function-ok s t) (right (function-ok₂ p)) = function-ok₂ (right p)
<:-function- (function-err s) (right (function-err x)) = function-err (right x)
<:-function- (scalar s) (right (scalar ()))
<:-function- (function-tgt t) (left (function-tgt p)) = function-tgt (left p)
<:-function- (function-tgt t) (right (function-tgt p)) = function-tgt (right p)
<:-function--∩ : {R S T U} ((R S) (T U)) <: ((R T) (S U))
<:-function--∩ function function = left function
<:-function--∩ (function-ok t) (function-ok (left p)) = left (function-ok p)
<:-function--∩ (function-ok t) (function-ok (right p)) = right (function-ok p)
<:-function--∩ (function-ok s t) (function-ok₁ (left p)) = left (function-ok₁ p)
<:-function--∩ (function-ok s t) (function-ok₂ (left p)) = left (function-ok₂ p)
<:-function--∩ (function-ok s t) (function-ok₁ (right p)) = right (function-ok₁ p)
<:-function--∩ (function-ok s t) (function-ok₂ (right p)) = right (function-ok₂ p)
<:-function--∩ (function-err s) (function-err (left p)) = left (function-err p)
<:-function--∩ (function-err s) (function-err (right p)) = right (function-err p)
<:-function--∩ (function-tgt t) (function-tgt (left p)) = left (function-tgt p)
<:-function--∩ (function-tgt t) (function-tgt (right p)) = right (function-tgt p)
<:-function-left : {R S T U} (S T) <: (R U) (R <: S)
<:-function-left {R} {S} p s Rs with dec-language S s
<:-function-left p s Rs | Right Ss = Ss
<:-function-left p s Rs | Left ¬Ss with p (function-err s) (function-err ¬Ss)
<:-function-left p s Rs | Left ¬Ss | function-err ¬Rs = CONTRADICTION (language-comp s ¬Rs Rs)
<:-function-right : {R S T U} (S T) <: (R U) (T <: U)
<:-function-right p t Tt with p (function-tgt t) (function-tgt Tt)
<:-function-right p t Tt | function-tgt St = St
≮:-function-left : {R S T U} (R ≮: S) (S T) ≮: (R U)
:-function-left (witness t p q) = witness (function-err t) (function-err q) (function-err p)
≮:-function-right : {R S T U} (T ≮: U) (S T) ≮: (R U)
:-function-right (witness t p q) = witness (function-ok t) (function-ok p) (function-ok q)
:-function-right (witness t p q) = witness (function-tgt t) (function-tgt p) (function-tgt q)
-- Properties of scalars
skalar-function-ok : {t} (¬Language skalar (function-ok t))
skalar-function-ok : {s t} (¬Language skalar (function-ok s t))
skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean)))
scalar-<: : {S T} (s : Scalar S) Language T (scalar s) (S <: T)
@ -261,7 +327,7 @@ scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T))
scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s)
unknown-≮:-scalar : {U} (Scalar U) (unknown ≮: U)
unknown-≮:-scalar s = witness (function-ok (scalar s)) unknown (scalar-function-ok s)
unknown-≮:-scalar s = witness function unknown (scalar-function s)
scalar-≮:-never : {U} (Scalar U) (U ≮: never)
scalar-≮:-never s = witness (scalar s) (scalar s) never
@ -288,6 +354,9 @@ never-≮: (witness t p q) = witness t p never
unknown-≮:-never : (unknown ≮: never)
unknown-≮:-never = witness (scalar nil) unknown never
unknown-≮:-function : {S T} (unknown ≮: (S T))
unknown-≮:-function = witness (scalar nil) unknown (function-scalar nil)
function-≮:-never : {T U} ((T U) ≮: never)
function-≮:-never = witness function function never
@ -310,8 +379,9 @@ function-≮:-never = witness function function never
<:-everything : unknown <: ((never unknown) skalar)
<:-everything (scalar s) p = right (skalar-scalar s)
<:-everything function p = left function
<:-everything (function-ok t) p = left (function-ok unknown)
<:-everything (function-ok s t) p = left (function-ok never)
<:-everything (function-err s) p = left (function-err never)
<:-everything (function-tgt t) p = left (function-tgt unknown)
-- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf)
-- defines a "set-theoretic" model (sec 2.5)
@ -351,8 +421,9 @@ set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , just u) Qtu (S₂t , ¬T
S₁t | Right r = r
¬T₁u : ¬(Language T₁ u)
¬T₁u T₁u with p (function-ok u) (function-ok T₁u)
¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u
¬T₁u T₁u with p (function-ok t u) (function-ok₂ T₁u)
¬T₁u T₁u | function-ok₁ ¬S₂t = language-comp t ¬S₂t S₂t
¬T₁u T₁u | function-ok₂ T₂u = ¬T₂u T₂u
set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , nothing) Qt- (S₂t , _) = q (t , nothing) Qt- (S₁t , λ ()) where
@ -365,21 +436,21 @@ set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , nothing) Qt- (S₂t , _)
not-quite-set-theoretic-only-if : {S₁ T₁ S₂ T₂}
-- We don't quite have that this is a set-theoretic model
-- it's only true when Language T₁ and ¬Language T₂ t₂ are inhabited
-- in particular it's not true when T₁ is never, or T₂ is unknown.
s₂ t₂ Language S₂ s₂ ¬Language T₂ t₂
-- it's only true when Language S₂ is inhabited
-- in particular it's not true when S₂ is never,
s₂ Language S₂ s₂
-- This is the "only if" part of being a set-theoretic model
( Q Q Comp((Language S₁) Comp(Lift(Language T₁))) Q Comp((Language S₂) Comp(Lift(Language T₂))))
(Language (S₁ T₁) Language (S₂ T₂))
not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t p = r where
not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ S₂s p = r where
Q : (Tree × Maybe Tree) Set
Q (t , just u) = Either (¬Language S₁ t) (Language T₁ u)
Q (t , nothing) = ¬Language S₁ t
q : Q Comp((Language S₁) Comp(Lift(Language T₁)))
q : Q Comp(Language S₁ Comp(Lift(Language T₁)))
q (t , just u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t
q (t , just u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u
q (t , nothing) ¬S₁t (S₁t , _) = language-comp t ¬S₁t S₁t
@ -389,9 +460,17 @@ not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂
r (function-err s) (function-err ¬S₁s) with dec-language S₂ s
r (function-err s) (function-err ¬S₁s) | Left ¬S₂s = function-err ¬S₂s
r (function-err s) (function-err ¬S₁s) | Right S₂s = CONTRADICTION (p Q q (s , nothing) ¬S₁s (S₂s , λ ()))
r (function-ok t) (function-ok T₁t) with dec-language T₂ t
r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , just t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t))
r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t
r (function-ok s t) (function-ok₁ ¬S₁s) with dec-language S₂ s
r (function-ok s t) (function-ok₁ ¬S₁s) | Left ¬S₂s = function-ok₁ ¬S₂s
r (function-ok s t) (function-ok₁ ¬S₁s) | Right S₂s = CONTRADICTION (p Q q (s , nothing) ¬S₁s (S₂s , λ ()))
r (function-ok s t) (function-ok₂ T₁t) with dec-language T₂ t
r (function-ok s t) (function-ok₂ T₁t) | Left ¬T₂t with dec-language S₂ s
r (function-ok s t) (function-ok₂ T₁t) | Left ¬T₂t | Left ¬S₂s = function-ok₁ ¬S₂s
r (function-ok s t) (function-ok₂ T₁t) | Left ¬T₂t | Right S₂s = CONTRADICTION (p Q q (s , just t) (Right T₁t) (S₂s , language-comp t ¬T₂t))
r (function-ok s t) (function-ok₂ T₁t) | Right T₂t = function-ok₂ T₂t
r (function-tgt t) (function-tgt T₁t) with dec-language T₂ t
r (function-tgt t) (function-tgt T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , just t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t))
r (function-tgt t) (function-tgt T₁t) | Right T₂t = function-tgt T₂t
-- A counterexample when the argument type is empty.
@ -399,22 +478,4 @@ set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Co
set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p)
set-theoretic-counterexample-two : (never number) ≮: (never string)
set-theoretic-counterexample-two = witness
(function-ok (scalar number)) (function-ok (scalar number))
(function-ok (scalar-scalar number string (λ ())))
-- At some point we may deal with overloaded function resolution, which should fix this problem...
-- The reason why this is connected to overloaded functions is that currently we have that the type of
-- f(x) is (tgt T) where f:T. Really we should have the type depend on the type of x, that is use (tgt T U),
-- where U is the type of x. In particular (tgt (S => T) (U & V)) should be the same as (tgt ((S&U) => T) V)
-- and tgt(never => T) should be unknown. For example
--
-- tgt((number => string) & (string => bool))(number)
-- is tgt(number => string)(number) & tgt(string => bool)(number)
-- is tgt(number => string)(number) & tgt(string => bool)(number&unknown)
-- is tgt(number => string)(number) & tgt(string&number => bool)(unknown)
-- is tgt(number => string)(number) & tgt(never => bool)(unknown)
-- is string & unknown
-- is string
--
-- there's some discussion of this in the Gentle Introduction paper.
set-theoretic-counterexample-two = witness (function-tgt (scalar number)) (function-tgt (scalar number)) (function-tgt (scalar-scalar number string (λ ())))

View file

@ -6,9 +6,9 @@ open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Bool using (Bool; true; false)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import FFI.Data.Either using (Either)
open import Luau.ResolveOverloads using (resolve)
open import Luau.TypeCheck using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; ⊢ᴼ_; ⊢ᴴ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; nil; var; addr; number; bool; string; app; function; block; binexp; done; return; local; nothing; orUnknown; tgtBinOp)
open import Luau.Syntax using (Block; Expr; Value; BinaryOperator; yes; nil; addr; number; bool; string; val; var; binexp; _$_; function_is_end; block_is_end; _∙_; return; done; local_←_; _⟨_⟩; _⟨_⟩∈_; var_∈_; name; fun; arg; +; -; *; /; <; >; ==; ~=; <=; >=)
open import Luau.FunctionTypes using (src; tgt)
open import Luau.Type using (Type; nil; unknown; never; number; boolean; string; _⇒_)
open import Luau.RuntimeType using (RuntimeType; nil; number; function; string; valueType)
open import Luau.VarCtxt using (VarCtxt; ∅; _↦_; _⊕_↦_; _⋒_; _⊝_) renaming (_[_] to _[_]ⱽ)
@ -40,7 +40,7 @@ typeOfᴮ : Heap yes → VarCtxt → (Block yes) → Type
typeOfᴱ H Γ (var x) = orUnknown(Γ [ x ]ⱽ)
typeOfᴱ H Γ (val v) = orUnknown(typeOfⱽ H v)
typeOfᴱ H Γ (M $ N) = tgt(typeOfᴱ H Γ M)
typeOfᴱ H Γ (M $ N) = resolve (typeOfᴱ H Γ M) (typeOfᴱ H Γ N)
typeOfᴱ H Γ (function f var x S ⟩∈ T is B end) = S T
typeOfᴱ H Γ (block var b T is B end) = T
typeOfᴱ H Γ (binexp M op N) = tgtBinOp op
@ -50,14 +50,6 @@ typeOfᴮ H Γ (local var x ∈ T ← M ∙ B) = typeOfᴮ H (Γ ⊕ x ↦ T) B
typeOfᴮ H Γ (return M B) = typeOfᴱ H Γ M
typeOfᴮ H Γ done = nil
mustBeFunction : H Γ v (never src (typeOfᴱ H Γ (val v))) (function valueType(v))
mustBeFunction H Γ nil p = CONTRADICTION (p refl)
mustBeFunction H Γ (addr a) p = refl
mustBeFunction H Γ (number n) p = CONTRADICTION (p refl)
mustBeFunction H Γ (bool true) p = CONTRADICTION (p refl)
mustBeFunction H Γ (bool false) p = CONTRADICTION (p refl)
mustBeFunction H Γ (string x) p = CONTRADICTION (p refl)
mustBeNumber : H Γ v (typeOfᴱ H Γ (val v) number) (valueType(v) number)
mustBeNumber H Γ (addr a) p with remember (H [ a ]ᴴ)
mustBeNumber H Γ (addr a) p | (just O , q) with trans (cong orUnknown (cong typeOfᴹᴼ (sym q))) p

View file

@ -3,12 +3,12 @@
module Properties.TypeNormalization where
open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; __; _∩_)
open import Luau.Subtyping using (scalar-function-err)
open import Luau.Subtyping using (Tree; Language; ¬Language; function; scalar; unknown; left; right; function-ok₁; function-ok₂; function-err; function-tgt; scalar-function; scalar-function-ok; scalar-function-err; scalar-function-tgt; function-scalar; _,_)
open import Luau.TypeNormalization using (_ⁿ_; _∩ⁿ_; _ᶠ_; _ⁿˢ_; _∩ⁿˢ_; normalize)
open import Luau.Subtyping using (_<:_)
open import Luau.Subtyping using (_<:_; _≮:_; witness; never)
open import Properties.Subtyping using (<:-trans; <:-refl; <:-unknown; <:-never; <:--left; <:--right; <:--lub; <:-∩-left; <:-∩-right; <:-∩-glb; <:-∩-symm; <:-function; <:-function--∩; <:-function-∩-; <:-function-; <:-everything; <:-union; <:--assocl; <:--assocr; <:--symm; <:-intersect; -distl-∩-<:; -distr-∩-<:; <:--distr-∩; <:--distl-∩; ∩-distl--<:; <:-∩-distl-; <:-∩-distr-; scalar-∩-function-<:-never; scalar-≢-∩-<:-never)
-- Notmal forms for types
-- Normal forms for types
data FunType : Type Set
data Normal : Type Set
@ -17,11 +17,11 @@ data FunType where
_∩_ : {F G} FunType F FunType G FunType (F G)
data Normal where
never : Normal never
unknown : Normal unknown
_⇒_ : {S T} Normal S Normal T Normal (S T)
_∩_ : {F G} FunType F FunType G Normal (F G)
__ : {S T} Normal S Scalar T Normal (S T)
never : Normal never
unknown : Normal unknown
data OptScalar : Type Set where
never : OptScalar never
@ -30,6 +30,38 @@ data OptScalar : Type → Set where
string : OptScalar string
nil : OptScalar nil
-- Top function type
fun-top : {F} (FunType F) (F <: (never unknown))
fun-top (S T) = <:-function <:-never <:-unknown
fun-top (F G) = <:-trans <:-∩-left (fun-top F)
-- function types are inhabited
fun-function : {F} FunType F Language F function
fun-function (S T) = function
fun-function (F G) = (fun-function F , fun-function G)
fun-≮:-never : {F} FunType F (F ≮: never)
fun-≮:-never F = witness function (fun-function F) never
-- function types aren't scalars
fun-¬scalar : {F S t} (s : Scalar S) FunType F Language F t ¬Language S t
fun-¬scalar s (S T) function = scalar-function s
fun-¬scalar s (S T) (function-ok₁ p) = scalar-function-ok s
fun-¬scalar s (S T) (function-ok₂ p) = scalar-function-ok s
fun-¬scalar s (S T) (function-err p) = scalar-function-err s
fun-¬scalar s (S T) (function-tgt p) = scalar-function-tgt s
fun-¬scalar s (F G) (p₁ , p₂) = fun-¬scalar s G p₂
¬scalar-fun : {F S} FunType F (s : Scalar S) ¬Language F (scalar s)
¬scalar-fun (S T) s = function-scalar s
¬scalar-fun (F G) s = left (¬scalar-fun F s)
scalar-≮:-fun : {F S} FunType F Scalar S S ≮: F
scalar-≮:-fun F s = witness (scalar s) (scalar s) (¬scalar-fun F s)
unknown-≮:-fun : {F} FunType F unknown ≮: F
unknown-≮:-fun F = witness (scalar nil) unknown (¬scalar-fun F nil)
-- Normalization produces normal types
normal : T Normal (normalize T)
normalᶠ : {F} FunType F Normal F
@ -40,7 +72,7 @@ normal-∩ⁿˢ : ∀ {S T} → Normal S → Scalar T → OptScalar (S ∩ⁿˢ
normal-∪ᶠ : {F G} FunType F FunType G FunType (F ∪ᶠ G)
normal nil = never nil
normal (S T) = normalᶠ ((normal S) (normal T))
normal (S T) = (normal S) (normal T)
normal never = never
normal unknown = unknown
normal boolean = never boolean

View file

@ -0,0 +1,433 @@
{-# OPTIONS --rewriting #-}
module Properties.TypeSaturation where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Either using (Either; Left; Right)
open import Luau.Subtyping using (Tree; Language; ¬Language; _<:_; _≮:_; witness; scalar; function; function-err; function-ok; function-ok₁; function-ok₂; scalar-function; _,_; never)
open import Luau.Type using (Type; _⇒_; _∩_; __; never; unknown)
open import Luau.TypeNormalization using (_∩ⁿ_; _ⁿ_)
open import Luau.TypeSaturation using (_⋓_; _⋒_; _∩ᵘ_; _∩ⁱ_; -saturate; ∩-saturate; saturate)
open import Properties.Subtyping using (dec-language; language-comp; <:-impl-⊇; <:-refl; <:-trans; <:-trans-≮:; <:-impl-¬≮: ; <:-never; <:-unknown; <:-function; <:-union; <:--symm; <:--left; <:--right; <:--lub; <:--assocl; <:--assocr; <:-intersect; <:-∩-symm; <:-∩-left; <:-∩-right; <:-∩-glb; ≮:-function-left; ≮:-function-right; <:-function-∩-; <:-function-∩-∩; <:-∩-assocl; <:-∩-assocr; ∩-<:-; <:-∩-distl-; ∩-distl--<:; <:-∩-distr-; ∩-distr--<:)
open import Properties.TypeNormalization using (Normal; FunType; _⇒_; _∩_; __; never; unknown; normal-∪ⁿ; normal-∩ⁿ; ∪ⁿ-<:-; -<:-∪ⁿ; ∩ⁿ-<:-∩; ∩-<:-∩ⁿ)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.Functions using (_∘_)
-- Saturation preserves normalization
normal-⋒ : {F G} FunType F FunType G FunType (F G)
normal-⋒ (R S) (T U) = (normal-∩ⁿ R T) (normal-∩ⁿ S U)
normal-⋒ (R S) (G H) = normal-⋒ (R S) G normal-⋒ (R S) H
normal-⋒ (E F) G = normal-⋒ E G normal-⋒ F G
normal-⋓ : {F G} FunType F FunType G FunType (F G)
normal-⋓ (R S) (T U) = (normal-∪ⁿ R T) (normal-∪ⁿ S U)
normal-⋓ (R S) (G H) = normal-⋓ (R S) G normal-⋓ (R S) H
normal-⋓ (E F) G = normal-⋓ E G normal-⋓ F G
normal-∩-saturate : {F} FunType F FunType (∩-saturate F)
normal-∩-saturate (S T) = S T
normal-∩-saturate (F G) = (normal-∩-saturate F normal-∩-saturate G) normal-⋒ (normal-∩-saturate F) (normal-∩-saturate G)
normal--saturate : {F} FunType F FunType (-saturate F)
normal--saturate (S T) = S T
normal--saturate (F G) = (normal--saturate F normal--saturate G) normal-⋓ (normal--saturate F) (normal--saturate G)
normal-saturate : {F} FunType F FunType (saturate F)
normal-saturate F = normal--saturate (normal-∩-saturate F)
-- Saturation resects subtyping
-saturate-<: : {F} FunType F -saturate F <: F
-saturate-<: (S T) = <:-refl
-saturate-<: (F G) = <:-trans <:-∩-left (<:-intersect (-saturate-<: F) (-saturate-<: G))
∩-saturate-<: : {F} FunType F ∩-saturate F <: F
∩-saturate-<: (S T) = <:-refl
∩-saturate-<: (F G) = <:-trans <:-∩-left (<:-intersect (∩-saturate-<: F) (∩-saturate-<: G))
saturate-<: : {F} FunType F saturate F <: F
saturate-<: F = <:-trans (-saturate-<: (normal-∩-saturate F)) (∩-saturate-<: F)
∩-<:-⋓ : {F G} FunType F FunType G (F G) <: (F G)
∩-<:-⋓ (R S) (T U) = <:-trans <:-function-∩- (<:-function (∪ⁿ-<:- R T) (-<:-∪ⁿ S U))
∩-<:-⋓ (R S) (G H) = <:-trans (<:-∩-glb (<:-intersect <:-refl <:-∩-left) (<:-intersect <:-refl <:-∩-right)) (<:-intersect (∩-<:-⋓ (R S) G) (∩-<:-⋓ (R S) H))
∩-<:-⋓ (E F) G = <:-trans (<:-∩-glb (<:-intersect <:-∩-left <:-refl) (<:-intersect <:-∩-right <:-refl)) (<:-intersect (∩-<:-⋓ E G) (∩-<:-⋓ F G))
∩-<:-⋒ : {F G} FunType F FunType G (F G) <: (F G)
∩-<:-⋒ (R S) (T U) = <:-trans <:-function-∩-∩ (<:-function (∩ⁿ-<:-∩ R T) (∩-<:-∩ⁿ S U))
∩-<:-⋒ (R S) (G H) = <:-trans (<:-∩-glb (<:-intersect <:-refl <:-∩-left) (<:-intersect <:-refl <:-∩-right)) (<:-intersect (∩-<:-⋒ (R S) G) (∩-<:-⋒ (R S) H))
∩-<:-⋒ (E F) G = <:-trans (<:-∩-glb (<:-intersect <:-∩-left <:-refl) (<:-intersect <:-∩-right <:-refl)) (<:-intersect (∩-<:-⋒ E G) (∩-<:-⋒ F G))
<:--saturate : {F} FunType F F <: -saturate F
<:--saturate (S T) = <:-refl
<:--saturate (F G) = <:-∩-glb (<:-intersect (<:--saturate F) (<:--saturate G)) (<:-trans (<:-intersect (<:--saturate F) (<:--saturate G)) (∩-<:-⋓ (normal--saturate F) (normal--saturate G)))
<:-∩-saturate : {F} FunType F F <: ∩-saturate F
<:-∩-saturate (S T) = <:-refl
<:-∩-saturate (F G) = <:-∩-glb (<:-intersect (<:-∩-saturate F) (<:-∩-saturate G)) (<:-trans (<:-intersect (<:-∩-saturate F) (<:-∩-saturate G)) (∩-<:-⋒ (normal-∩-saturate F) (normal-∩-saturate G)))
<:-saturate : {F} FunType F F <: saturate F
<:-saturate F = <:-trans (<:-∩-saturate F) (<:--saturate (normal-∩-saturate F))
-- Overloads F is the set of overloads of F
data Overloads : Type Type Set where
here : {S T} Overloads (S T) (S T)
left : {S T F G} Overloads F (S T) Overloads (F G) (S T)
right : {S T F G} Overloads G (S T) Overloads (F G) (S T)
normal-overload-src : {F S T} FunType F Overloads F (S T) Normal S
normal-overload-src (S T) here = S
normal-overload-src (F G) (left o) = normal-overload-src F o
normal-overload-src (F G) (right o) = normal-overload-src G o
normal-overload-tgt : {F S T} FunType F Overloads F (S T) Normal T
normal-overload-tgt (S T) here = T
normal-overload-tgt (F G) (left o) = normal-overload-tgt F o
normal-overload-tgt (F G) (right o) = normal-overload-tgt G o
-- An inductive presentation of the overloads of F ⋓ G
data -Lift (P Q : Type Set) : Type Set where
union : {R S T U}
P (R S)
Q (T U)
--------------------
-Lift P Q ((R T) (S U))
-- An inductive presentation of the overloads of F ⋒ G
data ∩-Lift (P Q : Type Set) : Type Set where
intersect : {R S T U}
P (R S)
Q (T U)
--------------------
∩-Lift P Q ((R T) (S U))
-- An inductive presentation of the overloads of -saturate F
data -Saturate (P : Type Set) : Type Set where
base : {S T}
P (S T)
--------------------
-Saturate P (S T)
union : {R S T U}
-Saturate P (R S)
-Saturate P (T U)
--------------------
-Saturate P ((R T) (S U))
-- An inductive presentation of the overloads of ∩-saturate F
data ∩-Saturate (P : Type Set) : Type Set where
base : {S T}
P (S T)
--------------------
∩-Saturate P (S T)
intersect : {R S T U}
∩-Saturate P (R S)
∩-Saturate P (T U)
--------------------
∩-Saturate P ((R T) (S U))
-- The <:-up-closure of a set of function types
data <:-Close (P : Type Set) : Type Set where
defn : {R S T U}
P (S T)
R <: S
T <: U
------------------
<:-Close P (R U)
-- F ⊆ᵒ G whenever every overload of F is an overload of G
_⊆ᵒ_ : Type Type Set
F ⊆ᵒ G = {S T} Overloads F (S T) Overloads G (S T)
-- F <:ᵒ G when every overload of G is a supertype of an overload of F
_<:ᵒ_ : Type Type Set
_<:ᵒ_ F G = {S T} Overloads G (S T) <:-Close (Overloads F) (S T)
-- P ⊂: Q when any type in P is a subtype of some type in Q
_⊂:_ : (Type Set) (Type Set) Set
P ⊂: Q = {S T} P (S T) <:-Close Q (S T)
-- <:-Close is a monad
just : {P S T} P (S T) <:-Close P (S T)
just p = defn p <:-refl <:-refl
infixl 5 _>>=_ _>>=ˡ_ _>>=ʳ_
_>>=_ : {P Q S T} <:-Close P (S T) (P ⊂: Q) <:-Close Q (S T)
(defn p p₁ p₂) >>= P⊂Q with P⊂Q p
(defn p p₁ p₂) >>= P⊂Q | defn q q₁ q₂ = defn q (<:-trans p₁ q₁) (<:-trans q₂ p₂)
_>>=ˡ_ : {P R S T} <:-Close P (S T) (R <: S) <:-Close P (R T)
(defn p p₁ p₂) >>=ˡ q = defn p (<:-trans q p₁) p₂
_>>=ʳ_ : {P S T U} <:-Close P (S T) (T <: U) <:-Close P (S U)
(defn p p₁ p₂) >>=ʳ q = defn p p₁ (<:-trans p₂ q)
-- Properties of ⊂:
⊂:-refl : {P} P ⊂: P
:-refl p = just p
_[]_ : {P Q R S T U} <:-Close P (R S) <:-Close Q (T U) <:-Close (-Lift P Q) ((R T) (S U))
(defn p p₁ p₂) [] (defn q q₁ q₂) = defn (union p q) (<:-union p₁ q₁) (<:-union p₂ q₂)
_[∩]_ : {P Q R S T U} <:-Close P (R S) <:-Close Q (T U) <:-Close (∩-Lift P Q) ((R T) (S U))
(defn p p₁ p₂) [∩] (defn q q₁ q₂) = defn (intersect p q) (<:-intersect p₁ q₁) (<:-intersect p₂ q₂)
⊂:-∩-saturate-inj : {P} P ⊂: ∩-Saturate P
:-∩-saturate-inj p = defn (base p) <:-refl <:-refl
⊂:--saturate-inj : {P} P ⊂: -Saturate P
:--saturate-inj p = just (base p)
⊂:-∩-lift-saturate : {P} ∩-Lift (∩-Saturate P) (∩-Saturate P) ⊂: ∩-Saturate P
:-∩-lift-saturate (intersect p q) = just (intersect p q)
⊂:--lift-saturate : {P} -Lift (-Saturate P) (-Saturate P) ⊂: -Saturate P
:--lift-saturate (union p q) = just (union p q)
⊂:-∩-lift : {P Q R S} (P ⊂: Q) (R ⊂: S) (∩-Lift P R ⊂: ∩-Lift Q S)
:-∩-lift P⊂Q R⊂S (intersect n o) = P⊂Q n [∩] R⊂S o
⊂:--lift : {P Q R S} (P ⊂: Q) (R ⊂: S) (-Lift P R ⊂: -Lift Q S)
:--lift P⊂Q R⊂S (union n o) = P⊂Q n [] R⊂S o
⊂:-∩-saturate : {P Q} (P ⊂: Q) (∩-Saturate P ⊂: ∩-Saturate Q)
:-∩-saturate P⊂Q (base p) = P⊂Q p >>= ⊂:-∩-saturate-inj
:-∩-saturate P⊂Q (intersect p q) = (⊂:-∩-saturate P⊂Q p [∩] ⊂:-∩-saturate P⊂Q q) >>= ⊂:-∩-lift-saturate
⊂:--saturate : {P Q} (P ⊂: Q) (-Saturate P ⊂: -Saturate Q)
:--saturate P⊂Q (base p) = P⊂Q p >>= ⊂:--saturate-inj
:--saturate P⊂Q (union p q) = (⊂:--saturate P⊂Q p [] ⊂:--saturate P⊂Q q) >>= ⊂:--lift-saturate
⊂:-∩-saturate-indn : {P Q} (P ⊂: Q) (∩-Lift Q Q ⊂: Q) (∩-Saturate P ⊂: Q)
:-∩-saturate-indn P⊂Q QQ⊂Q (base p) = P⊂Q p
:-∩-saturate-indn P⊂Q QQ⊂Q (intersect p q) = (⊂:-∩-saturate-indn P⊂Q QQ⊂Q p [∩] ⊂:-∩-saturate-indn P⊂Q QQ⊂Q q) >>= QQ⊂Q
⊂:--saturate-indn : {P Q} (P ⊂: Q) (-Lift Q Q ⊂: Q) (-Saturate P ⊂: Q)
:--saturate-indn P⊂Q QQ⊂Q (base p) = P⊂Q p
:--saturate-indn P⊂Q QQ⊂Q (union p q) = (⊂:--saturate-indn P⊂Q QQ⊂Q p [] ⊂:--saturate-indn P⊂Q QQ⊂Q q) >>= QQ⊂Q
-saturate-resp-∩-saturation : {P} (∩-Lift P P ⊂: P) (∩-Lift (-Saturate P) (-Saturate P) ⊂: -Saturate P)
-saturate-resp-∩-saturation ∩P⊂P (intersect (base p) (base q)) = ∩P⊂P (intersect p q) >>= ⊂:--saturate-inj
-saturate-resp-∩-saturation ∩P⊂P (intersect p (union q q₁)) = (-saturate-resp-∩-saturation ∩P⊂P (intersect p q) [] -saturate-resp-∩-saturation ∩P⊂P (intersect p q₁)) >>= ⊂:--lift-saturate >>=ˡ <:-∩-distl- >>=ʳ ∩-distl--<:
-saturate-resp-∩-saturation ∩P⊂P (intersect (union p p₁) q) = (-saturate-resp-∩-saturation ∩P⊂P (intersect p q) [] -saturate-resp-∩-saturation ∩P⊂P (intersect p₁ q)) >>= ⊂:--lift-saturate >>=ˡ <:-∩-distr- >>=ʳ ∩-distr--<:
ov-language : {F t} FunType F ( {S T} Overloads F (S T) Language (S T) t) Language F t
ov-language (S T) p = p here
ov-language (F G) p = (ov-language F (p left) , ov-language G (p right))
ov-<: : {F R S T U} FunType F Overloads F (R S) ((R S) <: (T U)) F <: (T U)
ov-<: F here p = p
ov-<: (F G) (left o) p = <:-trans <:-∩-left (ov-<: F o p)
ov-<: (F G) (right o) p = <:-trans <:-∩-right (ov-<: G o p)
<:ᵒ-impl-<: : {F G} FunType F FunType G (F <:ᵒ G) (F <: G)
<:ᵒ-impl-<: F (T U) F<G with F<G here
<:ᵒ-impl-<: F (T U) F<G | defn o o₁ o₂ = ov-<: F o (<:-function o₁ o₂)
<:ᵒ-impl-<: F (G H) F<G = <:-∩-glb (<:ᵒ-impl-<: F G (F<G left)) (<:ᵒ-impl-<: F H (F<G right))
⊂:-overloads-left : {F G} Overloads F ⊂: Overloads (F G)
:-overloads-left p = just (left p)
⊂:-overloads-right : {F G} Overloads G ⊂: Overloads (F G)
:-overloads-right p = just (right p)
⊂:-overloads-⋒ : {F G} FunType F FunType G ∩-Lift (Overloads F) (Overloads G) ⊂: Overloads (F G)
:-overloads-⋒ (R S) (T U) (intersect here here) = defn here (∩-<:-∩ⁿ R T) (∩ⁿ-<:-∩ S U)
:-overloads-⋒ (R S) (G H) (intersect here (left o)) = ⊂:-overloads-⋒ (R S) G (intersect here o) >>= ⊂:-overloads-left
:-overloads-⋒ (R S) (G H) (intersect here (right o)) = ⊂:-overloads-⋒ (R S) H (intersect here o) >>= ⊂:-overloads-right
:-overloads-⋒ (E F) G (intersect (left n) o) = ⊂:-overloads-⋒ E G (intersect n o) >>= ⊂:-overloads-left
:-overloads-⋒ (E F) G (intersect (right n) o) = ⊂:-overloads-⋒ F G (intersect n o) >>= ⊂:-overloads-right
⊂:-⋒-overloads : {F G} FunType F FunType G Overloads (F G) ⊂: ∩-Lift (Overloads F) (Overloads G)
:-⋒-overloads (R S) (T U) here = defn (intersect here here) (∩ⁿ-<:-∩ R T) (∩-<:-∩ⁿ S U)
:-⋒-overloads (R S) (G H) (left o) = ⊂:-⋒-overloads (R S) G o >>= ⊂:-∩-lift ⊂:-refl ⊂:-overloads-left
:-⋒-overloads (R S) (G H) (right o) = ⊂:-⋒-overloads (R S) H o >>= ⊂:-∩-lift ⊂:-refl ⊂:-overloads-right
:-⋒-overloads (E F) G (left o) = ⊂:-⋒-overloads E G o >>= ⊂:-∩-lift ⊂:-overloads-left ⊂:-refl
:-⋒-overloads (E F) G (right o) = ⊂:-⋒-overloads F G o >>= ⊂:-∩-lift ⊂:-overloads-right ⊂:-refl
⊂:-overloads-⋓ : {F G} FunType F FunType G -Lift (Overloads F) (Overloads G) ⊂: Overloads (F G)
:-overloads-⋓ (R S) (T U) (union here here) = defn here (-<:-∪ⁿ R T) (∪ⁿ-<:- S U)
:-overloads-⋓ (R S) (G H) (union here (left o)) = ⊂:-overloads-⋓ (R S) G (union here o) >>= ⊂:-overloads-left
:-overloads-⋓ (R S) (G H) (union here (right o)) = ⊂:-overloads-⋓ (R S) H (union here o) >>= ⊂:-overloads-right
:-overloads-⋓ (E F) G (union (left n) o) = ⊂:-overloads-⋓ E G (union n o) >>= ⊂:-overloads-left
:-overloads-⋓ (E F) G (union (right n) o) = ⊂:-overloads-⋓ F G (union n o) >>= ⊂:-overloads-right
⊂:-⋓-overloads : {F G} FunType F FunType G Overloads (F G) ⊂: -Lift (Overloads F) (Overloads G)
:-⋓-overloads (R S) (T U) here = defn (union here here) (∪ⁿ-<:- R T) (-<:-∪ⁿ S U)
:-⋓-overloads (R S) (G H) (left o) = ⊂:-⋓-overloads (R S) G o >>= ⊂:--lift ⊂:-refl ⊂:-overloads-left
:-⋓-overloads (R S) (G H) (right o) = ⊂:-⋓-overloads (R S) H o >>= ⊂:--lift ⊂:-refl ⊂:-overloads-right
:-⋓-overloads (E F) G (left o) = ⊂:-⋓-overloads E G o >>= ⊂:--lift ⊂:-overloads-left ⊂:-refl
:-⋓-overloads (E F) G (right o) = ⊂:-⋓-overloads F G o >>= ⊂:--lift ⊂:-overloads-right ⊂:-refl
-saturate-overloads : {F} FunType F Overloads (-saturate F) ⊂: -Saturate (Overloads F)
-saturate-overloads (S T) here = just (base here)
-saturate-overloads (F G) (left (left o)) = -saturate-overloads F o >>= ⊂:--saturate ⊂:-overloads-left
-saturate-overloads (F G) (left (right o)) = -saturate-overloads G o >>= ⊂:--saturate ⊂:-overloads-right
-saturate-overloads (F G) (right o) =
:-⋓-overloads (normal--saturate F) (normal--saturate G) o >>=
:--lift (-saturate-overloads F) (-saturate-overloads G) >>=
:--lift (⊂:--saturate ⊂:-overloads-left) (⊂:--saturate ⊂:-overloads-right) >>=
:--lift-saturate
overloads--saturate : {F} FunType F -Saturate (Overloads F) ⊂: Overloads (-saturate F)
overloads--saturate F = ⊂:--saturate-indn (inj F) (step F) where
inj : {F} FunType F Overloads F ⊂: Overloads (-saturate F)
inj (S T) here = just here
inj (F G) (left p) = inj F p >>= ⊂:-overloads-left >>= ⊂:-overloads-left
inj (F G) (right p) = inj G p >>= ⊂:-overloads-right >>= ⊂:-overloads-left
step : {F} FunType F -Lift (Overloads (-saturate F)) (Overloads (-saturate F)) ⊂: Overloads (-saturate F)
step (S T) (union here here) = defn here (<:--lub <:-refl <:-refl) <:--left
step (F G) (union (left (left p)) (left (left q))) = step F (union p q) >>= ⊂:-overloads-left >>= ⊂:-overloads-left
step (F G) (union (left (left p)) (left (right q))) = ⊂:-overloads-⋓ (normal--saturate F) (normal--saturate G) (union p q) >>= ⊂:-overloads-right
step (F G) (union (left (right p)) (left (left q))) = ⊂:-overloads-⋓ (normal--saturate F) (normal--saturate G) (union q p) >>= ⊂:-overloads-right >>=ˡ <:--symm >>=ʳ <:--symm
step (F G) (union (left (right p)) (left (right q))) = step G (union p q) >>= ⊂:-overloads-right >>= ⊂:-overloads-left
step (F G) (union p (right q)) with ⊂:-⋓-overloads (normal--saturate F) (normal--saturate G) q
step (F G) (union (left (left p)) (right q)) | defn (union q₁ q₂) q₃ q₄ =
(step F (union p q₁) [] just q₂) >>=
:-overloads-⋓ (normal--saturate F) (normal--saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-union <:-refl q₃) <:--assocl >>=ʳ
<:-trans <:--assocr (<:-union <:-refl q₄)
step (F G) (union (left (right p)) (right q)) | defn (union q₁ q₂) q₃ q₄ =
(just q₁ [] step G (union p q₂)) >>=
:-overloads-⋓ (normal--saturate F) (normal--saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-union <:-refl q₃) (<:--lub (<:-trans <:--left <:--right) (<:--lub <:--left (<:-trans <:--right <:--right))) >>=ʳ
<:-trans (<:--lub (<:-trans <:--left <:--right) (<:--lub <:--left (<:-trans <:--right <:--right))) (<:-union <:-refl q₄)
step (F G) (union (right p) (right q)) | defn (union q₁ q₂) q₃ q₄ with ⊂:-⋓-overloads (normal--saturate F) (normal--saturate G) p
step (F G) (union (right p) (right q)) | defn (union q₁ q₂) q₃ q₄ | defn (union p₁ p₂) p₃ p₄ =
(step F (union p₁ q₁) [] step G (union p₂ q₂)) >>=
:-overloads-⋓ (normal--saturate F) (normal--saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-union p₃ q₃) (<:--lub (<:-union <:--left <:--left) (<:-union <:--right <:--right)) >>=ʳ
<:-trans (<:--lub (<:-union <:--left <:--left) (<:-union <:--right <:--right)) (<:-union p₄ q₄)
step (F G) (union (right p) q) with ⊂:-⋓-overloads (normal--saturate F) (normal--saturate G) p
step (F G) (union (right p) (left (left q))) | defn (union p₁ p₂) p₃ p₄ =
(step F (union p₁ q) [] just p₂) >>=
:-overloads-⋓ (normal--saturate F) (normal--saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-union p₃ <:-refl) (<:--lub (<:-union <:--left <:-refl) (<:-trans <:--right <:--left)) >>=ʳ
<:-trans (<:--lub (<:-union <:--left <:-refl) (<:-trans <:--right <:--left)) (<:-union p₄ <:-refl)
step (F G) (union (right p) (left (right q))) | defn (union p₁ p₂) p₃ p₄ =
(just p₁ [] step G (union p₂ q)) >>=
:-overloads-⋓ (normal--saturate F) (normal--saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-union p₃ <:-refl) <:--assocr >>=ʳ
<:-trans <:--assocl (<:-union p₄ <:-refl)
step (F G) (union (right p) (right q)) | defn (union p₁ p₂) p₃ p₄ with ⊂:-⋓-overloads (normal--saturate F) (normal--saturate G) q
step (F G) (union (right p) (right q)) | defn (union p₁ p₂) p₃ p₄ | defn (union q₁ q₂) q₃ q₄ =
(step F (union p₁ q₁) [] step G (union p₂ q₂)) >>=
:-overloads-⋓ (normal--saturate F) (normal--saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-union p₃ q₃) (<:--lub (<:-union <:--left <:--left) (<:-union <:--right <:--right)) >>=ʳ
<:-trans (<:--lub (<:-union <:--left <:--left) (<:-union <:--right <:--right)) (<:-union p₄ q₄)
-saturated : {F} FunType F -Lift (Overloads (-saturate F)) (Overloads (-saturate F)) ⊂: Overloads (-saturate F)
-saturated F o =
:--lift (-saturate-overloads F) (-saturate-overloads F) o >>=
:--lift-saturate >>=
overloads--saturate F
∩-saturate-overloads : {F} FunType F Overloads (∩-saturate F) ⊂: ∩-Saturate (Overloads F)
∩-saturate-overloads (S T) here = just (base here)
∩-saturate-overloads (F G) (left (left o)) = ∩-saturate-overloads F o >>= ⊂:-∩-saturate ⊂:-overloads-left
∩-saturate-overloads (F G) (left (right o)) = ∩-saturate-overloads G o >>= ⊂:-∩-saturate ⊂:-overloads-right
∩-saturate-overloads (F G) (right o) =
:-⋒-overloads (normal-∩-saturate F) (normal-∩-saturate G) o >>=
:-∩-lift (∩-saturate-overloads F) (∩-saturate-overloads G) >>=
:-∩-lift (⊂:-∩-saturate ⊂:-overloads-left) (⊂:-∩-saturate ⊂:-overloads-right) >>=
:-∩-lift-saturate
overloads-∩-saturate : {F} FunType F ∩-Saturate (Overloads F) ⊂: Overloads (∩-saturate F)
overloads-∩-saturate F = ⊂:-∩-saturate-indn (inj F) (step F) where
inj : {F} FunType F Overloads F ⊂: Overloads (∩-saturate F)
inj (S T) here = just here
inj (F G) (left p) = inj F p >>= ⊂:-overloads-left >>= ⊂:-overloads-left
inj (F G) (right p) = inj G p >>= ⊂:-overloads-right >>= ⊂:-overloads-left
step : {F} FunType F ∩-Lift (Overloads (∩-saturate F)) (Overloads (∩-saturate F)) ⊂: Overloads (∩-saturate F)
step (S T) (intersect here here) = defn here <:-∩-left (<:-∩-glb <:-refl <:-refl)
step (F G) (intersect (left (left p)) (left (left q))) = step F (intersect p q) >>= ⊂:-overloads-left >>= ⊂:-overloads-left
step (F G) (intersect (left (left p)) (left (right q))) = ⊂:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) (intersect p q) >>= ⊂:-overloads-right
step (F G) (intersect (left (right p)) (left (left q))) = ⊂:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) (intersect q p) >>= ⊂:-overloads-right >>=ˡ <:-∩-symm >>=ʳ <:-∩-symm
step (F G) (intersect (left (right p)) (left (right q))) = step G (intersect p q) >>= ⊂:-overloads-right >>= ⊂:-overloads-left
step (F G) (intersect (right p) q) with ⊂:-⋒-overloads (normal-∩-saturate F) (normal-∩-saturate G) p
step (F G) (intersect (right p) (left (left q))) | defn (intersect p₁ p₂) p₃ p₄ =
(step F (intersect p₁ q) [∩] just p₂) >>=
:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-intersect p₃ <:-refl) (<:-∩-glb (<:-intersect <:-∩-left <:-refl) (<:-trans <:-∩-left <:-∩-right)) >>=ʳ
<:-trans (<:-∩-glb (<:-intersect <:-∩-left <:-refl) (<:-trans <:-∩-left <:-∩-right)) (<:-intersect p₄ <:-refl)
step (F G) (intersect (right p) (left (right q))) | defn (intersect p₁ p₂) p₃ p₄ =
(just p₁ [∩] step G (intersect p₂ q)) >>=
:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-intersect p₃ <:-refl) <:-∩-assocr >>=ʳ
<:-trans <:-∩-assocl (<:-intersect p₄ <:-refl)
step (F G) (intersect (right p) (right q)) | defn (intersect p₁ p₂) p₃ p₄ with ⊂:-⋒-overloads (normal-∩-saturate F) (normal-∩-saturate G) q
step (F G) (intersect (right p) (right q)) | defn (intersect p₁ p₂) p₃ p₄ | defn (intersect q₁ q₂) q₃ q₄ =
(step F (intersect p₁ q₁) [∩] step G (intersect p₂ q₂)) >>=
:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-intersect p₃ q₃) (<:-∩-glb (<:-intersect <:-∩-left <:-∩-left) (<:-intersect <:-∩-right <:-∩-right)) >>=ʳ
<:-trans (<:-∩-glb (<:-intersect <:-∩-left <:-∩-left) (<:-intersect <:-∩-right <:-∩-right)) (<:-intersect p₄ q₄)
step (F G) (intersect p (right q)) with ⊂:-⋒-overloads (normal-∩-saturate F) (normal-∩-saturate G) q
step (F G) (intersect (left (left p)) (right q)) | defn (intersect q₁ q₂) q₃ q₄ =
(step F (intersect p q₁) [∩] just q₂) >>=
:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-intersect <:-refl q₃) <:-∩-assocl >>=ʳ
<:-trans <:-∩-assocr (<:-intersect <:-refl q₄)
step (F G) (intersect (left (right p)) (right q)) | defn (intersect q₁ q₂) q₃ q₄ =
(just q₁ [∩] step G (intersect p q₂) ) >>=
:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-intersect <:-refl q₃) (<:-∩-glb (<:-trans <:-∩-right <:-∩-left) (<:-∩-glb <:-∩-left (<:-trans <:-∩-right <:-∩-right))) >>=ʳ
<:-∩-glb (<:-trans <:-∩-right <:-∩-left) (<:-trans (<:-∩-glb <:-∩-left (<:-trans <:-∩-right <:-∩-right)) q₄)
step (F G) (intersect (right p) (right q)) | defn (intersect q₁ q₂) q₃ q₄ with ⊂:-⋒-overloads (normal-∩-saturate F) (normal-∩-saturate G) p
step (F G) (intersect (right p) (right q)) | defn (intersect q₁ q₂) q₃ q₄ | defn (intersect p₁ p₂) p₃ p₄ =
(step F (intersect p₁ q₁) [∩] step G (intersect p₂ q₂)) >>=
:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
:-overloads-right >>=ˡ
<:-trans (<:-intersect p₃ q₃) (<:-∩-glb (<:-intersect <:-∩-left <:-∩-left) (<:-intersect <:-∩-right <:-∩-right)) >>=ʳ
<:-trans (<:-∩-glb (<:-intersect <:-∩-left <:-∩-left) (<:-intersect <:-∩-right <:-∩-right)) (<:-intersect p₄ q₄)
saturate-overloads : {F} FunType F Overloads (saturate F) ⊂: -Saturate (∩-Saturate (Overloads F))
saturate-overloads F o = -saturate-overloads (normal-∩-saturate F) o >>= (⊂:--saturate (∩-saturate-overloads F))
overloads-saturate : {F} FunType F -Saturate (∩-Saturate (Overloads F)) ⊂: Overloads (saturate F)
overloads-saturate F o = ⊂:--saturate (overloads-∩-saturate F) o >>= overloads--saturate (normal-∩-saturate F)
-- Saturated F whenever
-- * if F has overloads (R ⇒ S) and (T ⇒ U) then F has an overload which is a subtype of ((R ∩ T) ⇒ (S ∩ U))
-- * ditto union
data Saturated (F : Type) : Set where
defn :
( {R S T U} Overloads F (R S) Overloads F (T U) <:-Close (Overloads F) ((R T) (S U)))
( {R S T U} Overloads F (R S) Overloads F (T U) <:-Close (Overloads F) ((R T) (S U)))
-----------
Saturated F
-- saturated F is saturated!
saturated : {F} FunType F Saturated (saturate F)
saturated F = defn
(λ n o (saturate-overloads F n [∩] saturate-overloads F o) >>= -saturate-resp-∩-saturation ⊂:-∩-lift-saturate >>= overloads-saturate F)
(λ n o -saturated (normal-∩-saturate F) (union n o))