mirror of
https://github.com/luau-lang/luau.git
synced 2025-05-04 10:33:46 +01:00
WIP
This commit is contained in:
parent
9f6fc4a56b
commit
331c729d29
4 changed files with 204 additions and 177 deletions
|
@ -21,17 +21,17 @@ data Warningᴮ (H : Heap yes) {Γ} : ∀ {B T} → (Γ ⊢ᴮ B ∈ T) → Set
|
|||
|
||||
data Warningᴱ H {Γ} where
|
||||
|
||||
UnallocatedAddress : ∀ a {T} →
|
||||
UnallocatedAddress : ∀ {a T} →
|
||||
|
||||
(H [ a ]ᴴ ≡ nothing) →
|
||||
---------------------
|
||||
Warningᴱ H (addr a T)
|
||||
Warningᴱ H (addr {a} T)
|
||||
|
||||
UnboundVariable : ∀ x {T} {p} →
|
||||
|
||||
(Γ [ x ]ⱽ ≡ nothing) →
|
||||
------------------------
|
||||
Warningᴱ H (var x {T} p)
|
||||
Warningᴱ H (var {x} {T} p)
|
||||
|
||||
app₀ : ∀ {M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} →
|
||||
|
||||
|
@ -51,29 +51,29 @@ data Warningᴱ H {Γ} where
|
|||
-----------------
|
||||
Warningᴱ H (app D₁ D₂)
|
||||
|
||||
function₀ : ∀ f {x B T U V} {D : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} →
|
||||
function₀ : ∀ {f x B T U V} {D : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} →
|
||||
|
||||
(U ≢ V) →
|
||||
-------------------------
|
||||
Warningᴱ H (function f {U = U} D)
|
||||
Warningᴱ H (function {f} {U = U} D)
|
||||
|
||||
function₁ : ∀ f {x B T U V} {D : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} →
|
||||
function₁ : ∀ {f x B T U V} {D : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} →
|
||||
|
||||
Warningᴮ H D →
|
||||
-------------------------
|
||||
Warningᴱ H (function f {U = U} D)
|
||||
Warningᴱ H (function {f} {U = U} D)
|
||||
|
||||
block₀ : ∀ b {B T U} {D : Γ ⊢ᴮ B ∈ U} →
|
||||
block₀ : ∀ {b B T U} {D : Γ ⊢ᴮ B ∈ U} →
|
||||
|
||||
(T ≢ U) →
|
||||
------------------------------
|
||||
Warningᴱ H (block b {T = T} D)
|
||||
Warningᴱ H (block {b} {T = T} D)
|
||||
|
||||
block₁ : ∀ b {B T U} {D : Γ ⊢ᴮ B ∈ U} →
|
||||
block₁ : ∀ {b B T U} {D : Γ ⊢ᴮ B ∈ U} →
|
||||
|
||||
Warningᴮ H D →
|
||||
------------------------------
|
||||
Warningᴱ H (block b {T = T} D)
|
||||
Warningᴱ H (block {b} {T = T} D)
|
||||
|
||||
data Warningᴮ H {Γ} where
|
||||
|
||||
|
@ -101,37 +101,37 @@ data Warningᴮ H {Γ} where
|
|||
--------------------
|
||||
Warningᴮ H (local D₁ D₂)
|
||||
|
||||
function₀ : ∀ f {x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} →
|
||||
function₀ : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} →
|
||||
|
||||
(U ≢ V) →
|
||||
-------------------------------------
|
||||
Warningᴮ H (function f {U = U} D₁ D₂)
|
||||
Warningᴮ H (function D₁ D₂)
|
||||
|
||||
function₁ : ∀ f {x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} →
|
||||
function₁ : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} →
|
||||
|
||||
Warningᴮ H D₁ →
|
||||
--------------------
|
||||
Warningᴮ H (function f D₁ D₂)
|
||||
Warningᴮ H (function D₁ D₂)
|
||||
|
||||
function₂ : ∀ f {x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} →
|
||||
function₂ : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} →
|
||||
|
||||
Warningᴮ H D₂ →
|
||||
--------------------
|
||||
Warningᴮ H (function f D₁ D₂)
|
||||
Warningᴮ H (function D₁ D₂)
|
||||
|
||||
data Warningᴼ (H : Heap yes) : ∀ {V} → (⊢ᴼ V) → Set where
|
||||
|
||||
function₀ : ∀ f {x B T U V} {D : (x ↦ T) ⊢ᴮ B ∈ V} →
|
||||
function₀ : ∀ {f x B T U V} {D : (x ↦ T) ⊢ᴮ B ∈ V} →
|
||||
|
||||
(U ≢ V) →
|
||||
---------------------------------
|
||||
Warningᴼ H (function f {U = U} D)
|
||||
Warningᴼ H (function {f} {U = U} D)
|
||||
|
||||
function₁ : ∀ f {x B T U V} {D : (x ↦ T) ⊢ᴮ B ∈ V} →
|
||||
function₁ : ∀ {f x B T U V} {D : (x ↦ T) ⊢ᴮ B ∈ V} →
|
||||
|
||||
Warningᴮ H D →
|
||||
---------------------------------
|
||||
Warningᴼ H (function f {U = U} D)
|
||||
Warningᴼ H (function {f} {U = U} D)
|
||||
|
||||
data Warningᴴ H (D : ⊢ᴴ H) : Set where
|
||||
|
||||
|
|
|
@ -48,7 +48,7 @@ data _⊢ᴮ_∈_ where
|
|||
--------------------------------
|
||||
Γ ⊢ᴮ local var x ∈ T ← M ∙ B ∈ V
|
||||
|
||||
function : ∀ f {x B C T U V W Γ} →
|
||||
function : ∀ {f x B C T U V W Γ} →
|
||||
|
||||
(Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V →
|
||||
(Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W →
|
||||
|
@ -62,18 +62,18 @@ data _⊢ᴱ_∈_ where
|
|||
--------------
|
||||
Γ ⊢ᴱ nil ∈ nil
|
||||
|
||||
var : ∀ x {T Γ} →
|
||||
var : ∀ {x T Γ} →
|
||||
|
||||
T ≡ orBot(Γ [ x ]ⱽ) →
|
||||
----------------
|
||||
Γ ⊢ᴱ (var x) ∈ T
|
||||
|
||||
addr : ∀ a T {Γ} →
|
||||
addr : ∀ {a Γ} T →
|
||||
|
||||
-----------------
|
||||
Γ ⊢ᴱ (addr a) ∈ T
|
||||
|
||||
number : ∀ n {Γ} →
|
||||
number : ∀ {n Γ} →
|
||||
|
||||
------------------------
|
||||
Γ ⊢ᴱ (number n) ∈ number
|
||||
|
@ -85,19 +85,19 @@ data _⊢ᴱ_∈_ where
|
|||
----------------------
|
||||
Γ ⊢ᴱ (M $ N) ∈ (tgt T)
|
||||
|
||||
function : ∀ f {x B T U V Γ} →
|
||||
function : ∀ {f x B T U V Γ} →
|
||||
|
||||
(Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V →
|
||||
-----------------------------------------------------
|
||||
Γ ⊢ᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) ∈ (T ⇒ U)
|
||||
|
||||
block : ∀ b {B T U Γ} →
|
||||
block : ∀ {b B T U Γ} →
|
||||
|
||||
Γ ⊢ᴮ B ∈ U →
|
||||
------------------------------------
|
||||
Γ ⊢ᴱ (block var b ∈ T is B end) ∈ T
|
||||
|
||||
binexp : ∀ op {Γ M N T U} →
|
||||
binexp : ∀ {op Γ M N T U} →
|
||||
|
||||
Γ ⊢ᴱ M ∈ T →
|
||||
Γ ⊢ᴱ N ∈ U →
|
||||
|
@ -111,7 +111,7 @@ data ⊢ᴼ_ : Maybe(Object yes) → Set where
|
|||
---------
|
||||
⊢ᴼ nothing
|
||||
|
||||
function : ∀ f {x T U V B} →
|
||||
function : ∀ {f x T U V B} →
|
||||
|
||||
(x ↦ T) ⊢ᴮ B ∈ V →
|
||||
----------------------------------------------
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
{-# OPTIONS --rewriting #-}
|
||||
{-# OPTIONS --allow-unsolved-metas #-}
|
||||
|
||||
module Properties.StrictMode where
|
||||
|
||||
|
@ -21,7 +20,7 @@ open import Properties.Remember using (remember; _,_)
|
|||
open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
|
||||
open import Properties.Dec using (Dec; yes; no)
|
||||
open import Properties.Contradiction using (CONTRADICTION)
|
||||
open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeOfᴱⱽ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴᴱ; typeCheckᴴᴮ)
|
||||
open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeOfᴱⱽ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴᴱ; typeCheckᴴᴮ; mustBeFunction)
|
||||
open import Luau.OpSem using (_⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₁; binOp₂; binOpEval; refl; step)
|
||||
open import Luau.RuntimeError using (RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinopMismatch₁; BinopMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return)
|
||||
|
||||
|
@ -83,7 +82,7 @@ heap-weakeningᴱ H (nil) h = ok refl
|
|||
heap-weakeningᴱ H (var x) h = ok refl
|
||||
heap-weakeningᴱ H (addr a) refl = ok refl
|
||||
heap-weakeningᴱ H (addr a) (snoc {a = b} defn) with a ≡ᴬ b
|
||||
heap-weakeningᴱ H (addr a) (snoc {a = a} defn) | yes refl = warning (UnallocatedAddress a refl)
|
||||
heap-weakeningᴱ H (addr a) (snoc {a = a} defn) | yes refl = warning (UnallocatedAddress refl)
|
||||
heap-weakeningᴱ H (addr a) (snoc {a = b} p) | no q = ok (cong orBot (cong typeOfᴹᴼ (lookup-not-allocated p q)))
|
||||
heap-weakeningᴱ H (number n) h = ok refl
|
||||
heap-weakeningᴱ H (binexp M op N) h = ok refl
|
||||
|
@ -94,7 +93,7 @@ heap-weakeningᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) h = ok refl
|
|||
heap-weakeningᴱ H (block var b ∈ T is B end) h = ok refl
|
||||
heap-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h with heap-weakeningᴮ H B h
|
||||
heap-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h | ok p = ok p
|
||||
heap-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h | warning W = warning (function₂ f W)
|
||||
heap-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h | warning W = warning (function₂ W)
|
||||
heap-weakeningᴮ H (local var x ∈ T ← M ∙ B) h with heap-weakeningᴮ H B h
|
||||
heap-weakeningᴮ H (local var x ∈ T ← M ∙ B) h | ok p = ok p
|
||||
heap-weakeningᴮ H (local var x ∈ T ← M ∙ B) h | warning W = warning (local₂ W)
|
||||
|
@ -111,37 +110,37 @@ typeOf-val-not-bot nil = ok (λ ())
|
|||
typeOf-val-not-bot (number n) = ok (λ ())
|
||||
typeOf-val-not-bot {H = H} (addr a) with remember (H [ a ]ᴴ)
|
||||
typeOf-val-not-bot {H = H} (addr a) | (just O , p) = ok (λ q → bot-not-obj O (trans q (cong orBot (cong typeOfᴹᴼ p))))
|
||||
typeOf-val-not-bot {H = H} (addr a) | (nothing , p) = warning (UnallocatedAddress a p)
|
||||
typeOf-val-not-bot {H = H} (addr a) | (nothing , p) = warning (UnallocatedAddress p)
|
||||
|
||||
substitutivityᴱ : ∀ {Γ T H} M v x → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) M ≡ typeOfᴱ H Γ (M [ v / x ]ᴱ))
|
||||
substitutivityᴱ-whenever-yes : ∀ {Γ T H} v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≡ typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (yes p)))
|
||||
substitutivityᴱ-whenever-no : ∀ {Γ T H} v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≡ typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (no p)))
|
||||
substitutivityᴮ : ∀ {Γ T H} B v x → (just T ≡ typeOfⱽ H v) → (typeOfᴮ H (Γ ⊕ x ↦ T) B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮ))
|
||||
substitutivityᴮ-unless-yes : ∀ {Γ Γ′ T H} B v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ) → (typeOfᴮ H Γ′ B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮunless (yes p)))
|
||||
substitutivityᴮ-unless-no : ∀ {Γ Γ′ T H} B v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ ⊕ x ↦ T) → (typeOfᴮ H Γ′ B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮunless (no p)))
|
||||
substitutivityᴱ : ∀ {Γ T} H M v x → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) M ≡ typeOfᴱ H Γ (M [ v / x ]ᴱ))
|
||||
substitutivityᴱ-whenever-yes : ∀ {Γ T} H v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≡ typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (yes p)))
|
||||
substitutivityᴱ-whenever-no : ∀ {Γ T} H v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≡ typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (no p)))
|
||||
substitutivityᴮ : ∀ {Γ T} H B v x → (just T ≡ typeOfⱽ H v) → (typeOfᴮ H (Γ ⊕ x ↦ T) B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮ))
|
||||
substitutivityᴮ-unless-yes : ∀ {Γ Γ′ T} H B v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ) → (typeOfᴮ H Γ′ B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮunless (yes p)))
|
||||
substitutivityᴮ-unless-no : ∀ {Γ Γ′ T} H B v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ ⊕ x ↦ T) → (typeOfᴮ H Γ′ B ≡ typeOfᴮ H Γ (B [ v / x ]ᴮunless (no p)))
|
||||
|
||||
substitutivityᴱ nil v x p = refl
|
||||
substitutivityᴱ (var y) v x p with x ≡ⱽ y
|
||||
substitutivityᴱ (var y) v x p | yes q = substitutivityᴱ-whenever-yes v x y q p
|
||||
substitutivityᴱ (var y) v x p | no q = substitutivityᴱ-whenever-no v x y q p
|
||||
substitutivityᴱ (addr a) v x p = refl
|
||||
substitutivityᴱ (number n) v x p = refl
|
||||
substitutivityᴱ (binexp M op N) v x p = refl
|
||||
substitutivityᴱ (M $ N) v x p = cong tgt (substitutivityᴱ M v x p)
|
||||
substitutivityᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = refl
|
||||
substitutivityᴱ (block var b ∈ T is B end) v x p = refl
|
||||
substitutivityᴱ-whenever-yes v x x refl q = trans (cong orBot q) (sym (typeOfᴱⱽ v))
|
||||
substitutivityᴱ-whenever-no v x y p q = cong orBot ( sym (⊕-lookup-miss x y _ _ p))
|
||||
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p with x ≡ⱽ f
|
||||
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | yes q = substitutivityᴮ-unless-yes B v x f q p (⊕-over q)
|
||||
substitutivityᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | no q = substitutivityᴮ-unless-no B v x f q p (⊕-swap q)
|
||||
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p with x ≡ⱽ y
|
||||
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p | yes q = substitutivityᴮ-unless-yes B v x y q p (⊕-over q)
|
||||
substitutivityᴮ (local var y ∈ T ← M ∙ B) v x p | no q = substitutivityᴮ-unless-no B v x y q p (⊕-swap q)
|
||||
substitutivityᴮ (return M ∙ B) v x p = substitutivityᴱ M v x p
|
||||
substitutivityᴮ done v x p = refl
|
||||
substitutivityᴮ-unless-yes B v x x refl q refl = refl
|
||||
substitutivityᴮ-unless-no B v x y p q refl = substitutivityᴮ B v x q
|
||||
substitutivityᴱ H nil v x p = refl
|
||||
substitutivityᴱ H (var y) v x p with x ≡ⱽ y
|
||||
substitutivityᴱ H (var y) v x p | yes q = substitutivityᴱ-whenever-yes H v x y q p
|
||||
substitutivityᴱ H (var y) v x p | no q = substitutivityᴱ-whenever-no H v x y q p
|
||||
substitutivityᴱ H (addr a) v x p = refl
|
||||
substitutivityᴱ H (number n) v x p = refl
|
||||
substitutivityᴱ H (binexp M op N) v x p = refl
|
||||
substitutivityᴱ H (M $ N) v x p = cong tgt (substitutivityᴱ H M v x p)
|
||||
substitutivityᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = refl
|
||||
substitutivityᴱ H (block var b ∈ T is B end) v x p = refl
|
||||
substitutivityᴱ-whenever-yes H v x x refl q = trans (cong orBot q) (sym (typeOfᴱⱽ v))
|
||||
substitutivityᴱ-whenever-no H v x y p q = cong orBot ( sym (⊕-lookup-miss x y _ _ p))
|
||||
substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p with x ≡ⱽ f
|
||||
substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | yes q = substitutivityᴮ-unless-yes H B v x f q p (⊕-over q)
|
||||
substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p | no q = substitutivityᴮ-unless-no H B v x f q p (⊕-swap q)
|
||||
substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p with x ≡ⱽ y
|
||||
substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p | yes q = substitutivityᴮ-unless-yes H B v x y q p (⊕-over q)
|
||||
substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p | no q = substitutivityᴮ-unless-no H B v x y q p (⊕-swap q)
|
||||
substitutivityᴮ H (return M ∙ B) v x p = substitutivityᴱ H M v x p
|
||||
substitutivityᴮ H done v x p = refl
|
||||
substitutivityᴮ-unless-yes H B v x x refl q refl = refl
|
||||
substitutivityᴮ-unless-no H B v x y p q refl = substitutivityᴮ H B v x q
|
||||
|
||||
preservationᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → OrWarningᴴᴱ H (typeCheckᴴᴱ H ∅ M) (typeOfᴱ H ∅ M ≡ typeOfᴱ H′ ∅ M′)
|
||||
preservationᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → OrWarningᴴᴮ H (typeCheckᴴᴮ H ∅ B) (typeOfᴮ H ∅ B ≡ typeOfᴮ H′ ∅ B′)
|
||||
|
@ -156,122 +155,128 @@ preservationᴱ H (M $ N) (app₂ p s) | ok q = ok (cong tgt q)
|
|||
preservationᴱ H (M $ N) (app₂ p s) | warning W = warning (expr (app₁ W))
|
||||
preservationᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) with remember (typeOfⱽ H v)
|
||||
preservationᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) with S ≡ᵀ U | T ≡ᵀ typeOfᴮ H (x ↦ S) B
|
||||
preservationᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | yes refl = ok (trans (cong tgt (cong orBot (cong typeOfᴹᴼ p))) {!!}) -- (substitutivityᴮ H B v x (sym q)))
|
||||
preservationᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | no r = warning (heap (addr a p (function₀ f r)))
|
||||
preservationᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | yes refl = ok (cong tgt (cong orBot (cong typeOfᴹᴼ p)))
|
||||
preservationᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | no r = warning (heap (addr a p (function₀ r)))
|
||||
preservationᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (just U , q) | no r | _ = warning (expr (app₀ (λ s → r (trans (trans (sym (cong src (cong orBot (cong typeOfᴹᴼ p)))) (trans s (typeOfᴱⱽ v))) (cong orBot q)))))
|
||||
preservationᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) with typeOf-val-not-bot v
|
||||
preservationᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) | ok r = CONTRADICTION (r (sym (trans (typeOfᴱⱽ v) (cong orBot q))))
|
||||
preservationᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ S ⟩∈ T is B end) v refl p) | (nothing , q) | warning W = warning (expr (app₂ W))
|
||||
preservationᴱ H (block var b ∈ T is B end) (block s) = ok refl
|
||||
preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) = {!!} -- ok refl
|
||||
preservationᴱ H (block var b ∈ T is done end) (done) = {!!} -- ok refl
|
||||
preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) with T ≡ᵀ typeOfᴱ H ∅ (val v)
|
||||
preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) | yes p = ok p
|
||||
preservationᴱ H (block var b ∈ T is return M ∙ B end) (return v) | no p = warning (expr (block₀ p))
|
||||
preservationᴱ H (block var b ∈ T is done end) (done) with T ≡ᵀ nil
|
||||
preservationᴱ H (block var b ∈ T is done end) (done) | yes p = ok p
|
||||
preservationᴱ H (block var b ∈ T is done end) (done) | no p = warning (expr (block₀ p))
|
||||
preservationᴱ H (binexp M op N) s = {!!}
|
||||
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) with heap-weakeningᴮ H {!!} (rednᴱ⊑ s)
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) with heap-weakeningᴮ H B (rednᴱ⊑ s)
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) | ok p = ok p
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (local s) | warning W = warning (block (local₂ W))
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) with remember (typeOfⱽ H v)
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just U , p) with T ≡ᵀ U
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just T , p) | yes refl = ok (substitutivityᴮ B v x (sym p))
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just T , p) | yes refl = ok (substitutivityᴮ H B v x (sym p))
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (just U , p) | no q = warning (block (local₀ (λ r → q (trans r (trans (typeOfᴱⱽ v) (cong orBot p))))))
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) with typeOf-val-not-bot v
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) | ok q = CONTRADICTION (q (sym (trans (typeOfᴱⱽ v) (cong orBot p))))
|
||||
preservationᴮ H (local var x ∈ T ← M ∙ B) (subst v) | (nothing , p) | warning W = warning (block (local₁ W))
|
||||
preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) with heap-weakeningᴮ H {!!} (snoc defn)
|
||||
preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) | ok r = ok (trans r (substitutivityᴮ {T = T ⇒ U} B (addr a) f refl))
|
||||
preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) | warning W = warning (block (function₂ f W))
|
||||
preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) with heap-weakeningᴮ H B (snoc defn)
|
||||
preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) | ok r = ok (trans r (substitutivityᴮ _ B (addr a) f refl))
|
||||
preservationᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) | warning W = warning (block (function₂ W))
|
||||
preservationᴮ H (return M ∙ B) (return s) with preservationᴱ H M s
|
||||
preservationᴮ H (return M ∙ B) (return s) | ok p = ok p
|
||||
preservationᴮ H (return M ∙ B) (return s) | warning (expr W) = warning (block (return W))
|
||||
preservationᴮ H (return M ∙ B) (return s) | warning (heap W) = warning (heap W)
|
||||
|
||||
reflect-substitutionᴱ : ∀ {H Γ T} M v x → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) M)
|
||||
reflect-substitutionᴱ-whenever-yes : ∀ {H Γ T} v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever yes p)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y))
|
||||
reflect-substitutionᴱ-whenever-no : ∀ {H Γ T} v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever no p)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y))
|
||||
reflect-substitutionᴮ : ∀ {H Γ T} B v x → (just T ≡ typeOfⱽ H v) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) → Warningᴮ H (typeCheckᴮ H (Γ ⊕ x ↦ T) B)
|
||||
reflect-substitutionᴮ-unless-yes : ∀ {H Γ Γ′ T} B v x y (r : x ≡ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) → Warningᴮ H (typeCheckᴮ H Γ′ B)
|
||||
reflect-substitutionᴮ-unless-no : ∀ {H Γ Γ′ T} B v x y (r : x ≢ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ ⊕ x ↦ T) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) → Warningᴮ H (typeCheckᴮ H Γ′ B)
|
||||
reflect-substitutionᴱ : ∀ {Γ T} H M v x → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) M)
|
||||
reflect-substitutionᴱ-whenever-yes : ∀ {Γ T} H v x y (p : x ≡ y) → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever yes p)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y))
|
||||
reflect-substitutionᴱ-whenever-no : ∀ {Γ T} H v x y (p : x ≢ y) → (just T ≡ typeOfⱽ H v) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever no p)) → Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y))
|
||||
reflect-substitutionᴮ : ∀ {Γ T} H B v x → (just T ≡ typeOfⱽ H v) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) → Warningᴮ H (typeCheckᴮ H (Γ ⊕ x ↦ T) B)
|
||||
reflect-substitutionᴮ-unless-yes : ∀ {Γ Γ′ T} H B v x y (r : x ≡ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) → Warningᴮ H (typeCheckᴮ H Γ′ B)
|
||||
reflect-substitutionᴮ-unless-no : ∀ {Γ Γ′ T} H B v x y (r : x ≢ y) → (just T ≡ typeOfⱽ H v) → (Γ′ ≡ Γ ⊕ x ↦ T) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) → Warningᴮ H (typeCheckᴮ H Γ′ B)
|
||||
|
||||
reflect-substitutionᴱ (var y) v x p W with x ≡ⱽ y
|
||||
reflect-substitutionᴱ (var y) v x p W | yes r = reflect-substitutionᴱ-whenever-yes v x y r p W
|
||||
reflect-substitutionᴱ (var y) v x p W | no r = reflect-substitutionᴱ-whenever-no v x y r p W
|
||||
reflect-substitutionᴱ (addr a) v x p (UnallocatedAddress a r) = UnallocatedAddress a r
|
||||
reflect-substitutionᴱ (M $ N) v x p (app₀ q) = app₀ (λ s → q (trans (cong src (sym (substitutivityᴱ M v x p))) (trans s (substitutivityᴱ N v x p))))
|
||||
reflect-substitutionᴱ (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ M v x p W)
|
||||
reflect-substitutionᴱ (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ N v x p W)
|
||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) with (x ≡ⱽ y)
|
||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-yes B v x y r p (⊕-over r))))
|
||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-no B v x y r p (⊕-swap r))))
|
||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) with (x ≡ⱽ y)
|
||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-over r) W)
|
||||
reflect-substitutionᴱ (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W)
|
||||
reflect-substitutionᴱ (block var b ∈ T is B end) v x p (block₀ b W) = {!!}
|
||||
reflect-substitutionᴱ (block var b ∈ T is B end) v x p (block₁ b W) = block₁ b (reflect-substitutionᴮ B v x p W)
|
||||
reflect-substitutionᴱ (binexp M op N) x v p W = {!!}
|
||||
reflect-substitutionᴱ H (var y) v x p W with x ≡ⱽ y
|
||||
reflect-substitutionᴱ H (var y) v x p W | yes r = reflect-substitutionᴱ-whenever-yes H v x y r p W
|
||||
reflect-substitutionᴱ H (var y) v x p W | no r = reflect-substitutionᴱ-whenever-no H v x y r p W
|
||||
reflect-substitutionᴱ H (addr a) v x p (UnallocatedAddress r) = UnallocatedAddress r
|
||||
reflect-substitutionᴱ H (M $ N) v x p (app₀ q) = app₀ (λ s → q (trans (cong src (sym (substitutivityᴱ H M v x p))) (trans s (substitutivityᴱ H N v x p))))
|
||||
reflect-substitutionᴱ H (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ H M v x p W)
|
||||
reflect-substitutionᴱ H (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ H N v x p W)
|
||||
reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ q) with (x ≡ⱽ y)
|
||||
reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ q) | yes r = function₀ (λ s → q (trans s (substitutivityᴮ-unless-yes H B v x y r p (⊕-over r))))
|
||||
reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₀ q) | no r = function₀ (λ s → q (trans s (substitutivityᴮ-unless-no H B v x y r p (⊕-swap r))))
|
||||
reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ W) with (x ≡ⱽ y)
|
||||
reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ W) | yes r = function₁ (reflect-substitutionᴮ-unless-yes H B v x y r p (⊕-over r) W)
|
||||
reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p (function₁ W) | no r = function₁ (reflect-substitutionᴮ-unless-no H B v x y r p (⊕-swap r) W)
|
||||
reflect-substitutionᴱ H (block var b ∈ T is B end) v x p (block₀ q) = block₀ (λ r → q (trans r (substitutivityᴮ H B v x p)))
|
||||
reflect-substitutionᴱ H (block var b ∈ T is B end) v x p (block₁ W) = block₁ (reflect-substitutionᴮ H B v x p W)
|
||||
reflect-substitutionᴱ H (binexp M op N) x v p W = {!!}
|
||||
|
||||
reflect-substitutionᴱ-whenever-no v x y p q (UnboundVariable y r) = UnboundVariable y (trans (sym (⊕-lookup-miss x y _ _ p)) r)
|
||||
reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) with trans p (cong typeOfᴹᴼ q)
|
||||
reflect-substitutionᴱ-whenever-yes (addr a) x x refl p (UnallocatedAddress a q) | ()
|
||||
reflect-substitutionᴱ-whenever-no H v x y p q (UnboundVariable y r) = UnboundVariable y (trans (sym (⊕-lookup-miss x y _ _ p)) r)
|
||||
reflect-substitutionᴱ-whenever-yes H (addr a) x x refl p (UnallocatedAddress q) with trans p (cong typeOfᴹᴼ q)
|
||||
reflect-substitutionᴱ-whenever-yes H (addr a) x x refl p (UnallocatedAddress q) | ()
|
||||
|
||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) with (x ≡ⱽ y)
|
||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | yes r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-yes C v x y r p (⊕-over r))))
|
||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ f q) | no r = function₀ f (λ s → q (trans s (substitutivityᴮ-unless-no C v x y r p (⊕-swap r))))
|
||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) with (x ≡ⱽ y)
|
||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | yes r = function₁ f (reflect-substitutionᴮ-unless-yes C v x y r p (⊕-over r) W)
|
||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ f W) | no r = function₁ f (reflect-substitutionᴮ-unless-no C v x y r p (⊕-swap r) W)
|
||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W) with (x ≡ⱽ f)
|
||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W)| yes r = function₂ f (reflect-substitutionᴮ-unless-yes B v x f r p (⊕-over r) W)
|
||||
reflect-substitutionᴮ (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ f W)| no r = function₂ f (reflect-substitutionᴮ-unless-no B v x f r p (⊕-swap r) W)
|
||||
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₀ q) = local₀ (λ r → q (trans r (substitutivityᴱ M v x p)))
|
||||
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₁ W) = local₁ (reflect-substitutionᴱ M v x p W)
|
||||
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) with (x ≡ⱽ y)
|
||||
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) | yes r = local₂ (reflect-substitutionᴮ-unless-yes B v x y r p (⊕-over r) W)
|
||||
reflect-substitutionᴮ (local var y ∈ T ← M ∙ B) v x p (local₂ W) | no r = local₂ (reflect-substitutionᴮ-unless-no B v x y r p (⊕-swap r) W)
|
||||
reflect-substitutionᴮ (return M ∙ B) v x p (return W) = return (reflect-substitutionᴱ M v x p W)
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ q) with (x ≡ⱽ y)
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ q) | yes r = function₀ (λ s → q (trans s (substitutivityᴮ-unless-yes H C v x y r p (⊕-over r))))
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₀ q) | no r = function₀ (λ s → q (trans s (substitutivityᴮ-unless-no H C v x y r p (⊕-swap r))))
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ W) with (x ≡ⱽ y)
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ W) | yes r = function₁ (reflect-substitutionᴮ-unless-yes H C v x y r p (⊕-over r) W)
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₁ W) | no r = function₁ (reflect-substitutionᴮ-unless-no H C v x y r p (⊕-swap r) W)
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ W) with (x ≡ⱽ f)
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ W)| yes r = function₂ (reflect-substitutionᴮ-unless-yes H B v x f r p (⊕-over r) W)
|
||||
reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p (function₂ W)| no r = function₂ (reflect-substitutionᴮ-unless-no H B v x f r p (⊕-swap r) W)
|
||||
reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x p (local₀ q) = local₀ (λ r → q (trans r (substitutivityᴱ H M v x p)))
|
||||
reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x p (local₁ W) = local₁ (reflect-substitutionᴱ H M v x p W)
|
||||
reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x p (local₂ W) with (x ≡ⱽ y)
|
||||
reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x p (local₂ W) | yes r = local₂ (reflect-substitutionᴮ-unless-yes H B v x y r p (⊕-over r) W)
|
||||
reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x p (local₂ W) | no r = local₂ (reflect-substitutionᴮ-unless-no H B v x y r p (⊕-swap r) W)
|
||||
reflect-substitutionᴮ H (return M ∙ B) v x p (return W) = return (reflect-substitutionᴱ H M v x p W)
|
||||
|
||||
reflect-substitutionᴮ-unless-yes B v x y r p refl W = W
|
||||
reflect-substitutionᴮ-unless-no B v x y r p refl W = reflect-substitutionᴮ B v x p W
|
||||
reflect-substitutionᴮ-unless-yes H B v x y r p refl W = W
|
||||
reflect-substitutionᴮ-unless-no H B v x y r p refl W = reflect-substitutionᴮ H B v x p W
|
||||
|
||||
reflect-weakeningᴱ : ∀ H M {H′ Γ} → (H ⊑ H′) → Warningᴱ H′ (typeCheckᴱ H′ Γ M) → Warningᴱ H (typeCheckᴱ H Γ M)
|
||||
reflect-weakeningᴮ : ∀ H B {H′ Γ} → (H ⊑ H′) → Warningᴮ H′ (typeCheckᴮ H′ Γ B) → Warningᴮ H (typeCheckᴮ H Γ B)
|
||||
|
||||
reflect-weakeningᴱ H (var x) h (UnboundVariable x p) = (UnboundVariable x p)
|
||||
reflect-weakeningᴱ H (addr a) h (UnallocatedAddress a p) = UnallocatedAddress a (lookup-⊑-nothing a h p)
|
||||
reflect-weakeningᴱ H (M $ N) h (app₀ p) with heap-weakeningᴱ H {!!} h | heap-weakeningᴱ H {!!} h
|
||||
reflect-weakeningᴱ H (addr a) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p)
|
||||
reflect-weakeningᴱ H (M $ N) h (app₀ p) with heap-weakeningᴱ H M h | heap-weakeningᴱ H N h
|
||||
reflect-weakeningᴱ H (M $ N) h (app₀ p) | ok q₁ | ok q₂ = app₀ (λ r → p (trans (cong src (sym q₁)) (trans r q₂)))
|
||||
reflect-weakeningᴱ H (M $ N) h (app₀ p) | warning W | _ = app₁ W
|
||||
reflect-weakeningᴱ H (M $ N) h (app₀ p) | _ | warning W = app₂ W
|
||||
reflect-weakeningᴱ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ H M h W)
|
||||
reflect-weakeningᴱ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ H N h W)
|
||||
reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₀ f p) with heap-weakeningᴮ H {!!} h
|
||||
reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₀ f p) | ok q = function₀ f (λ r → p (trans r q))
|
||||
reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₀ f p) | warning W = function₁ f W
|
||||
reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₁ f W) = function₁ f (reflect-weakeningᴮ H B h W)
|
||||
reflect-weakeningᴱ H (block var b ∈ T is B end) h (block₀ b W) = {!!} -- block₁ b (reflect-weakeningᴮ H B h W)
|
||||
reflect-weakeningᴱ H (block var b ∈ T is B end) h (block₁ b W) = block₁ b (reflect-weakeningᴮ H B h W)
|
||||
reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₀ p) with heap-weakeningᴮ H B h
|
||||
reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₀ p) | ok q = function₀ (λ r → p (trans r q))
|
||||
reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₀ p) | warning W = function₁ W
|
||||
reflect-weakeningᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ H B h W)
|
||||
reflect-weakeningᴱ H (block var b ∈ T is B end) h (block₀ p) with heap-weakeningᴮ H B h
|
||||
reflect-weakeningᴱ H (block var b ∈ T is B end) h (block₀ p) | ok q = block₀ (λ r → p (trans r q))
|
||||
reflect-weakeningᴱ H (block var b ∈ T is B end) h (block₀ p) | warning W = block₁ W
|
||||
reflect-weakeningᴱ H (block var b ∈ T is B end) h (block₁ W) = block₁ (reflect-weakeningᴮ H B h W)
|
||||
|
||||
reflect-weakeningᴮ H (return M ∙ B) h (return W) = return (reflect-weakeningᴱ H M h W)
|
||||
reflect-weakeningᴮ H (local var y ∈ T ← M ∙ B) h (local₀ p) with heap-weakeningᴱ H {!!} h
|
||||
reflect-weakeningᴮ H (local var y ∈ T ← M ∙ B) h (local₀ p) with heap-weakeningᴱ H M h
|
||||
reflect-weakeningᴮ H (local var y ∈ T ← M ∙ B) h (local₀ p) | ok q = local₀ (λ r → p (trans r q))
|
||||
reflect-weakeningᴮ H (local var y ∈ T ← M ∙ B) h (local₀ p) | warning W = local₁ W
|
||||
reflect-weakeningᴮ H (local var y ∈ T ← M ∙ B) h (local₁ W) = local₁ (reflect-weakeningᴱ H M h W)
|
||||
reflect-weakeningᴮ H (local var y ∈ T ← M ∙ B) h (local₂ W) = local₂ (reflect-weakeningᴮ H B h W)
|
||||
reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₀ f p) with heap-weakeningᴮ H {!!} h
|
||||
reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₀ f p) | ok q = function₀ f (λ r → p (trans r q))
|
||||
reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₀ f p) | warning W = function₁ f W
|
||||
reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₁ f W) = function₁ f (reflect-weakeningᴮ H C h W)
|
||||
reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₂ f W) = function₂ f (reflect-weakeningᴮ H B h W)
|
||||
reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₀ p) with heap-weakeningᴮ H C h
|
||||
reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₀ p) | ok q = function₀ (λ r → p (trans r q))
|
||||
reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₀ p) | warning W = function₁ W
|
||||
reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₁ W) = function₁ (reflect-weakeningᴮ H C h W)
|
||||
reflect-weakeningᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₂ W) = function₂ (reflect-weakeningᴮ H B h W)
|
||||
|
||||
reflect-weakeningᴼ : ∀ H O {H′} → (H ⊑ H′) → Warningᴼ H′ (typeCheckᴼ H′ O) → Warningᴼ H (typeCheckᴼ H O)
|
||||
reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (function₀ f p) with heap-weakeningᴮ H {!!} h
|
||||
reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (function₀ f p) | ok q = function₀ f (λ r → p (trans r q))
|
||||
reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (function₀ f p) | warning W = function₁ f W
|
||||
reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (function₁ f W′) = function₁ f (reflect-weakeningᴮ H B h W′)
|
||||
reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (function₀ p) with heap-weakeningᴮ H B h
|
||||
reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (function₀ p) | ok q = function₀ (λ r → p (trans r q))
|
||||
reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (function₀ p) | warning W = function₁ W
|
||||
reflect-weakeningᴼ H (just (function f ⟨ var x ∈ T ⟩∈ U is B end)) h (function₁ W′) = function₁ (reflect-weakeningᴮ H B h W′)
|
||||
|
||||
reflectᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴱ H′ (typeCheckᴱ H′ ∅ M′) → Warningᴴᴱ H (typeCheckᴴᴱ H ∅ M)
|
||||
reflectᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴮ H′ (typeCheckᴮ H′ ∅ B′) → Warningᴴᴮ H (typeCheckᴴᴮ H ∅ B)
|
||||
|
||||
reflectᴱ H (M $ N) (app₁ s) (app₀ p) with preservationᴱ H M s | heap-weakeningᴱ H {!!} (rednᴱ⊑ s)
|
||||
reflectᴱ H (M $ N) (app₁ s) (app₀ p) with preservationᴱ H M s | heap-weakeningᴱ H N (rednᴱ⊑ s)
|
||||
reflectᴱ H (M $ N) (app₁ s) (app₀ p) | ok q | ok q′ = expr (app₀ (λ r → p (trans (trans (cong src (sym q)) r) q′)))
|
||||
reflectᴱ H (M $ N) (app₁ s) (app₀ p) | warning (expr W) | _ = expr (app₁ W)
|
||||
reflectᴱ H (M $ N) (app₁ s) (app₀ p) | warning (heap W) | _ = heap W
|
||||
|
@ -280,7 +285,7 @@ reflectᴱ H (M $ N) (app₁ s) (app₁ W′) with reflectᴱ H M s W′
|
|||
reflectᴱ H (M $ N) (app₁ s) (app₁ W′) | heap W = heap W
|
||||
reflectᴱ H (M $ N) (app₁ s) (app₁ W′) | expr W = expr (app₁ W)
|
||||
reflectᴱ H (M $ N) (app₁ s) (app₂ W′) = expr (app₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W′))
|
||||
reflectᴱ H (M $ N) (app₂ p s) (app₀ p′) with heap-weakeningᴱ H {!!} (rednᴱ⊑ s) | preservationᴱ H N s
|
||||
reflectᴱ H (M $ N) (app₂ p s) (app₀ p′) with heap-weakeningᴱ H (val p) (rednᴱ⊑ s) | preservationᴱ H N s
|
||||
reflectᴱ H (M $ N) (app₂ p s) (app₀ p′) | ok q | ok q′ = expr (app₀ (λ r → p′ (trans (trans (cong src (sym q)) r) q′)))
|
||||
reflectᴱ H (M $ N) (app₂ p s) (app₀ p′) | warning W | _ = expr (app₁ W)
|
||||
reflectᴱ H (M $ N) (app₂ p s) (app₀ p′) | _ | warning (expr W) = expr (app₂ W)
|
||||
|
@ -289,20 +294,29 @@ reflectᴱ H (M $ N) (app₂ p s) (app₁ W′) = expr (app₁ (reflect-weakenin
|
|||
reflectᴱ H (M $ N) (app₂ p s) (app₂ W′) with reflectᴱ H N s W′
|
||||
reflectᴱ H (M $ N) (app₂ p s) (app₂ W′) | heap W = heap W
|
||||
reflectᴱ H (M $ N) (app₂ p s) (app₂ W′) | expr W = expr (app₂ W)
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₀ f W′) = {!!}
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ f W′) with remember (typeOfⱽ H v)
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ f W′) | (just S , q) with S ≡ᵀ T
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ f W′) | (just T , q) | yes refl = heap (addr a p (function₁ f (reflect-substitutionᴮ B v x (sym q) W′)))
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ f W′) | (just S , q) | no r = expr (app₀ (λ s → r (trans (cong orBot (sym q)) (trans (sym (typeOfᴱⱽ v)) (trans (sym s) (cong src (cong orBot (cong typeOfᴹᴼ p))))))))
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ f W′) | (nothing , q) with typeOf-val-not-bot v
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ f W′) | (nothing , q) | ok r = CONTRADICTION (r (trans (cong orBot (sym q)) (sym (typeOfᴱⱽ v))))
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ f W′) | (nothing , q) | warning W = expr (app₂ W)
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₀ b W′) = {!!}
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ b W′) with reflectᴮ H B s W′
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ b W′) | heap W = heap W
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ b W′) | block W = expr (block₁ b W)
|
||||
reflectᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (UnallocatedAddress a ())
|
||||
reflectᴱ H (block var b ∈ T is return N ∙ B end) W = {!!} -- expr (block₁ _ (return W))
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₀ q) with remember (typeOfⱽ H v)
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₀ q) | (just S , r) with S ≡ᵀ T
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₀ q) | (just T , r) | yes refl = heap (addr a p (function₀ (λ s → q (trans s (substitutivityᴮ H B v x (sym r))))))
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₀ q) | (just S , r) | no s = expr (app₀ (λ t → s (trans (cong orBot (sym r)) (trans (sym (typeOfᴱⱽ v)) (trans (sym t) (cong src (cong orBot (cong typeOfᴹᴼ p))))))))
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₀ q) | (nothing , r) with typeOf-val-not-bot v
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₀ q) | (nothing , r) | ok s = CONTRADICTION (s (trans (cong orBot (sym r)) (sym (typeOfᴱⱽ v))))
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₀ q) | (nothing , r) | warning W = expr (app₂ W)
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) with remember (typeOfⱽ H v)
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (just S , q) with S ≡ᵀ T
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (just T , q) | yes refl = heap (addr a p (function₁ (reflect-substitutionᴮ H B v x (sym q) W′)))
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (just S , q) | no r = expr (app₀ (λ s → r (trans (cong orBot (sym q)) (trans (sym (typeOfᴱⱽ v)) (trans (sym s) (cong src (cong orBot (cong typeOfᴹᴼ p))))))))
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (nothing , q) with typeOf-val-not-bot v
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (nothing , q) | ok r = CONTRADICTION (r (trans (cong orBot (sym q)) (sym (typeOfᴱⱽ v))))
|
||||
reflectᴱ H (addr a $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | (nothing , q) | warning W = expr (app₂ W)
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₀ p) with preservationᴮ H B s
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₀ p) | ok q = expr (block₀ (λ r → p (trans r q)))
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₀ p) | warning (heap W) = heap W
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₀ p) | warning (block W) = expr (block₁ W)
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ W′) with reflectᴮ H B s W′
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ W′) | heap W = heap W
|
||||
reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ W′) | block W = expr (block₁ W)
|
||||
reflectᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (UnallocatedAddress ())
|
||||
reflectᴱ H (block var b ∈ T is return M ∙ B end) (return v) W′ = expr (block₁ (return W′))
|
||||
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₀ p) with preservationᴱ H M s
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₀ p) | ok q = block (local₀ (λ r → p (trans r q)))
|
||||
|
@ -312,10 +326,14 @@ reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₁ W′) with refl
|
|||
reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₁ W′) | heap W = heap W
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₁ W′) | expr W = block (local₁ W)
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₂ W′) = block (local₂ (reflect-weakeningᴮ H B (rednᴱ⊑ s) W′))
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W with just T ≡ᴹᵀ typeOfⱽ H v
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W | yes p = block (local₂ (reflect-substitutionᴮ _ v x p W))
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W | no p = {!!} -- block (local₀ λ r → p (cong just r))
|
||||
reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W = {!!} -- block (function₂ f (reflect-weakeningᴮ H (snoc defn) (reflect-substitutionᴮ _ _ f refl W)))
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ with remember (typeOfⱽ H v)
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (just S , p) with S ≡ᵀ T
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (just T , p) | yes refl = block (local₂ (reflect-substitutionᴮ H B v x (sym p) W′))
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (just S , p) | no q = block (local₀ (λ r → q (trans (cong orBot (sym p)) (trans (sym (typeOfᴱⱽ v)) (sym r)))))
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (nothing , p) with typeOf-val-not-bot v
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (nothing , p) | ok r = CONTRADICTION (r (trans (cong orBot (sym p)) (sym (typeOfᴱⱽ v))))
|
||||
reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ | (nothing , p) | warning W = block (local₁ W)
|
||||
reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ = block (function₂ (reflect-weakeningᴮ H B (snoc defn) (reflect-substitutionᴮ _ B (addr a) f refl W′)))
|
||||
reflectᴮ H (return M ∙ B) (return s) (return W′) with reflectᴱ H M s W′
|
||||
reflectᴮ H (return M ∙ B) (return s) (return W′) | heap W = heap W
|
||||
reflectᴮ H (return M ∙ B) (return s) (return W′) | expr W = block (return W)
|
||||
|
@ -325,10 +343,10 @@ reflectᴴᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warni
|
|||
|
||||
reflectᴴᴱ H M s (expr W′) = reflectᴱ H M s W′
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (heap (addr b refl W′)) with b ≡ᴬ a
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl with heap-weakeningᴮ H {!!} (snoc defn)
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl | ok r = expr (function₀ f λ q → p (trans q r))
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl | warning W = expr (function₁ f W)
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₁ f W′))) | yes refl = expr (function₁ f (reflect-weakeningᴮ H B (snoc defn) W′))
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ p))) | yes refl with heap-weakeningᴮ H B (snoc defn)
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ p))) | yes refl | ok r = expr (function₀ λ q → p (trans q r))
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₀ p))) | yes refl | warning W = expr (function₁ W)
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₁ W′))) | yes refl = expr (function₁ (reflect-weakeningᴮ H B (snoc defn) W′))
|
||||
reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (heap (addr b refl W′)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ H _ (snoc p) W′))
|
||||
reflectᴴᴱ H (M $ N) (app₁ s) (heap W′) with reflectᴴᴱ H M s (heap W′)
|
||||
reflectᴴᴱ H (M $ N) (app₁ s) (heap W′) | heap W = heap W
|
||||
|
@ -339,7 +357,7 @@ reflectᴴᴱ H (M $ N) (app₂ p s) (heap W′) | expr W = expr (app₂ W)
|
|||
reflectᴴᴱ H (M $ N) (beta O v p q) (heap W′) = heap W′
|
||||
reflectᴴᴱ H (block var b ∈ T is B end) (block s) (heap W′) with reflectᴴᴮ H B s (heap W′)
|
||||
reflectᴴᴱ H (block var b ∈ T is B end) (block s) (heap W′) | heap W = heap W
|
||||
reflectᴴᴱ H (block var b ∈ T is B end) (block s) (heap W′) | block W = expr (block₁ b W)
|
||||
reflectᴴᴱ H (block var b ∈ T is B end) (block s) (heap W′) | block W = expr (block₁ W)
|
||||
reflectᴴᴱ H (block var b ∈ T is return N ∙ B end) (return v) (heap W′) = heap W′
|
||||
reflectᴴᴱ H (block var b ∈ T is done end) done (heap W′) = heap W′
|
||||
reflectᴴᴱ H (binexp M op N) s W′ = {!!}
|
||||
|
@ -350,10 +368,10 @@ reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (local s) (heap W′) | heap W =
|
|||
reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (local s) (heap W′) | expr W = block (local₁ W)
|
||||
reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (subst v) (heap W′) = heap W′
|
||||
reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a p) (heap (addr b refl W′)) with b ≡ᴬ a
|
||||
reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl with heap-weakeningᴮ H {!!} (snoc defn)
|
||||
reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl | ok r = block (function₀ f (λ q → p (trans q r)))
|
||||
reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (function₀ f p))) | yes refl | warning W = block (function₁ f W)
|
||||
reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (function₁ f W′))) | yes refl = block (function₁ f (reflect-weakeningᴮ H C (snoc defn) W′))
|
||||
reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (function₀ p))) | yes refl with heap-weakeningᴮ H C (snoc defn)
|
||||
reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (function₀ p))) | yes refl | ok r = block (function₀ (λ q → p (trans q r)))
|
||||
reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (function₀ p))) | yes refl | warning W = block (function₁ W)
|
||||
reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) (heap (addr a refl (function₁ W′))) | yes refl = block (function₁ (reflect-weakeningᴮ H C (snoc defn) W′))
|
||||
reflectᴴᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a p) (heap (addr b refl W′)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ H _ (snoc p) W′))
|
||||
reflectᴴᴮ H (return M ∙ B) (return s) (heap W′) with reflectᴴᴱ H M s (heap W′)
|
||||
reflectᴴᴮ H (return M ∙ B) (return s) (heap W′) | heap W = heap W
|
||||
|
@ -367,14 +385,16 @@ runtimeWarningᴱ : ∀ H M → RuntimeErrorᴱ H M → Warningᴱ H (typeCheck
|
|||
runtimeWarningᴮ : ∀ H B → RuntimeErrorᴮ H B → Warningᴮ H (typeCheckᴮ H ∅ B)
|
||||
|
||||
runtimeWarningᴱ H (var x) UnboundVariable = UnboundVariable x refl
|
||||
runtimeWarningᴱ H (addr a) (SEGV p) = UnallocatedAddress a p
|
||||
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w r) = {!!} -- app₁ (runtimeWarningᴱ H M err)
|
||||
runtimeWarningᴱ H (addr a) (SEGV p) = UnallocatedAddress p
|
||||
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) with typeOf-val-not-bot w
|
||||
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | ok q = app₀ (λ r → p (mustBeFunction H ∅ v (λ r′ → q (trans r′ r))))
|
||||
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | warning W = app₂ W
|
||||
runtimeWarningᴱ H (M $ N) (app₁ err) = app₁ (runtimeWarningᴱ H M err)
|
||||
runtimeWarningᴱ H (M $ N) (app₂ err) = app₂ (runtimeWarningᴱ H N err)
|
||||
runtimeWarningᴱ H (block var b ∈ T is B end) (block err) = block₁ b (runtimeWarningᴮ H B err)
|
||||
runtimeWarningᴱ H (block var b ∈ T is B end) (block err) = block₁ (runtimeWarningᴮ H B err)
|
||||
runtimeWarningᴱ H (binexp M op N) (BinopMismatch₁ v w p) = {!!}
|
||||
runtimeWarningᴱ H (binexp M op N) (BinopMismatch₂ v w p) = {!!}
|
||||
runtimeWarningᴱ H (binexp M op N) (bin₁ err) = {!!}
|
||||
runtimeWarningᴱ H (binexp M op N) (bin₁ err) = {!bin₁!}
|
||||
runtimeWarningᴱ H (binexp M op N) (bin₂ err) = {!!}
|
||||
|
||||
runtimeWarningᴮ H (local var x ∈ T ← M ∙ B) (local err) = local₁ (runtimeWarningᴱ H M err)
|
||||
|
|
|
@ -10,11 +10,13 @@ open import FFI.Data.Either using (Either)
|
|||
open import Luau.TypeCheck(m) using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; ⊢ᴼ_; ⊢ᴴ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; nil; var; addr; number; app; function; block; binexp; done; return; local; nothing; orBot)
|
||||
open import Luau.Syntax using (Block; Expr; yes; nil; var; addr; number; binexp; _$_; function_is_end; block_is_end; _∙_; return; done; local_←_; _⟨_⟩; _⟨_⟩∈_; var_∈_; name; fun; arg)
|
||||
open import Luau.Type using (Type; nil; top; bot; number; _⇒_; tgt)
|
||||
open import Luau.RuntimeType using (RuntimeType; nil; number; function; valueType)
|
||||
open import Luau.VarCtxt using (VarCtxt; ∅; _↦_; _⊕_↦_; _⋒_; _⊝_) renaming (_[_] to _[_]ⱽ)
|
||||
open import Luau.Addr using (Addr)
|
||||
open import Luau.Var using (Var; _≡ⱽ_)
|
||||
open import Luau.Value using (Value; nil; addr; number; val)
|
||||
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
|
||||
open import Properties.Contradiction using (CONTRADICTION)
|
||||
open import Properties.Dec using (yes; no)
|
||||
open import Properties.Equality using (_≢_; sym; trans; cong)
|
||||
open import Properties.Product using (_×_; _,_)
|
||||
|
@ -57,26 +59,31 @@ typeOfᴱⱽ nil = refl
|
|||
typeOfᴱⱽ (addr a) = refl
|
||||
typeOfᴱⱽ (number n) = refl
|
||||
|
||||
mustBeFunction : ∀ H Γ v → (bot ≢ src (typeOfᴱ H Γ (val v))) → (function ≡ valueType(v))
|
||||
mustBeFunction H Γ nil p = CONTRADICTION (p refl)
|
||||
mustBeFunction H Γ (addr a) p = refl
|
||||
mustBeFunction H Γ (number n) p = CONTRADICTION (p refl)
|
||||
|
||||
typeCheckᴱ : ∀ H Γ M → (Γ ⊢ᴱ M ∈ (typeOfᴱ H Γ M))
|
||||
typeCheckᴮ : ∀ H Γ B → (Γ ⊢ᴮ B ∈ (typeOfᴮ H Γ B))
|
||||
|
||||
typeCheckᴱ H Γ nil = nil
|
||||
typeCheckᴱ H Γ (var x) = var x refl
|
||||
typeCheckᴱ H Γ (addr a) = addr a (orBot (typeOfᴹᴼ (H [ a ]ᴴ)))
|
||||
typeCheckᴱ H Γ (number n) = number n
|
||||
typeCheckᴱ H Γ (var x) = var refl
|
||||
typeCheckᴱ H Γ (addr a) = addr (orBot (typeOfᴹᴼ (H [ a ]ᴴ)))
|
||||
typeCheckᴱ H Γ (number n) = number
|
||||
typeCheckᴱ H Γ (M $ N) = app (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N)
|
||||
typeCheckᴱ H Γ (function f ⟨ var x ∈ T ⟩∈ U is B end) = function f (typeCheckᴮ H (Γ ⊕ x ↦ T) B)
|
||||
typeCheckᴱ H Γ (block var b ∈ T is B end) = block b (typeCheckᴮ H Γ B)
|
||||
typeCheckᴱ H Γ (binexp M op N) = binexp op (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N)
|
||||
typeCheckᴱ H Γ (function f ⟨ var x ∈ T ⟩∈ U is B end) = function (typeCheckᴮ H (Γ ⊕ x ↦ T) B)
|
||||
typeCheckᴱ H Γ (block var b ∈ T is B end) = block (typeCheckᴮ H Γ B)
|
||||
typeCheckᴱ H Γ (binexp M op N) = binexp (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N)
|
||||
|
||||
typeCheckᴮ H Γ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) = function f (typeCheckᴮ H (Γ ⊕ x ↦ T) C) (typeCheckᴮ H (Γ ⊕ f ↦ (T ⇒ U)) B)
|
||||
typeCheckᴮ H Γ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) = function (typeCheckᴮ H (Γ ⊕ x ↦ T) C) (typeCheckᴮ H (Γ ⊕ f ↦ (T ⇒ U)) B)
|
||||
typeCheckᴮ H Γ (local var x ∈ T ← M ∙ B) = local (typeCheckᴱ H Γ M) (typeCheckᴮ H (Γ ⊕ x ↦ T) B)
|
||||
typeCheckᴮ H Γ (return M ∙ B) = return (typeCheckᴱ H Γ M) (typeCheckᴮ H Γ B)
|
||||
typeCheckᴮ H Γ done = done
|
||||
|
||||
typeCheckᴼ : ∀ H O → (⊢ᴼ O)
|
||||
typeCheckᴼ H nothing = nothing
|
||||
typeCheckᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) = function f (typeCheckᴮ H (x ↦ T) B)
|
||||
typeCheckᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) = function (typeCheckᴮ H (x ↦ T) B)
|
||||
|
||||
typeCheckᴴ : ∀ H → (⊢ᴴ H)
|
||||
typeCheckᴴ H a {O} p = typeCheckᴼ H (O)
|
||||
|
|
Loading…
Add table
Reference in a new issue