This commit is contained in:
ajeffrey@roblox.com 2022-02-24 13:57:42 -06:00
parent 9f6fc4a56b
commit 331c729d29
4 changed files with 204 additions and 177 deletions

View file

@ -21,17 +21,17 @@ data Warningᴮ (H : Heap yes) {Γ} : ∀ {B T} → (Γ ⊢ᴮ B ∈ T) → Set
data Warningᴱ H {Γ} where
UnallocatedAddress : a {T}
UnallocatedAddress : {a T}
(H [ a ]ᴴ nothing)
---------------------
Warningᴱ H (addr a T)
Warningᴱ H (addr {a} T)
UnboundVariable : x {T} {p}
(Γ [ x ]ⱽ nothing)
------------------------
Warningᴱ H (var x {T} p)
Warningᴱ H (var {x} {T} p)
app₀ : {M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
@ -51,29 +51,29 @@ data Warningᴱ H {Γ} where
-----------------
Warningᴱ H (app D₁ D₂)
function₀ : f {x B T U V} {D : (Γ x T) ⊢ᴮ B V}
function₀ : {f x B T U V} {D : (Γ x T) ⊢ᴮ B V}
(U V)
-------------------------
Warningᴱ H (function f {U = U} D)
Warningᴱ H (function {f} {U = U} D)
function₁ : f {x B T U V} {D : (Γ x T) ⊢ᴮ B V}
function₁ : {f x B T U V} {D : (Γ x T) ⊢ᴮ B V}
Warningᴮ H D
-------------------------
Warningᴱ H (function f {U = U} D)
Warningᴱ H (function {f} {U = U} D)
block₀ : b {B T U} {D : Γ ⊢ᴮ B U}
block₀ : {b B T U} {D : Γ ⊢ᴮ B U}
(T U)
------------------------------
Warningᴱ H (block b {T = T} D)
Warningᴱ H (block {b} {T = T} D)
block₁ : b {B T U} {D : Γ ⊢ᴮ B U}
block₁ : {b B T U} {D : Γ ⊢ᴮ B U}
Warningᴮ H D
------------------------------
Warningᴱ H (block b {T = T} D)
Warningᴱ H (block {b} {T = T} D)
data Warningᴮ H {Γ} where
@ -101,37 +101,37 @@ data Warningᴮ H {Γ} where
--------------------
Warningᴮ H (local D₁ D₂)
function₀ : f {x B C T U V W} {D₁ : (Γ x T) ⊢ᴮ C V} {D₂ : (Γ f (T U)) ⊢ᴮ B W}
function₀ : {f x B C T U V W} {D₁ : (Γ x T) ⊢ᴮ C V} {D₂ : (Γ f (T U)) ⊢ᴮ B W}
(U V)
-------------------------------------
Warningᴮ H (function f {U = U} D₁ D₂)
Warningᴮ H (function D₁ D₂)
function₁ : f {x B C T U V W} {D₁ : (Γ x T) ⊢ᴮ C V} {D₂ : (Γ f (T U)) ⊢ᴮ B W}
function₁ : {f x B C T U V W} {D₁ : (Γ x T) ⊢ᴮ C V} {D₂ : (Γ f (T U)) ⊢ᴮ B W}
Warningᴮ H D₁
--------------------
Warningᴮ H (function f D₁ D₂)
Warningᴮ H (function D₁ D₂)
function₂ : f {x B C T U V W} {D₁ : (Γ x T) ⊢ᴮ C V} {D₂ : (Γ f (T U)) ⊢ᴮ B W}
function₂ : {f x B C T U V W} {D₁ : (Γ x T) ⊢ᴮ C V} {D₂ : (Γ f (T U)) ⊢ᴮ B W}
Warningᴮ H D₂
--------------------
Warningᴮ H (function f D₁ D₂)
Warningᴮ H (function D₁ D₂)
data Warningᴼ (H : Heap yes) : {V} (⊢ᴼ V) Set where
function₀ : f {x B T U V} {D : (x T) ⊢ᴮ B V}
function₀ : {f x B T U V} {D : (x T) ⊢ᴮ B V}
(U V)
---------------------------------
Warningᴼ H (function f {U = U} D)
Warningᴼ H (function {f} {U = U} D)
function₁ : f {x B T U V} {D : (x T) ⊢ᴮ B V}
function₁ : {f x B T U V} {D : (x T) ⊢ᴮ B V}
Warningᴮ H D
---------------------------------
Warningᴼ H (function f {U = U} D)
Warningᴼ H (function {f} {U = U} D)
data Warningᴴ H (D : ⊢ᴴ H) : Set where

View file

@ -48,7 +48,7 @@ data _⊢ᴮ_∈_ where
--------------------------------
Γ ⊢ᴮ local var x T M B V
function : f {x B C T U V W Γ}
function : {f x B C T U V W Γ}
(Γ x T) ⊢ᴮ C V
(Γ f (T U)) ⊢ᴮ B W
@ -62,18 +62,18 @@ data _⊢ᴱ_∈_ where
--------------
Γ ⊢ᴱ nil nil
var : x {T Γ}
var : {x T Γ}
T orBot(Γ [ x ]ⱽ)
----------------
Γ ⊢ᴱ (var x) T
addr : a T {Γ}
addr : {a Γ} T
-----------------
Γ ⊢ᴱ (addr a) T
number : n {Γ}
number : {n Γ}
------------------------
Γ ⊢ᴱ (number n) number
@ -85,19 +85,19 @@ data _⊢ᴱ_∈_ where
----------------------
Γ ⊢ᴱ (M $ N) (tgt T)
function : f {x B T U V Γ}
function : {f x B T U V Γ}
(Γ x T) ⊢ᴮ B V
-----------------------------------------------------
Γ ⊢ᴱ (function f var x T ⟩∈ U is B end) (T U)
block : b {B T U Γ}
block : {b B T U Γ}
Γ ⊢ᴮ B U
------------------------------------
Γ ⊢ᴱ (block var b T is B end) T
binexp : op {Γ M N T U}
binexp : {op Γ M N T U}
Γ ⊢ᴱ M T
Γ ⊢ᴱ N U
@ -111,7 +111,7 @@ data ⊢ᴼ_ : Maybe(Object yes) → Set where
---------
⊢ᴼ nothing
function : f {x T U V B}
function : {f x T U V B}
(x T) ⊢ᴮ B V
----------------------------------------------

View file

@ -1,5 +1,4 @@
{-# OPTIONS --rewriting #-}
{-# OPTIONS --allow-unsolved-metas #-}
module Properties.StrictMode where
@ -21,7 +20,7 @@ open import Properties.Remember using (remember; _,_)
open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeOfᴱⱽ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴᴱ; typeCheckᴴᴮ)
open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeOfᴱⱽ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴᴱ; typeCheckᴴᴮ; mustBeFunction)
open import Luau.OpSem using (_⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₁; binOp₂; binOpEval; refl; step)
open import Luau.RuntimeError using (RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinopMismatch₁; BinopMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return)
@ -83,7 +82,7 @@ heap-weakeningᴱ H (nil) h = ok refl
heap-weakeningᴱ H (var x) h = ok refl
heap-weakeningᴱ H (addr a) refl = ok refl
heap-weakeningᴱ H (addr a) (snoc {a = b} defn) with a ≡ᴬ b
heap-weakeningᴱ H (addr a) (snoc {a = a} defn) | yes refl = warning (UnallocatedAddress a refl)
heap-weakeningᴱ H (addr a) (snoc {a = a} defn) | yes refl = warning (UnallocatedAddress refl)
heap-weakeningᴱ H (addr a) (snoc {a = b} p) | no q = ok (cong orBot (cong typeOfᴹᴼ (lookup-not-allocated p q)))
heap-weakeningᴱ H (number n) h = ok refl
heap-weakeningᴱ H (binexp M op N) h = ok refl
@ -94,7 +93,7 @@ heap-weakeningᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) h = ok refl
heap-weakeningᴱ H (block var b T is B end) h = ok refl
heap-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h with heap-weakeningᴮ H B h
heap-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h | ok p = ok p
heap-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h | warning W = warning (function₂ f W)
heap-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h | warning W = warning (function₂ W)
heap-weakeningᴮ H (local var x T M B) h with heap-weakeningᴮ H B h
heap-weakeningᴮ H (local var x T M B) h | ok p = ok p
heap-weakeningᴮ H (local var x T M B) h | warning W = warning (local₂ W)
@ -111,37 +110,37 @@ typeOf-val-not-bot nil = ok (λ ())
typeOf-val-not-bot (number n) = ok (λ ())
typeOf-val-not-bot {H = H} (addr a) with remember (H [ a ]ᴴ)
typeOf-val-not-bot {H = H} (addr a) | (just O , p) = ok (λ q bot-not-obj O (trans q (cong orBot (cong typeOfᴹᴼ p))))
typeOf-val-not-bot {H = H} (addr a) | (nothing , p) = warning (UnallocatedAddress a p)
typeOf-val-not-bot {H = H} (addr a) | (nothing , p) = warning (UnallocatedAddress p)
substitutivityᴱ : {Γ T H} M v x (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) M typeOfᴱ H Γ (M [ v / x ]ᴱ))
substitutivityᴱ-whenever-yes : {Γ T H} v x y (p : x y) (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) (var y) typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (yes p)))
substitutivityᴱ-whenever-no : {Γ T H} v x y (p : x y) (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) (var y) typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (no p)))
substitutivityᴮ : {Γ T H} B v x (just T typeOfⱽ H v) (typeOfᴮ H (Γ x T) B typeOfᴮ H Γ (B [ v / x ]ᴮ))
substitutivityᴮ-unless-yes : {Γ Γ′ T H} B v x y (p : x y) (just T typeOfⱽ H v) (Γ′ Γ) (typeOfᴮ H Γ′ B typeOfᴮ H Γ (B [ v / x ]ᴮunless (yes p)))
substitutivityᴮ-unless-no : {Γ Γ′ T H} B v x y (p : x y) (just T typeOfⱽ H v) (Γ′ Γ x T) (typeOfᴮ H Γ′ B typeOfᴮ H Γ (B [ v / x ]ᴮunless (no p)))
substitutivityᴱ : {Γ T} H M v x (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) M typeOfᴱ H Γ (M [ v / x ]ᴱ))
substitutivityᴱ-whenever-yes : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) (var y) typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (yes p)))
substitutivityᴱ-whenever-no : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) (var y) typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (no p)))
substitutivityᴮ : {Γ T} H B v x (just T typeOfⱽ H v) (typeOfᴮ H (Γ x T) B typeOfᴮ H Γ (B [ v / x ]ᴮ))
substitutivityᴮ-unless-yes : {Γ Γ′ T} H B v x y (p : x y) (just T typeOfⱽ H v) (Γ′ Γ) (typeOfᴮ H Γ′ B typeOfᴮ H Γ (B [ v / x ]ᴮunless (yes p)))
substitutivityᴮ-unless-no : {Γ Γ′ T} H B v x y (p : x y) (just T typeOfⱽ H v) (Γ′ Γ x T) (typeOfᴮ H Γ′ B typeOfᴮ H Γ (B [ v / x ]ᴮunless (no p)))
substitutivityᴱ nil v x p = refl
substitutivityᴱ (var y) v x p with x ≡ⱽ y
substitutivityᴱ (var y) v x p | yes q = substitutivityᴱ-whenever-yes v x y q p
substitutivityᴱ (var y) v x p | no q = substitutivityᴱ-whenever-no v x y q p
substitutivityᴱ (addr a) v x p = refl
substitutivityᴱ (number n) v x p = refl
substitutivityᴱ (binexp M op N) v x p = refl
substitutivityᴱ (M $ N) v x p = cong tgt (substitutivityᴱ M v x p)
substitutivityᴱ (function f var y T ⟩∈ U is B end) v x p = refl
substitutivityᴱ (block var b T is B end) v x p = refl
substitutivityᴱ-whenever-yes v x x refl q = trans (cong orBot q) (sym (typeOfᴱⱽ v))
substitutivityᴱ-whenever-no v x y p q = cong orBot ( sym (⊕-lookup-miss x y _ _ p))
substitutivityᴮ (function f var y T ⟩∈ U is C end B) v x p with x ≡ⱽ f
substitutivityᴮ (function f var y T ⟩∈ U is C end B) v x p | yes q = substitutivityᴮ-unless-yes B v x f q p (⊕-over q)
substitutivityᴮ (function f var y T ⟩∈ U is C end B) v x p | no q = substitutivityᴮ-unless-no B v x f q p (⊕-swap q)
substitutivityᴮ (local var y T M B) v x p with x ≡ⱽ y
substitutivityᴮ (local var y T M B) v x p | yes q = substitutivityᴮ-unless-yes B v x y q p (⊕-over q)
substitutivityᴮ (local var y T M B) v x p | no q = substitutivityᴮ-unless-no B v x y q p (⊕-swap q)
substitutivityᴮ (return M B) v x p = substitutivityᴱ M v x p
substitutivityᴮ done v x p = refl
substitutivityᴮ-unless-yes B v x x refl q refl = refl
substitutivityᴮ-unless-no B v x y p q refl = substitutivityᴮ B v x q
substitutivityᴱ H nil v x p = refl
substitutivityᴱ H (var y) v x p with x ≡ⱽ y
substitutivityᴱ H (var y) v x p | yes q = substitutivityᴱ-whenever-yes H v x y q p
substitutivityᴱ H (var y) v x p | no q = substitutivityᴱ-whenever-no H v x y q p
substitutivityᴱ H (addr a) v x p = refl
substitutivityᴱ H (number n) v x p = refl
substitutivityᴱ H (binexp M op N) v x p = refl
substitutivityᴱ H (M $ N) v x p = cong tgt (substitutivityᴱ H M v x p)
substitutivityᴱ H (function f var y T ⟩∈ U is B end) v x p = refl
substitutivityᴱ H (block var b T is B end) v x p = refl
substitutivityᴱ-whenever-yes H v x x refl q = trans (cong orBot q) (sym (typeOfᴱⱽ v))
substitutivityᴱ-whenever-no H v x y p q = cong orBot ( sym (⊕-lookup-miss x y _ _ p))
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p with x ≡ⱽ f
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p | yes q = substitutivityᴮ-unless-yes H B v x f q p (⊕-over q)
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p | no q = substitutivityᴮ-unless-no H B v x f q p (⊕-swap q)
substitutivityᴮ H (local var y T M B) v x p with x ≡ⱽ y
substitutivityᴮ H (local var y T M B) v x p | yes q = substitutivityᴮ-unless-yes H B v x y q p (⊕-over q)
substitutivityᴮ H (local var y T M B) v x p | no q = substitutivityᴮ-unless-no H B v x y q p (⊕-swap q)
substitutivityᴮ H (return M B) v x p = substitutivityᴱ H M v x p
substitutivityᴮ H done v x p = refl
substitutivityᴮ-unless-yes H B v x x refl q refl = refl
substitutivityᴮ-unless-no H B v x y p q refl = substitutivityᴮ H B v x q
preservationᴱ : H M {H M} (H M ⟶ᴱ M H) OrWarningᴴᴱ H (typeCheckᴴᴱ H M) (typeOfᴱ H M typeOfᴱ H M)
preservationᴮ : H B {H B} (H B ⟶ᴮ B H) OrWarningᴴᴮ H (typeCheckᴴᴮ H B) (typeOfᴮ H B typeOfᴮ H B)
@ -156,122 +155,128 @@ preservationᴱ H (M $ N) (app₂ p s) | ok q = ok (cong tgt q)
preservationᴱ H (M $ N) (app₂ p s) | warning W = warning (expr (app₁ W))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) with remember (typeOfⱽ H v)
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) with S ≡ᵀ U | T ≡ᵀ typeOfᴮ H (x S) B
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | yes refl = ok (trans (cong tgt (cong orBot (cong typeOfᴹᴼ p))) {!!}) -- (substitutivityᴮ H B v x (sym q)))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | no r = warning (heap (addr a p (function₀ f r)))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | yes refl = ok (cong tgt (cong orBot (cong typeOfᴹᴼ p)))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | no r = warning (heap (addr a p (function₀ r)))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | no r | _ = warning (expr (app₀ (λ s r (trans (trans (sym (cong src (cong orBot (cong typeOfᴹᴼ p)))) (trans s (typeOfᴱⱽ v))) (cong orBot q)))))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) with typeOf-val-not-bot v
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | ok r = CONTRADICTION (r (sym (trans (typeOfᴱⱽ v) (cong orBot q))))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | warning W = warning (expr (app₂ W))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) with typeOf-val-not-bot v
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | ok r = CONTRADICTION (r (sym (trans (typeOfᴱⱽ v) (cong orBot q))))
preservationᴱ H (addr a $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | warning W = warning (expr (app₂ W))
preservationᴱ H (block var b T is B end) (block s) = ok refl
preservationᴱ H (block var b T is return M B end) (return v) = {!!} -- ok refl
preservationᴱ H (block var b T is done end) (done) = {!!} -- ok refl
preservationᴱ H (block var b T is return M B end) (return v) with T ≡ᵀ typeOfᴱ H (val v)
preservationᴱ H (block var b T is return M B end) (return v) | yes p = ok p
preservationᴱ H (block var b T is return M B end) (return v) | no p = warning (expr (block₀ p))
preservationᴱ H (block var b T is done end) (done) with T ≡ᵀ nil
preservationᴱ H (block var b T is done end) (done) | yes p = ok p
preservationᴱ H (block var b T is done end) (done) | no p = warning (expr (block₀ p))
preservationᴱ H (binexp M op N) s = {!!}
preservationᴮ H (local var x T M B) (local s) with heap-weakeningᴮ H {!!} (rednᴱ⊑ s)
preservationᴮ H (local var x T M B) (local s) with heap-weakeningᴮ H B (rednᴱ⊑ s)
preservationᴮ H (local var x T M B) (local s) | ok p = ok p
preservationᴮ H (local var x T M B) (local s) | warning W = warning (block (local₂ W))
preservationᴮ H (local var x T M B) (subst v) with remember (typeOfⱽ H v)
preservationᴮ H (local var x T M B) (subst v) | (just U , p) with T ≡ᵀ U
preservationᴮ H (local var x T M B) (subst v) | (just T , p) | yes refl = ok (substitutivityᴮ B v x (sym p))
preservationᴮ H (local var x T M B) (subst v) | (just T , p) | yes refl = ok (substitutivityᴮ H B v x (sym p))
preservationᴮ H (local var x T M B) (subst v) | (just U , p) | no q = warning (block (local₀ (λ r q (trans r (trans (typeOfᴱⱽ v) (cong orBot p))))))
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) with typeOf-val-not-bot v
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) | ok q = CONTRADICTION (q (sym (trans (typeOfᴱⱽ v) (cong orBot p))))
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) | warning W = warning (block (local₁ W))
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) with heap-weakeningᴮ H {!!} (snoc defn)
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) | ok r = ok (trans r (substitutivityᴮ {T = T U} B (addr a) f refl))
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) | warning W = warning (block (function₂ f W))
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) with heap-weakeningᴮ H B (snoc defn)
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) | ok r = ok (trans r (substitutivityᴮ _ B (addr a) f refl))
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) | warning W = warning (block (function₂ W))
preservationᴮ H (return M B) (return s) with preservationᴱ H M s
preservationᴮ H (return M B) (return s) | ok p = ok p
preservationᴮ H (return M B) (return s) | warning (expr W) = warning (block (return W))
preservationᴮ H (return M B) (return s) | warning (heap W) = warning (heap W)
reflect-substitutionᴱ : {H Γ T} M v x (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) Warningᴱ H (typeCheckᴱ H (Γ x T) M)
reflect-substitutionᴱ-whenever-yes : {H Γ T} v x y (p : x y) (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever yes p)) Warningᴱ H (typeCheckᴱ H (Γ x T) (var y))
reflect-substitutionᴱ-whenever-no : {H Γ T} v x y (p : x y) (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever no p)) Warningᴱ H (typeCheckᴱ H (Γ x T) (var y))
reflect-substitutionᴮ : {H Γ T} B v x (just T typeOfⱽ H v) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) Warningᴮ H (typeCheckᴮ H (Γ x T) B)
reflect-substitutionᴮ-unless-yes : {H Γ Γ′ T} B v x y (r : x y) (just T typeOfⱽ H v) (Γ′ Γ) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) Warningᴮ H (typeCheckᴮ H Γ′ B)
reflect-substitutionᴮ-unless-no : {H Γ Γ′ T} B v x y (r : x y) (just T typeOfⱽ H v) (Γ′ Γ x T) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) Warningᴮ H (typeCheckᴮ H Γ′ B)
reflect-substitutionᴱ : {Γ T} H M v x (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) Warningᴱ H (typeCheckᴱ H (Γ x T) M)
reflect-substitutionᴱ-whenever-yes : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever yes p)) Warningᴱ H (typeCheckᴱ H (Γ x T) (var y))
reflect-substitutionᴱ-whenever-no : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever no p)) Warningᴱ H (typeCheckᴱ H (Γ x T) (var y))
reflect-substitutionᴮ : {Γ T} H B v x (just T typeOfⱽ H v) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) Warningᴮ H (typeCheckᴮ H (Γ x T) B)
reflect-substitutionᴮ-unless-yes : {Γ Γ′ T} H B v x y (r : x y) (just T typeOfⱽ H v) (Γ′ Γ) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) Warningᴮ H (typeCheckᴮ H Γ′ B)
reflect-substitutionᴮ-unless-no : {Γ Γ′ T} H B v x y (r : x y) (just T typeOfⱽ H v) (Γ′ Γ x T) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) Warningᴮ H (typeCheckᴮ H Γ′ B)
reflect-substitutionᴱ (var y) v x p W with x ≡ⱽ y
reflect-substitutionᴱ (var y) v x p W | yes r = reflect-substitutionᴱ-whenever-yes v x y r p W
reflect-substitutionᴱ (var y) v x p W | no r = reflect-substitutionᴱ-whenever-no v x y r p W
reflect-substitutionᴱ (addr a) v x p (UnallocatedAddress a r) = UnallocatedAddress a r
reflect-substitutionᴱ (M $ N) v x p (app₀ q) = app₀ (λ s q (trans (cong src (sym (substitutivityᴱ M v x p))) (trans s (substitutivityᴱ N v x p))))
reflect-substitutionᴱ (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ M v x p W)
reflect-substitutionᴱ (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ N v x p W)
reflect-substitutionᴱ (function f var y T ⟩∈ U is B end) v x p (function₀ f q) with (x ≡ⱽ y)
reflect-substitutionᴱ (function f var y T ⟩∈ U is B end) v x p (function₀ f q) | yes r = function₀ f (λ s q (trans s (substitutivityᴮ-unless-yes B v x y r p (⊕-over r))))
reflect-substitutionᴱ (function f var y T ⟩∈ U is B end) v x p (function₀ f q) | no r = function₀ f (λ s q (trans s (substitutivityᴮ-unless-no B v x y r p (⊕-swap r))))
reflect-substitutionᴱ (function f var y T ⟩∈ U is B end) v x p (function₁ f W) with (x ≡ⱽ y)
reflect-substitutionᴱ (function f var y T ⟩∈ U is B end) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-over r) W)
reflect-substitutionᴱ (function f var y T ⟩∈ U is B end) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W)
reflect-substitutionᴱ (block var b T is B end) v x p (block₀ b W) = {!!}
reflect-substitutionᴱ (block var b T is B end) v x p (block₁ b W) = block₁ b (reflect-substitutionᴮ B v x p W)
reflect-substitutionᴱ (binexp M op N) x v p W = {!!}
reflect-substitutionᴱ H (var y) v x p W with x ≡ⱽ y
reflect-substitutionᴱ H (var y) v x p W | yes r = reflect-substitutionᴱ-whenever-yes H v x y r p W
reflect-substitutionᴱ H (var y) v x p W | no r = reflect-substitutionᴱ-whenever-no H v x y r p W
reflect-substitutionᴱ H (addr a) v x p (UnallocatedAddress r) = UnallocatedAddress r
reflect-substitutionᴱ H (M $ N) v x p (app₀ q) = app₀ (λ s q (trans (cong src (sym (substitutivityᴱ H M v x p))) (trans s (substitutivityᴱ H N v x p))))
reflect-substitutionᴱ H (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ H M v x p W)
reflect-substitutionᴱ H (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ H N v x p W)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₀ q) with (x ≡ⱽ y)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₀ q) | yes r = function₀ (λ s q (trans s (substitutivityᴮ-unless-yes H B v x y r p (⊕-over r))))
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₀ q) | no r = function₀ (λ s q (trans s (substitutivityᴮ-unless-no H B v x y r p (⊕-swap r))))
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₁ W) with (x ≡ⱽ y)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₁ W) | yes r = function₁ (reflect-substitutionᴮ-unless-yes H B v x y r p (⊕-over r) W)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₁ W) | no r = function₁ (reflect-substitutionᴮ-unless-no H B v x y r p (⊕-swap r) W)
reflect-substitutionᴱ H (block var b T is B end) v x p (block₀ q) = block₀ (λ r q (trans r (substitutivityᴮ H B v x p)))
reflect-substitutionᴱ H (block var b T is B end) v x p (block₁ W) = block₁ (reflect-substitutionᴮ H B v x p W)
reflect-substitutionᴱ H (binexp M op N) x v p W = {!!}
reflect-substitutionᴱ-whenever-no v x y p q (UnboundVariable y r) = UnboundVariable y (trans (sym (⊕-lookup-miss x y _ _ p)) r)
reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) with trans p (cong typeOfᴹᴼ q)
reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) | ()
reflect-substitutionᴱ-whenever-no H v x y p q (UnboundVariable y r) = UnboundVariable y (trans (sym (⊕-lookup-miss x y _ _ p)) r)
reflect-substitutionᴱ-whenever-yes H (addr a) x x refl p (UnallocatedAddress q) with trans p (cong typeOfᴹᴼ q)
reflect-substitutionᴱ-whenever-yes H (addr a) x x refl p (UnallocatedAddress q) | ()
reflect-substitutionᴮ (function f var y T ⟩∈ U is C end B) v x p (function₀ f q) with (x ≡ⱽ y)
reflect-substitutionᴮ (function f var y T ⟩∈ U is C end B) v x p (function₀ f q) | yes r = function₀ f (λ s q (trans s (substitutivityᴮ-unless-yes C v x y r p (⊕-over r))))
reflect-substitutionᴮ (function f var y T ⟩∈ U is C end B) v x p (function₀ f q) | no r = function₀ f (λ s q (trans s (substitutivityᴮ-unless-no C v x y r p (⊕-swap r))))
reflect-substitutionᴮ (function f var y T ⟩∈ U is C end B) v x p (function₁ f W) with (x ≡ⱽ y)
reflect-substitutionᴮ (function f var y T ⟩∈ U is C end B) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes C v x y r p (⊕-over r) W)
reflect-substitutionᴮ (function f var y T ⟩∈ U is C end B) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no C v x y r p (⊕-swap r) W)
reflect-substitutionᴮ (function f var y T ⟩∈ U is C end B) v x p (function₂ f W) with (x ≡ⱽ f)
reflect-substitutionᴮ (function f var y T ⟩∈ U is C end B) v x p (function₂ f W)| yes r = function₂ f (reflect-substitutionᴮ-unless-yes B v x f r p (⊕-over r) W)
reflect-substitutionᴮ (function f var y T ⟩∈ U is C end B) v x p (function₂ f W)| no r = function₂ f (reflect-substitutionᴮ-unless-no B v x f r p (⊕-swap r) W)
reflect-substitutionᴮ (local var y T M B) v x p (local₀ q) = local₀ (λ r q (trans r (substitutivityᴱ M v x p)))
reflect-substitutionᴮ (local var y T M B) v x p (local₁ W) = local₁ (reflect-substitutionᴱ M v x p W)
reflect-substitutionᴮ (local var y T M B) v x p (local₂ W) with (x ≡ⱽ y)
reflect-substitutionᴮ (local var y T M B) v x p (local₂ W) | yes r = local₂ (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-over r) W)
reflect-substitutionᴮ (local var y T M B) v x p (local₂ W) | no r = local₂ (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W)
reflect-substitutionᴮ (return M B) v x p (return W) = return (reflect-substitutionᴱ M v x p W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₀ q) with (x ≡ⱽ y)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₀ q) | yes r = function₀ (λ s q (trans s (substitutivityᴮ-unless-yes H C v x y r p (⊕-over r))))
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₀ q) | no r = function₀ (λ s q (trans s (substitutivityᴮ-unless-no H C v x y r p (⊕-swap r))))
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₁ W) with (x ≡ⱽ y)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₁ W) | yes r = function₁ (reflect-substitutionᴮ-unless-yes H C v x y r p (⊕-over r) W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₁ W) | no r = function₁ (reflect-substitutionᴮ-unless-no H C v x y r p (⊕-swap r) W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₂ W) with (x ≡ⱽ f)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₂ W)| yes r = function₂ (reflect-substitutionᴮ-unless-yes H B v x f r p (⊕-over r) W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₂ W)| no r = function₂ (reflect-substitutionᴮ-unless-no H B v x f r p (⊕-swap r) W)
reflect-substitutionᴮ H (local var y T M B) v x p (local₀ q) = local₀ (λ r q (trans r (substitutivityᴱ H M v x p)))
reflect-substitutionᴮ H (local var y T M B) v x p (local₁ W) = local₁ (reflect-substitutionᴱ H M v x p W)
reflect-substitutionᴮ H (local var y T M B) v x p (local₂ W) with (x ≡ⱽ y)
reflect-substitutionᴮ H (local var y T M B) v x p (local₂ W) | yes r = local₂ (reflect-substitutionᴮ-unless-yes H B v x y r p (⊕-over r) W)
reflect-substitutionᴮ H (local var y T M B) v x p (local₂ W) | no r = local₂ (reflect-substitutionᴮ-unless-no H B v x y r p (⊕-swap r) W)
reflect-substitutionᴮ H (return M B) v x p (return W) = return (reflect-substitutionᴱ H M v x p W)
reflect-substitutionᴮ-unless-yes B v x y r p refl W = W
reflect-substitutionᴮ-unless-no B v x y r p refl W = reflect-substitutionᴮ B v x p W
reflect-substitutionᴮ-unless-yes H B v x y r p refl W = W
reflect-substitutionᴮ-unless-no H B v x y r p refl W = reflect-substitutionᴮ H B v x p W
reflect-weakeningᴱ : H M {H Γ} (H H) Warningᴱ H (typeCheckᴱ H Γ M) Warningᴱ H (typeCheckᴱ H Γ M)
reflect-weakeningᴮ : H B {H Γ} (H H) Warningᴮ H (typeCheckᴮ H Γ B) Warningᴮ H (typeCheckᴮ H Γ B)
reflect-weakeningᴱ H (var x) h (UnboundVariable x p) = (UnboundVariable x p)
reflect-weakeningᴱ H (addr a) h (UnallocatedAddress a p) = UnallocatedAddress a (lookup-⊑-nothing a h p)
reflect-weakeningᴱ H (M $ N) h (app₀ p) with heap-weakeningᴱ H {!!} h | heap-weakeningᴱ H {!!} h
reflect-weakeningᴱ H (addr a) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p)
reflect-weakeningᴱ H (M $ N) h (app₀ p) with heap-weakeningᴱ H M h | heap-weakeningᴱ H N h
reflect-weakeningᴱ H (M $ N) h (app₀ p) | ok q₁ | ok q₂ = app₀ (λ r p (trans (cong src (sym q₁)) (trans r q₂)))
reflect-weakeningᴱ H (M $ N) h (app₀ p) | warning W | _ = app₁ W
reflect-weakeningᴱ H (M $ N) h (app₀ p) | _ | warning W = app₂ W
reflect-weakeningᴱ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ H M h W)
reflect-weakeningᴱ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ H N h W)
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (function₀ f p) with heap-weakeningᴮ H {!!} h
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (function₀ f p) | ok q = function₀ f (λ r p (trans r q))
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (function₀ f p) | warning W = function₁ f W
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (function₁ f W) = function₁ f (reflect-weakeningᴮ H B h W)
reflect-weakeningᴱ H (block var b T is B end) h (block₀ b W) = {!!} -- block₁ b (reflect-weakeningᴮ H B h W)
reflect-weakeningᴱ H (block var b T is B end) h (block₁ b W) = block₁ b (reflect-weakeningᴮ H B h W)
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (function₀ p) with heap-weakeningᴮ H B h
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (function₀ p) | ok q = function₀ (λ r p (trans r q))
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (function₀ p) | warning W = function₁ W
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ H B h W)
reflect-weakeningᴱ H (block var b T is B end) h (block₀ p) with heap-weakeningᴮ H B h
reflect-weakeningᴱ H (block var b T is B end) h (block₀ p) | ok q = block₀ (λ r p (trans r q))
reflect-weakeningᴱ H (block var b T is B end) h (block₀ p) | warning W = block₁ W
reflect-weakeningᴱ H (block var b T is B end) h (block₁ W) = block₁ (reflect-weakeningᴮ H B h W)
reflect-weakeningᴮ H (return M B) h (return W) = return (reflect-weakeningᴱ H M h W)
reflect-weakeningᴮ H (local var y T M B) h (local₀ p) with heap-weakeningᴱ H {!!} h
reflect-weakeningᴮ H (local var y T M B) h (local₀ p) with heap-weakeningᴱ H M h
reflect-weakeningᴮ H (local var y T M B) h (local₀ p) | ok q = local₀ (λ r p (trans r q))
reflect-weakeningᴮ H (local var y T M B) h (local₀ p) | warning W = local₁ W
reflect-weakeningᴮ H (local var y T M B) h (local₁ W) = local₁ (reflect-weakeningᴱ H M h W)
reflect-weakeningᴮ H (local var y T M B) h (local₂ W) = local₂ (reflect-weakeningᴮ H B h W)
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₀ f p) with heap-weakeningᴮ H {!!} h
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₀ f p) | ok q = function₀ f (λ r p (trans r q))
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₀ f p) | warning W = function₁ f W
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₁ f W) = function₁ f (reflect-weakeningᴮ H C h W)
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₂ f W) = function₂ f (reflect-weakeningᴮ H B h W)
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₀ p) with heap-weakeningᴮ H C h
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₀ p) | ok q = function₀ (λ r p (trans r q))
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₀ p) | warning W = function₁ W
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₁ W) = function₁ (reflect-weakeningᴮ H C h W)
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₂ W) = function₂ (reflect-weakeningᴮ H B h W)
reflect-weakeningᴼ : H O {H} (H H) Warningᴼ H (typeCheckᴼ H O) Warningᴼ H (typeCheckᴼ H O)
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (function₀ f p) with heap-weakeningᴮ H {!!} h
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (function₀ f p) | ok q = function₀ f (λ r p (trans r q))
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (function₀ f p) | warning W = function₁ f W
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (function₁ f W) = function₁ f (reflect-weakeningᴮ H B h W)
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (function₀ p) with heap-weakeningᴮ H B h
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (function₀ p) | ok q = function₀ (λ r p (trans r q))
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (function₀ p) | warning W = function₁ W
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (function₁ W) = function₁ (reflect-weakeningᴮ H B h W)
reflectᴱ : H M {H M} (H M ⟶ᴱ M H) Warningᴱ H (typeCheckᴱ H M) Warningᴴᴱ H (typeCheckᴴᴱ H M)
reflectᴮ : H B {H B} (H B ⟶ᴮ B H) Warningᴮ H (typeCheckᴮ H B) Warningᴴᴮ H (typeCheckᴴᴮ H B)
reflectᴱ H (M $ N) (app₁ s) (app₀ p) with preservationᴱ H M s | heap-weakeningᴱ H {!!} (rednᴱ⊑ s)
reflectᴱ H (M $ N) (app₁ s) (app₀ p) with preservationᴱ H M s | heap-weakeningᴱ H N (rednᴱ⊑ s)
reflectᴱ H (M $ N) (app₁ s) (app₀ p) | ok q | ok q = expr (app₀ (λ r p (trans (trans (cong src (sym q)) r) q)))
reflectᴱ H (M $ N) (app₁ s) (app₀ p) | warning (expr W) | _ = expr (app₁ W)
reflectᴱ H (M $ N) (app₁ s) (app₀ p) | warning (heap W) | _ = heap W
@ -280,29 +285,38 @@ reflectᴱ H (M $ N) (app₁ s) (app₁ W) with reflectᴱ H M s W
reflectᴱ H (M $ N) (app₁ s) (app₁ W) | heap W = heap W
reflectᴱ H (M $ N) (app₁ s) (app₁ W) | expr W = expr (app₁ W)
reflectᴱ H (M $ N) (app₁ s) (app₂ W) = expr (app₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W))
reflectᴱ H (M $ N) (app₂ p s) (app₀ p) with heap-weakeningᴱ H {!!} (rednᴱ⊑ s) | preservationᴱ H N s
reflectᴱ H (M $ N) (app₂ p s) (app₀ p) with heap-weakeningᴱ H (val p) (rednᴱ⊑ s) | preservationᴱ H N s
reflectᴱ H (M $ N) (app₂ p s) (app₀ p) | ok q | ok q = expr (app₀ (λ r p (trans (trans (cong src (sym q)) r) q)))
reflectᴱ H (M $ N) (app₂ p s) (app₀ p) | warning W | _ = expr (app₁ W)
reflectᴱ H (M $ N) (app₂ p s) (app₀ p) | _ | warning (expr W) = expr (app₂ W)
reflectᴱ H (M $ N) (app₂ p s) (app₀ p) | _ | warning (heap W) = heap W
reflectᴱ H (M $ N) (app₂ p s) (app₀ p) | _ | warning (expr W) = expr (app₂ W)
reflectᴱ H (M $ N) (app₂ p s) (app₀ p) | _ | warning (heap W) = heap W
reflectᴱ H (M $ N) (app₂ p s) (app₁ W) = expr (app₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W))
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) with reflectᴱ H N s W
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) | heap W = heap W
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) | expr W = expr (app₂ W)
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₀ f W) = {!!}
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ f W) with remember (typeOfⱽ H v)
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ f W) | (just S , q) with S ≡ᵀ T
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ f W) | (just T , q) | yes refl = heap (addr a p (function₁ f (reflect-substitutionᴮ B v x (sym q) W)))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ f W) | (just S , q) | no r = expr (app₀ (λ s r (trans (cong orBot (sym q)) (trans (sym (typeOfᴱⱽ v)) (trans (sym s) (cong src (cong orBot (cong typeOfᴹᴼ p))))))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ f W) | (nothing , q) with typeOf-val-not-bot v
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ f W) | (nothing , q) | ok r = CONTRADICTION (r (trans (cong orBot (sym q)) (sym (typeOfᴱⱽ v))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ f W) | (nothing , q) | warning W = expr (app₂ W)
reflectᴱ H (block var b T is B end) (block s) (block₀ b W) = {!!}
reflectᴱ H (block var b T is B end) (block s) (block₁ b W) with reflectᴮ H B s W
reflectᴱ H (block var b T is B end) (block s) (block₁ b W) | heap W = heap W
reflectᴱ H (block var b T is B end) (block s) (block₁ b W) | block W = expr (block₁ b W)
reflectᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (UnallocatedAddress a ())
reflectᴱ H (block var b T is return N B end) W = {!!} -- expr (block₁ _ (return W))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₀ q) with remember (typeOfⱽ H v)
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₀ q) | (just S , r) with S ≡ᵀ T
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₀ q) | (just T , r) | yes refl = heap (addr a p (function₀ (λ s q (trans s (substitutivityᴮ H B v x (sym r))))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₀ q) | (just S , r) | no s = expr (app₀ (λ t s (trans (cong orBot (sym r)) (trans (sym (typeOfᴱⱽ v)) (trans (sym t) (cong src (cong orBot (cong typeOfᴹᴼ p))))))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₀ q) | (nothing , r) with typeOf-val-not-bot v
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₀ q) | (nothing , r) | ok s = CONTRADICTION (s (trans (cong orBot (sym r)) (sym (typeOfᴱⱽ v))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₀ q) | (nothing , r) | warning W = expr (app₂ W)
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) with remember (typeOfⱽ H v)
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just S , q) with S ≡ᵀ T
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just T , q) | yes refl = heap (addr a p (function₁ (reflect-substitutionᴮ H B v x (sym q) W)))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just S , q) | no r = expr (app₀ (λ s r (trans (cong orBot (sym q)) (trans (sym (typeOfᴱⱽ v)) (trans (sym s) (cong src (cong orBot (cong typeOfᴹᴼ p))))))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) with typeOf-val-not-bot v
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) | ok r = CONTRADICTION (r (trans (cong orBot (sym q)) (sym (typeOfᴱⱽ v))))
reflectᴱ H (addr a $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) | warning W = expr (app₂ W)
reflectᴱ H (block var b T is B end) (block s) (block₀ p) with preservationᴮ H B s
reflectᴱ H (block var b T is B end) (block s) (block₀ p) | ok q = expr (block₀ (λ r p (trans r q)))
reflectᴱ H (block var b T is B end) (block s) (block₀ p) | warning (heap W) = heap W
reflectᴱ H (block var b T is B end) (block s) (block₀ p) | warning (block W) = expr (block₁ W)
reflectᴱ H (block var b T is B end) (block s) (block₁ W) with reflectᴮ H B s W
reflectᴱ H (block var b T is B end) (block s) (block₁ W) | heap W = heap W
reflectᴱ H (block var b T is B end) (block s) (block₁ W) | block W = expr (block₁ W)
reflectᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (UnallocatedAddress ())
reflectᴱ H (block var b T is return M B end) (return v) W = expr (block₁ (return W))
reflectᴮ H (local var x T M B) (local s) (local₀ p) with preservationᴱ H M s
reflectᴮ H (local var x T M B) (local s) (local₀ p) | ok q = block (local₀ (λ r p (trans r q)))
@ -312,10 +326,14 @@ reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₁ W) with refl
reflectᴮ H (local var x T M B) (local s) (local₁ W) | heap W = heap W
reflectᴮ H (local var x T M B) (local s) (local₁ W) | expr W = block (local₁ W)
reflectᴮ H (local var x T M B) (local s) (local₂ W) = block (local₂ (reflect-weakeningᴮ H B (rednᴱ⊑ s) W))
reflectᴮ H (local var x T M B) (subst v) W with just T ≡ᴹᵀ typeOfⱽ H v
reflectᴮ H (local var x T M B) (subst v) W | yes p = block (local₂ (reflect-substitutionᴮ _ v x p W))
reflectᴮ H (local var x T M B) (subst v) W | no p = {!!} -- block (local₀ λ r → p (cong just r))
reflectᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) W = {!!} -- block (function₂ f (reflect-weakeningᴮ H (snoc defn) (reflect-substitutionᴮ _ _ f refl W)))
reflectᴮ H (local var x T M B) (subst v) W with remember (typeOfⱽ H v)
reflectᴮ H (local var x T M B) (subst v) W | (just S , p) with S ≡ᵀ T
reflectᴮ H (local var x T M B) (subst v) W | (just T , p) | yes refl = block (local₂ (reflect-substitutionᴮ H B v x (sym p) W))
reflectᴮ H (local var x T M B) (subst v) W | (just S , p) | no q = block (local₀ (λ r q (trans (cong orBot (sym p)) (trans (sym (typeOfᴱⱽ v)) (sym r)))))
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) with typeOf-val-not-bot v
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) | ok r = CONTRADICTION (r (trans (cong orBot (sym p)) (sym (typeOfᴱⱽ v))))
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) | warning W = block (local₁ W)
reflectᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) W = block (function₂ (reflect-weakeningᴮ H B (snoc defn) (reflect-substitutionᴮ _ B (addr a) f refl W)))
reflectᴮ H (return M B) (return s) (return W) with reflectᴱ H M s W
reflectᴮ H (return M B) (return s) (return W) | heap W = heap W
reflectᴮ H (return M B) (return s) (return W) | expr W = block (return W)
@ -325,10 +343,10 @@ reflectᴴᴮ : ∀ H B {H B} → (H ⊢ B ⟶ᴮ B ⊣ H) → Warni
reflectᴴᴱ H M s (expr W) = reflectᴱ H M s W
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a p) (heap (addr b refl W)) with b ≡ᴬ a
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl with heap-weakeningᴮ H {!!} (snoc defn)
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl | ok r = expr (function₀ f λ q p (trans q r))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl | warning W = expr (function₁ f W)
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₁ f W))) | yes refl = expr (function₁ f (reflect-weakeningᴮ H B (snoc defn) W))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ p))) | yes refl with heap-weakeningᴮ H B (snoc defn)
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ p))) | yes refl | ok r = expr (function₀ λ q p (trans q r))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ p))) | yes refl | warning W = expr (function₁ W)
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₁ W))) | yes refl = expr (function₁ (reflect-weakeningᴮ H B (snoc defn) W))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a p) (heap (addr b refl W)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ H _ (snoc p) W))
reflectᴴᴱ H (M $ N) (app₁ s) (heap W) with reflectᴴᴱ H M s (heap W)
reflectᴴᴱ H (M $ N) (app₁ s) (heap W) | heap W = heap W
@ -339,7 +357,7 @@ reflectᴴᴱ H (M $ N) (app₂ p s) (heap W) | expr W = expr (app₂ W)
reflectᴴᴱ H (M $ N) (beta O v p q) (heap W) = heap W
reflectᴴᴱ H (block var b T is B end) (block s) (heap W) with reflectᴴᴮ H B s (heap W)
reflectᴴᴱ H (block var b T is B end) (block s) (heap W) | heap W = heap W
reflectᴴᴱ H (block var b T is B end) (block s) (heap W) | block W = expr (block₁ b W)
reflectᴴᴱ H (block var b T is B end) (block s) (heap W) | block W = expr (block₁ W)
reflectᴴᴱ H (block var b T is return N B end) (return v) (heap W) = heap W
reflectᴴᴱ H (block var b T is done end) done (heap W) = heap W
reflectᴴᴱ H (binexp M op N) s W = {!!}
@ -350,10 +368,10 @@ reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (local s) (heap W) | heap W =
reflectᴴᴮ H (local var x T M B) (local s) (heap W) | expr W = block (local₁ W)
reflectᴴᴮ H (local var x T M B) (subst v) (heap W) = heap W
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a p) (heap (addr b refl W)) with b ≡ᴬ a
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl with heap-weakeningᴮ H {!!} (snoc defn)
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl | ok r = block (function₀ f (λ q p (trans q r)))
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl | warning W = block (function₁ f W)
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (function₁ f W))) | yes refl = block (function₁ f (reflect-weakeningᴮ H C (snoc defn) W))
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (function₀ p))) | yes refl with heap-weakeningᴮ H C (snoc defn)
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (function₀ p))) | yes refl | ok r = block (function₀ (λ q p (trans q r)))
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (function₀ p))) | yes refl | warning W = block (function₁ W)
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (function₁ W))) | yes refl = block (function₁ (reflect-weakeningᴮ H C (snoc defn) W))
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a p) (heap (addr b refl W)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ H _ (snoc p) W))
reflectᴴᴮ H (return M B) (return s) (heap W) with reflectᴴᴱ H M s (heap W)
reflectᴴᴮ H (return M B) (return s) (heap W) | heap W = heap W
@ -367,14 +385,16 @@ runtimeWarningᴱ : ∀ H M → RuntimeErrorᴱ H M → Warningᴱ H (typeCheck
runtimeWarningᴮ : H B RuntimeErrorᴮ H B Warningᴮ H (typeCheckᴮ H B)
runtimeWarningᴱ H (var x) UnboundVariable = UnboundVariable x refl
runtimeWarningᴱ H (addr a) (SEGV p) = UnallocatedAddress a p
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w r) = {!!} -- app₁ (runtimeWarningᴱ H M err)
runtimeWarningᴱ H (addr a) (SEGV p) = UnallocatedAddress p
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) with typeOf-val-not-bot w
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | ok q = app₀ (λ r p (mustBeFunction H v (λ r q (trans r r))))
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | warning W = app₂ W
runtimeWarningᴱ H (M $ N) (app₁ err) = app₁ (runtimeWarningᴱ H M err)
runtimeWarningᴱ H (M $ N) (app₂ err) = app₂ (runtimeWarningᴱ H N err)
runtimeWarningᴱ H (block var b T is B end) (block err) = block₁ b (runtimeWarningᴮ H B err)
runtimeWarningᴱ H (block var b T is B end) (block err) = block₁ (runtimeWarningᴮ H B err)
runtimeWarningᴱ H (binexp M op N) (BinopMismatch₁ v w p) = {!!}
runtimeWarningᴱ H (binexp M op N) (BinopMismatch₂ v w p) = {!!}
runtimeWarningᴱ H (binexp M op N) (bin₁ err) = {!!}
runtimeWarningᴱ H (binexp M op N) (bin₁ err) = {!bin₁!}
runtimeWarningᴱ H (binexp M op N) (bin₂ err) = {!!}
runtimeWarningᴮ H (local var x T M B) (local err) = local₁ (runtimeWarningᴱ H M err)

View file

@ -10,11 +10,13 @@ open import FFI.Data.Either using (Either)
open import Luau.TypeCheck(m) using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; ⊢ᴼ_; ⊢ᴴ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; nil; var; addr; number; app; function; block; binexp; done; return; local; nothing; orBot)
open import Luau.Syntax using (Block; Expr; yes; nil; var; addr; number; binexp; _$_; function_is_end; block_is_end; _∙_; return; done; local_←_; _⟨_⟩; _⟨_⟩∈_; var_∈_; name; fun; arg)
open import Luau.Type using (Type; nil; top; bot; number; _⇒_; tgt)
open import Luau.RuntimeType using (RuntimeType; nil; number; function; valueType)
open import Luau.VarCtxt using (VarCtxt; ∅; _↦_; _⊕_↦_; _⋒_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import Luau.Addr using (Addr)
open import Luau.Var using (Var; _≡ⱽ_)
open import Luau.Value using (Value; nil; addr; number; val)
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.Dec using (yes; no)
open import Properties.Equality using (_≢_; sym; trans; cong)
open import Properties.Product using (_×_; _,_)
@ -57,26 +59,31 @@ typeOfᴱⱽ nil = refl
typeOfᴱⱽ (addr a) = refl
typeOfᴱⱽ (number n) = refl
mustBeFunction : H Γ v (bot src (typeOfᴱ H Γ (val v))) (function valueType(v))
mustBeFunction H Γ nil p = CONTRADICTION (p refl)
mustBeFunction H Γ (addr a) p = refl
mustBeFunction H Γ (number n) p = CONTRADICTION (p refl)
typeCheckᴱ : H Γ M (Γ ⊢ᴱ M (typeOfᴱ H Γ M))
typeCheckᴮ : H Γ B (Γ ⊢ᴮ B (typeOfᴮ H Γ B))
typeCheckᴱ H Γ nil = nil
typeCheckᴱ H Γ (var x) = var x refl
typeCheckᴱ H Γ (addr a) = addr a (orBot (typeOfᴹᴼ (H [ a ]ᴴ)))
typeCheckᴱ H Γ (number n) = number n
typeCheckᴱ H Γ (var x) = var refl
typeCheckᴱ H Γ (addr a) = addr (orBot (typeOfᴹᴼ (H [ a ]ᴴ)))
typeCheckᴱ H Γ (number n) = number
typeCheckᴱ H Γ (M $ N) = app (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N)
typeCheckᴱ H Γ (function f var x T ⟩∈ U is B end) = function f (typeCheckᴮ H (Γ x T) B)
typeCheckᴱ H Γ (block var b T is B end) = block b (typeCheckᴮ H Γ B)
typeCheckᴱ H Γ (binexp M op N) = binexp op (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N)
typeCheckᴱ H Γ (function f var x T ⟩∈ U is B end) = function (typeCheckᴮ H (Γ x T) B)
typeCheckᴱ H Γ (block var b T is B end) = block (typeCheckᴮ H Γ B)
typeCheckᴱ H Γ (binexp M op N) = binexp (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N)
typeCheckᴮ H Γ (function f var x T ⟩∈ U is C end B) = function f (typeCheckᴮ H (Γ x T) C) (typeCheckᴮ H (Γ f (T U)) B)
typeCheckᴮ H Γ (function f var x T ⟩∈ U is C end B) = function (typeCheckᴮ H (Γ x T) C) (typeCheckᴮ H (Γ f (T U)) B)
typeCheckᴮ H Γ (local var x T M B) = local (typeCheckᴱ H Γ M) (typeCheckᴮ H (Γ x T) B)
typeCheckᴮ H Γ (return M B) = return (typeCheckᴱ H Γ M) (typeCheckᴮ H Γ B)
typeCheckᴮ H Γ done = done
typeCheckᴼ : H O (⊢ᴼ O)
typeCheckᴼ H nothing = nothing
typeCheckᴼ H (just function f var x T ⟩∈ U is B end) = function f (typeCheckᴮ H (x T) B)
typeCheckᴼ H (just function f var x T ⟩∈ U is B end) = function (typeCheckᴮ H (x T) B)
typeCheckᴴ : H (⊢ᴴ H)
typeCheckᴴ H a {O} p = typeCheckᴼ H (O)