Handle cyclically referenced declared classes (#729)

Closes #631 

Performs a "two pass" approach, where we first call `prototype` on the
class definition.
The prototype phase checks for errors and creates a base CTV for the
class, which other types can then reference.

The second `check` phase fills it out with all the defined
properties/methods

Co-authored-by: vegorov-rbx <75688451+vegorov-rbx@users.noreply.github.com>
This commit is contained in:
JohnnyMorganz 2022-11-28 13:25:44 +00:00 committed by GitHub
parent 95d9c6d194
commit 7dbe47f4dd
Signed by: DevComp
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 191 additions and 41 deletions

View file

@ -95,6 +95,7 @@ struct TypeChecker
void check(const ScopePtr& scope, const AstStatDeclareFunction& declaredFunction);
void prototype(const ScopePtr& scope, const AstStatTypeAlias& typealias, int subLevel = 0);
void prototype(const ScopePtr& scope, const AstStatDeclareClass& declaredClass);
void checkBlock(const ScopePtr& scope, const AstStatBlock& statement);
void checkBlockWithoutRecursionCheck(const ScopePtr& scope, const AstStatBlock& statement);
@ -399,6 +400,11 @@ private:
*/
DenseHashSet<std::pair<bool, Name>, HashBoolNamePair> duplicateTypeAliases;
/**
* A set of incorrect class definitions which is used to avoid a second-pass analysis.
*/
DenseHashSet<const AstStatDeclareClass*> incorrectClassDefinitions{nullptr};
std::vector<std::pair<TypeId, ScopePtr>> deferredQuantification;
};

View file

@ -49,6 +49,7 @@ LUAU_FASTFLAGVARIABLE(LuauReportShadowedTypeAlias, false)
LUAU_FASTFLAGVARIABLE(LuauBetterMessagingOnCountMismatch, false)
LUAU_FASTFLAGVARIABLE(LuauArgMismatchReportFunctionLocation, false)
LUAU_FASTFLAGVARIABLE(LuauImplicitElseRefinement, false)
LUAU_FASTFLAGVARIABLE(LuauDeclareClassPrototype, false)
namespace Luau
{
@ -356,6 +357,7 @@ ModulePtr TypeChecker::checkWithoutRecursionCheck(const SourceModule& module, Mo
unifierState.skipCacheForType.clear();
duplicateTypeAliases.clear();
incorrectClassDefinitions.clear();
return std::move(currentModule);
}
@ -523,6 +525,10 @@ void TypeChecker::checkBlockWithoutRecursionCheck(const ScopePtr& scope, const A
prototype(scope, *typealias, subLevel);
++subLevel;
}
else if (const auto& declaredClass = stat->as<AstStatDeclareClass>(); FFlag::LuauDeclareClassPrototype && declaredClass)
{
prototype(scope, *declaredClass);
}
}
auto protoIter = sorted.begin();
@ -1670,8 +1676,10 @@ void TypeChecker::prototype(const ScopePtr& scope, const AstStatTypeAlias& typea
}
}
void TypeChecker::check(const ScopePtr& scope, const AstStatDeclareClass& declaredClass)
void TypeChecker::prototype(const ScopePtr& scope, const AstStatDeclareClass& declaredClass)
{
LUAU_ASSERT(FFlag::LuauDeclareClassPrototype);
std::optional<TypeId> superTy = std::nullopt;
if (declaredClass.superName)
{
@ -1681,6 +1689,7 @@ void TypeChecker::check(const ScopePtr& scope, const AstStatDeclareClass& declar
if (!lookupType)
{
reportError(declaredClass.location, UnknownSymbol{superName, UnknownSymbol::Type});
incorrectClassDefinitions.insert(&declaredClass);
return;
}
@ -1692,7 +1701,7 @@ void TypeChecker::check(const ScopePtr& scope, const AstStatDeclareClass& declar
{
reportError(declaredClass.location,
GenericError{format("Cannot use non-class type '%s' as a superclass of class '%s'", superName.c_str(), declaredClass.name.value)});
incorrectClassDefinitions.insert(&declaredClass);
return;
}
}
@ -1701,61 +1710,174 @@ void TypeChecker::check(const ScopePtr& scope, const AstStatDeclareClass& declar
TypeId classTy = addType(ClassTypeVar(className, {}, superTy, std::nullopt, {}, {}, currentModuleName));
ClassTypeVar* ctv = getMutable<ClassTypeVar>(classTy);
TypeId metaTy = addType(TableTypeVar{TableState::Sealed, scope->level});
TableTypeVar* metatable = getMutable<TableTypeVar>(metaTy);
ctv->metatable = metaTy;
scope->exportedTypeBindings[className] = TypeFun{{}, classTy};
}
for (const AstDeclaredClassProp& prop : declaredClass.props)
void TypeChecker::check(const ScopePtr& scope, const AstStatDeclareClass& declaredClass)
{
if (FFlag::LuauDeclareClassPrototype)
{
Name propName(prop.name.value);
TypeId propTy = resolveType(scope, *prop.ty);
Name className(declaredClass.name.value);
bool assignToMetatable = isMetamethod(propName);
Luau::ClassTypeVar::Props& assignTo = assignToMetatable ? metatable->props : ctv->props;
// Don't bother checking if the class definition was incorrect
if (incorrectClassDefinitions.find(&declaredClass))
return;
// Function types always take 'self', but this isn't reflected in the
// parsed annotation. Add it here.
if (prop.isMethod)
std::optional<TypeFun> binding;
if (auto it = scope->exportedTypeBindings.find(className); it != scope->exportedTypeBindings.end())
binding = it->second;
// This class definition must have been `prototype()`d first.
if (!binding)
ice("Class not predeclared");
TypeId classTy = binding->type;
ClassTypeVar* ctv = getMutable<ClassTypeVar>(classTy);
if (!ctv->metatable)
ice("No metatable for declared class");
TableTypeVar* metatable = getMutable<TableTypeVar>(*ctv->metatable);
for (const AstDeclaredClassProp& prop : declaredClass.props)
{
if (FunctionTypeVar* ftv = getMutable<FunctionTypeVar>(propTy))
Name propName(prop.name.value);
TypeId propTy = resolveType(scope, *prop.ty);
bool assignToMetatable = isMetamethod(propName);
Luau::ClassTypeVar::Props& assignTo = assignToMetatable ? metatable->props : ctv->props;
// Function types always take 'self', but this isn't reflected in the
// parsed annotation. Add it here.
if (prop.isMethod)
{
ftv->argNames.insert(ftv->argNames.begin(), FunctionArgument{"self", {}});
ftv->argTypes = addTypePack(TypePack{{classTy}, ftv->argTypes});
ftv->hasSelf = true;
if (FunctionTypeVar* ftv = getMutable<FunctionTypeVar>(propTy))
{
ftv->argNames.insert(ftv->argNames.begin(), FunctionArgument{"self", {}});
ftv->argTypes = addTypePack(TypePack{{classTy}, ftv->argTypes});
ftv->hasSelf = true;
}
}
}
if (assignTo.count(propName) == 0)
{
assignTo[propName] = {propTy};
}
else
{
TypeId currentTy = assignTo[propName].type;
// We special-case this logic to keep the intersection flat; otherwise we
// would create a ton of nested intersection types.
if (const IntersectionTypeVar* itv = get<IntersectionTypeVar>(currentTy))
if (assignTo.count(propName) == 0)
{
std::vector<TypeId> options = itv->parts;
options.push_back(propTy);
TypeId newItv = addType(IntersectionTypeVar{std::move(options)});
assignTo[propName] = {newItv};
}
else if (get<FunctionTypeVar>(currentTy))
{
TypeId intersection = addType(IntersectionTypeVar{{currentTy, propTy}});
assignTo[propName] = {intersection};
assignTo[propName] = {propTy};
}
else
{
reportError(declaredClass.location, GenericError{format("Cannot overload non-function class member '%s'", propName.c_str())});
TypeId currentTy = assignTo[propName].type;
// We special-case this logic to keep the intersection flat; otherwise we
// would create a ton of nested intersection types.
if (const IntersectionTypeVar* itv = get<IntersectionTypeVar>(currentTy))
{
std::vector<TypeId> options = itv->parts;
options.push_back(propTy);
TypeId newItv = addType(IntersectionTypeVar{std::move(options)});
assignTo[propName] = {newItv};
}
else if (get<FunctionTypeVar>(currentTy))
{
TypeId intersection = addType(IntersectionTypeVar{{currentTy, propTy}});
assignTo[propName] = {intersection};
}
else
{
reportError(declaredClass.location, GenericError{format("Cannot overload non-function class member '%s'", propName.c_str())});
}
}
}
}
else
{
std::optional<TypeId> superTy = std::nullopt;
if (declaredClass.superName)
{
Name superName = Name(declaredClass.superName->value);
std::optional<TypeFun> lookupType = scope->lookupType(superName);
if (!lookupType)
{
reportError(declaredClass.location, UnknownSymbol{superName, UnknownSymbol::Type});
return;
}
// We don't have generic classes, so this assertion _should_ never be hit.
LUAU_ASSERT(lookupType->typeParams.size() == 0 && lookupType->typePackParams.size() == 0);
superTy = lookupType->type;
if (!get<ClassTypeVar>(follow(*superTy)))
{
reportError(declaredClass.location, GenericError{format("Cannot use non-class type '%s' as a superclass of class '%s'",
superName.c_str(), declaredClass.name.value)});
return;
}
}
Name className(declaredClass.name.value);
TypeId classTy = addType(ClassTypeVar(className, {}, superTy, std::nullopt, {}, {}, currentModuleName));
ClassTypeVar* ctv = getMutable<ClassTypeVar>(classTy);
TypeId metaTy = addType(TableTypeVar{TableState::Sealed, scope->level});
TableTypeVar* metatable = getMutable<TableTypeVar>(metaTy);
ctv->metatable = metaTy;
scope->exportedTypeBindings[className] = TypeFun{{}, classTy};
for (const AstDeclaredClassProp& prop : declaredClass.props)
{
Name propName(prop.name.value);
TypeId propTy = resolveType(scope, *prop.ty);
bool assignToMetatable = isMetamethod(propName);
Luau::ClassTypeVar::Props& assignTo = assignToMetatable ? metatable->props : ctv->props;
// Function types always take 'self', but this isn't reflected in the
// parsed annotation. Add it here.
if (prop.isMethod)
{
if (FunctionTypeVar* ftv = getMutable<FunctionTypeVar>(propTy))
{
ftv->argNames.insert(ftv->argNames.begin(), FunctionArgument{"self", {}});
ftv->argTypes = addTypePack(TypePack{{classTy}, ftv->argTypes});
ftv->hasSelf = true;
}
}
if (assignTo.count(propName) == 0)
{
assignTo[propName] = {propTy};
}
else
{
TypeId currentTy = assignTo[propName].type;
// We special-case this logic to keep the intersection flat; otherwise we
// would create a ton of nested intersection types.
if (const IntersectionTypeVar* itv = get<IntersectionTypeVar>(currentTy))
{
std::vector<TypeId> options = itv->parts;
options.push_back(propTy);
TypeId newItv = addType(IntersectionTypeVar{std::move(options)});
assignTo[propName] = {newItv};
}
else if (get<FunctionTypeVar>(currentTy))
{
TypeId intersection = addType(IntersectionTypeVar{{currentTy, propTy}});
assignTo[propName] = {intersection};
}
else
{
reportError(declaredClass.location, GenericError{format("Cannot overload non-function class member '%s'", propName.c_str())});
}
}
}
}

View file

@ -396,4 +396,26 @@ TEST_CASE_FIXTURE(Fixture, "class_definition_string_props")
CHECK_EQ(toString(requireType("y")), "string");
}
TEST_CASE_FIXTURE(Fixture, "class_definitions_reference_other_classes")
{
ScopedFastFlag LuauDeclareClassPrototype("LuauDeclareClassPrototype", true);
unfreeze(typeChecker.globalTypes);
LoadDefinitionFileResult result = loadDefinitionFile(typeChecker, typeChecker.globalScope, R"(
declare class Channel
Messages: { Message }
OnMessage: (message: Message) -> ()
end
declare class Message
Text: string
Channel: Channel
end
)",
"@test");
freeze(typeChecker.globalTypes);
REQUIRE(result.success);
}
TEST_SUITE_END();