mirror of
https://github.com/luau-lang/luau.git
synced 2025-05-04 10:33:46 +01:00
WIP
This commit is contained in:
parent
afe72cfd86
commit
80b1fc5a71
3 changed files with 55 additions and 11 deletions
|
@ -14,6 +14,8 @@ open import FFI.Data.Either using (Either; mapLeft)
|
||||||
open import FFI.Data.Scientific using (Scientific)
|
open import FFI.Data.Scientific using (Scientific)
|
||||||
open import FFI.Data.Vector using (Vector)
|
open import FFI.Data.Vector using (Vector)
|
||||||
|
|
||||||
|
open import Properties.Equality using (_≢_)
|
||||||
|
|
||||||
{-# FOREIGN GHC import qualified Data.Aeson #-}
|
{-# FOREIGN GHC import qualified Data.Aeson #-}
|
||||||
{-# FOREIGN GHC import qualified Data.Aeson.Key #-}
|
{-# FOREIGN GHC import qualified Data.Aeson.Key #-}
|
||||||
{-# FOREIGN GHC import qualified Data.Aeson.KeyMap #-}
|
{-# FOREIGN GHC import qualified Data.Aeson.KeyMap #-}
|
||||||
|
@ -43,7 +45,10 @@ postulate
|
||||||
|
|
||||||
postulate lookup-insert : ∀ {A} k v (m : KeyMap A) → (lookup k (insert k v m) ≡ just v)
|
postulate lookup-insert : ∀ {A} k v (m : KeyMap A) → (lookup k (insert k v m) ≡ just v)
|
||||||
postulate lookup-empty : ∀ {A} k → (lookup {A} k empty ≡ nothing)
|
postulate lookup-empty : ∀ {A} k → (lookup {A} k empty ≡ nothing)
|
||||||
|
postulate lookup-insert-not : ∀ {A} j k v (m : KeyMap A) → (j ≢ k) → (lookup k m ≡ lookup k (insert j v m))
|
||||||
postulate singleton-insert-empty : ∀ {A} k (v : A) → (singleton k v ≡ insert k v empty)
|
postulate singleton-insert-empty : ∀ {A} k (v : A) → (singleton k v ≡ insert k v empty)
|
||||||
|
postulate to-from : ∀ k → toString(fromString k) ≡ k
|
||||||
|
postulate from-to : ∀ k → fromString(toString k) ≡ k
|
||||||
|
|
||||||
{-# REWRITE lookup-insert lookup-empty singleton-insert-empty #-}
|
{-# REWRITE lookup-insert lookup-empty singleton-insert-empty #-}
|
||||||
|
|
||||||
|
|
|
@ -5,9 +5,9 @@ module Luau.VarCtxt where
|
||||||
open import Agda.Builtin.Equality using (_≡_)
|
open import Agda.Builtin.Equality using (_≡_)
|
||||||
open import Luau.Type using (Type; bot; _∪_; _∩_)
|
open import Luau.Type using (Type; bot; _∪_; _∩_)
|
||||||
open import Luau.Var using (Var)
|
open import Luau.Var using (Var)
|
||||||
open import FFI.Data.Aeson using (KeyMap; Key; empty; unionWith; singleton; insert; delete; lookup; fromString; lookup-insert; lookup-empty)
|
open import FFI.Data.Aeson using (KeyMap; Key; empty; unionWith; singleton; insert; delete; lookup; toString; fromString; lookup-insert; lookup-insert-not; lookup-empty; to-from)
|
||||||
open import FFI.Data.Maybe using (Maybe; just; nothing)
|
open import FFI.Data.Maybe using (Maybe; just; nothing)
|
||||||
open import Properties.Equality using (cong)
|
open import Properties.Equality using (_≢_; cong; sym; trans)
|
||||||
|
|
||||||
VarCtxt : Set
|
VarCtxt : Set
|
||||||
VarCtxt = KeyMap Type
|
VarCtxt = KeyMap Type
|
||||||
|
@ -32,3 +32,6 @@ x ↦ T = singleton (fromString x) T
|
||||||
|
|
||||||
_⊕_↦_ : VarCtxt → Var → Type → VarCtxt
|
_⊕_↦_ : VarCtxt → Var → Type → VarCtxt
|
||||||
Γ ⊕ x ↦ T = insert (fromString x) T Γ
|
Γ ⊕ x ↦ T = insert (fromString x) T Γ
|
||||||
|
|
||||||
|
⊕-lookup-miss : ∀ x y T Γ → (x ≢ y) → (Γ [ y ] ≡ (Γ ⊕ x ↦ T) [ y ])
|
||||||
|
⊕-lookup-miss x y T Γ p = lookup-insert-not (fromString x) (fromString y) T Γ λ q → p (trans (sym (to-from x)) (trans (cong toString q) (to-from y)))
|
||||||
|
|
|
@ -14,7 +14,7 @@ open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ
|
||||||
open import Luau.Value using (val; nil; addr)
|
open import Luau.Value using (val; nil; addr)
|
||||||
open import Luau.Var using (_≡ⱽ_)
|
open import Luau.Var using (_≡ⱽ_)
|
||||||
open import Luau.Addr using (_≡ᴬ_)
|
open import Luau.Addr using (_≡ᴬ_)
|
||||||
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
|
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ⊕-lookup-miss) renaming (_[_] to _[_]ⱽ)
|
||||||
open import Luau.VarCtxt using (VarCtxt; ∅)
|
open import Luau.VarCtxt using (VarCtxt; ∅)
|
||||||
open import Properties.Remember using (remember; _,_)
|
open import Properties.Remember using (remember; _,_)
|
||||||
open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
|
open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
|
||||||
|
@ -90,10 +90,32 @@ typeOf-val-not-bot : ∀ {H Γ} v → OrWarningᴱ H (typeCheckᴱ H Γ (val v))
|
||||||
typeOf-val-not-bot = {!!}
|
typeOf-val-not-bot = {!!}
|
||||||
|
|
||||||
substitutivityᴱ : ∀ {Γ T H} M v x → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) M ≡ typeOfᴱ H Γ (M [ v / x ]ᴱ))
|
substitutivityᴱ : ∀ {Γ T H} M v x → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) M ≡ typeOfᴱ H Γ (M [ v / x ]ᴱ))
|
||||||
|
substitutivityᴱ-whenever-yes : ∀ {Γ T H} v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≡ typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (yes p)))
|
||||||
|
substitutivityᴱ-whenever-no : ∀ {Γ T H} v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≡ typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (no p)))
|
||||||
substitutivityᴮ : ∀ {Γ T H} B v x → (just T ≡ typeOfⱽ H v) → (typeOfᴮ H (Γ ⊕ x ↦ T) B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮ))
|
substitutivityᴮ : ∀ {Γ T H} B v x → (just T ≡ typeOfⱽ H v) → (typeOfᴮ H (Γ ⊕ x ↦ T) B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮ))
|
||||||
|
substitutivityᴮ-unless-yes : ∀ {Γ Γ′ T H} B v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ) → (typeOfᴮ H Γ′ B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮunless (yes p)))
|
||||||
|
substitutivityᴮ-unless-no : ∀ {Γ Γ′ T H} B v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ ⊕ x ↦ T) → (typeOfᴮ H Γ′ B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮunless (no p)))
|
||||||
|
|
||||||
substitutivityᴱ = {!!}
|
substitutivityᴱ nil v x p = refl
|
||||||
substitutivityᴮ = {!!}
|
substitutivityᴱ (var y) v x p with x ≡ⱽ y
|
||||||
|
substitutivityᴱ (var y) v x p | yes q = substitutivityᴱ-whenever-yes v x y q p
|
||||||
|
substitutivityᴱ (var y) v x p | no q = substitutivityᴱ-whenever-no v x y q p
|
||||||
|
substitutivityᴱ (addr a) v x p = refl
|
||||||
|
substitutivityᴱ (M $ N) v x p = cong tgt (substitutivityᴱ M v x p)
|
||||||
|
substitutivityᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = refl
|
||||||
|
substitutivityᴱ (block b is B end) v x p = substitutivityᴮ B v x p
|
||||||
|
substitutivityᴱ-whenever-yes v x x refl q = trans (cong orBot q) (sym (typeOfᴱⱽ v))
|
||||||
|
substitutivityᴱ-whenever-no v x y p q = cong orBot ( sym (⊕-lookup-miss x y _ _ p))
|
||||||
|
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p with x ≡ⱽ f
|
||||||
|
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | yes q = substitutivityᴮ-unless-yes B v x f q p (⊕-overwrite q)
|
||||||
|
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | no q = substitutivityᴮ-unless-no B v x f q p (⊕-swap q)
|
||||||
|
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p with x ≡ⱽ y
|
||||||
|
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p | yes q = substitutivityᴮ-unless-yes B v x y q p (⊕-overwrite q)
|
||||||
|
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p | no q = substitutivityᴮ-unless-no B v x y q p (⊕-swap q)
|
||||||
|
substitutivityᴮ (return M ∙ B) v x p = substitutivityᴱ M v x p
|
||||||
|
substitutivityᴮ done v x p = refl
|
||||||
|
substitutivityᴮ-unless-yes B v x x refl q refl = refl
|
||||||
|
substitutivityᴮ-unless-no B v x y p q refl = substitutivityᴮ B v x q
|
||||||
|
|
||||||
preservationᴱ : ∀ {H H′ M M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → OrWarningᴴᴱ H (typeCheckᴴᴱ H ∅ M) (typeOfᴱ H ∅ M ≡ typeOfᴱ H′ ∅ M′)
|
preservationᴱ : ∀ {H H′ M M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → OrWarningᴴᴱ H (typeCheckᴴᴱ H ∅ M) (typeOfᴱ H ∅ M ≡ typeOfᴱ H′ ∅ M′)
|
||||||
preservationᴮ : ∀ {H H′ B B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → OrWarningᴴᴮ H (typeCheckᴴᴮ H ∅ B) (typeOfᴮ H ∅ B ≡ typeOfᴮ H′ ∅ B′)
|
preservationᴮ : ∀ {H H′ B B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → OrWarningᴴᴮ H (typeCheckᴴᴮ H ∅ B) (typeOfᴮ H ∅ B ≡ typeOfᴮ H′ ∅ B′)
|
||||||
|
@ -154,8 +176,8 @@ reflect-substitutionᴱ (M $ N) v x p (app₀ q) = app₀ (λ s → q (trans (co
|
||||||
reflect-substitutionᴱ (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ M v x p W)
|
reflect-substitutionᴱ (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ M v x p W)
|
||||||
reflect-substitutionᴱ (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ N v x p W)
|
reflect-substitutionᴱ (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ N v x p W)
|
||||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) with (x ≡ⱽ y)
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) with (x ≡ⱽ y)
|
||||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s {!!}))
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-yes B v x y r p (⊕-overwrite r))))
|
||||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s {!!}))
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-no B v x y r p (⊕-swap r))))
|
||||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) with (x ≡ⱽ y)
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) with (x ≡ⱽ y)
|
||||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-overwrite r) W)
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-overwrite r) W)
|
||||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W)
|
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W)
|
||||||
|
@ -166,8 +188,8 @@ reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q
|
||||||
reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) | ()
|
reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) | ()
|
||||||
|
|
||||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) with (x ≡ⱽ y)
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) with (x ≡ⱽ y)
|
||||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s {!substitutivityᴮ C v x!}))
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-yes C v x y r p (⊕-overwrite r))))
|
||||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s {!substitutivityᴮ C v x!}))
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-no C v x y r p (⊕-swap r))))
|
||||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) with (x ≡ⱽ y)
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) with (x ≡ⱽ y)
|
||||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes C v x y r p (⊕-overwrite r) W)
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes C v x y r p (⊕-overwrite r) W)
|
||||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no C v x y r p (⊕-swap r) W)
|
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no C v x y r p (⊕-swap r) W)
|
||||||
|
@ -231,8 +253,22 @@ reflectᴱ (app₁ s) (app₁ W′) with reflectᴱ s W′
|
||||||
reflectᴱ (app₁ s) (app₁ W′) | heap W = heap W
|
reflectᴱ (app₁ s) (app₁ W′) | heap W = heap W
|
||||||
reflectᴱ (app₁ s) (app₁ W′) | expr W = expr (app₁ W)
|
reflectᴱ (app₁ s) (app₁ W′) | expr W = expr (app₁ W)
|
||||||
reflectᴱ (app₁ s) (app₂ W′) = expr (app₂ (reflect-weakeningᴱ (redn-⊑ s) W′))
|
reflectᴱ (app₁ s) (app₂ W′) = expr (app₂ (reflect-weakeningᴱ (redn-⊑ s) W′))
|
||||||
reflectᴱ (app₂ p s) W′ = {!!}
|
reflectᴱ (app₂ p s) (app₀ p′) with heap-weakeningᴱ (redn-⊑ s) | preservationᴱ s
|
||||||
reflectᴱ (beta {a = a} {F = f ⟨ var x ∈ T ⟩∈ U} q refl) (block (var f ∈ U) W′) = {!!} -- expr (app₀ (λ r → p (trans (cong src (cong orBot (cong typeOfᴹᴼ (sym q)))) r)))
|
reflectᴱ (app₂ p s) (app₀ p′) | ok q | ok q′ = expr (app₀ (λ r → p′ (trans (trans (cong src (sym q)) r) q′)))
|
||||||
|
reflectᴱ (app₂ p s) (app₀ p′) | warning W | _ = expr (app₁ W)
|
||||||
|
reflectᴱ (app₂ p s) (app₀ p′) | _ | warning (expr W) = expr (app₂ W)
|
||||||
|
reflectᴱ (app₂ p s) (app₀ p′) | _ | warning (heap W) = heap W
|
||||||
|
reflectᴱ (app₂ p s) (app₁ W′) = expr (app₁ (reflect-weakeningᴱ (redn-⊑ s) W′))
|
||||||
|
reflectᴱ (app₂ p s) (app₂ W′) with reflectᴱ s W′
|
||||||
|
reflectᴱ (app₂ p s) (app₂ W′) | heap W = heap W
|
||||||
|
reflectᴱ (app₂ p s) (app₂ W′) | expr W = expr (app₂ W)
|
||||||
|
reflectᴱ {H = H} (beta {a = a} {F = f ⟨ var x ∈ T ⟩∈ U} {B = B} {V = V} p refl) (block (var f ∈ U) W′) with remember (typeOfⱽ H V)
|
||||||
|
reflectᴱ {H = H} (beta {a = a} {F = f ⟨ var x ∈ T ⟩∈ U} {B = B} {V = V} p refl) (block (var f ∈ U) W′) | (just S , q) with S ≡ᵀ T
|
||||||
|
reflectᴱ {H = H} (beta {a = a} {F = f ⟨ var x ∈ T ⟩∈ U} {B = B} {V = V} p refl) (block (var f ∈ U) W′) | (just T , q) | yes refl = heap (addr a p (function₁ f (reflect-substitutionᴮ B V x (sym q) W′)))
|
||||||
|
reflectᴱ {H = H} (beta {a = a} {F = f ⟨ var x ∈ T ⟩∈ U} {B = B} {V = V} p refl) (block (var f ∈ U) W′) | (just S , q) | no r = expr (app₀ (λ s → r (trans (cong orBot (sym q)) (trans (sym (typeOfᴱⱽ V)) (trans (sym s) (cong src (cong orBot (cong typeOfᴹᴼ p))))))))
|
||||||
|
reflectᴱ {H = H} (beta {a = a} {F = f ⟨ var x ∈ T ⟩∈ U} {B = B} {V = V} p refl) (block (var f ∈ U) W′) | (nothing , q) with typeOf-val-not-bot V
|
||||||
|
reflectᴱ {H = H} (beta {a = a} {F = f ⟨ var x ∈ T ⟩∈ U} {B = B} {V = V} p refl) (block (var f ∈ U) W′) | (nothing , q) | ok r = CONTRADICTION (r (trans (cong orBot (sym q)) (sym (typeOfᴱⱽ V))))
|
||||||
|
reflectᴱ {H = H} (beta {a = a} {F = f ⟨ var x ∈ T ⟩∈ U} {B = B} {V = V} p refl) (block (var f ∈ U) W′) | (nothing , q) | warning W = expr (app₂ W)
|
||||||
reflectᴱ (block s) (block b W′) with reflectᴮ s W′
|
reflectᴱ (block s) (block b W′) with reflectᴮ s W′
|
||||||
reflectᴱ (block s) (block b W′) | heap W = heap W
|
reflectᴱ (block s) (block b W′) | heap W = heap W
|
||||||
reflectᴱ (block s) (block b W′) | block W = expr (block b W)
|
reflectᴱ (block s) (block b W′) | block W = expr (block b W)
|
||||||
|
|
Loading…
Add table
Reference in a new issue