luau/CodeGen/src/NativeState.h

129 lines
5.7 KiB
C
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Bytecode.h"
#include "Luau/CodeAllocator.h"
#include "Luau/Label.h"
#include <memory>
#include <stdint.h>
#include "ldebug.h"
#include "lobject.h"
#include "ltm.h"
#include "lstate.h"
typedef int (*luau_FastFunction)(lua_State* L, StkId res, TValue* arg0, int nresults, StkId args, int nparams);
namespace Luau
{
namespace CodeGen
{
class UnwindBuilder;
struct NativeContext
{
// Gateway (C => native transition) entry & exit, compiled at runtime
uint8_t* gateEntry = nullptr;
uint8_t* gateExit = nullptr;
// Helper functions, implemented in C
int (*luaV_lessthan)(lua_State* L, const TValue* l, const TValue* r) = nullptr;
int (*luaV_lessequal)(lua_State* L, const TValue* l, const TValue* r) = nullptr;
int (*luaV_equalval)(lua_State* L, const TValue* t1, const TValue* t2) = nullptr;
void (*luaV_doarith)(lua_State* L, StkId ra, const TValue* rb, const TValue* rc, TMS op) = nullptr;
void (*luaV_dolen)(lua_State* L, StkId ra, const TValue* rb) = nullptr;
void (*luaV_prepareFORN)(lua_State* L, StkId plimit, StkId pstep, StkId pinit) = nullptr;
void (*luaV_gettable)(lua_State* L, const TValue* t, TValue* key, StkId val) = nullptr;
void (*luaV_settable)(lua_State* L, const TValue* t, TValue* key, StkId val) = nullptr;
void (*luaV_getimport)(lua_State* L, Table* env, TValue* k, StkId res, uint32_t id, bool propagatenil) = nullptr;
void (*luaV_concat)(lua_State* L, int total, int last) = nullptr;
int (*luaH_getn)(Table* t) = nullptr;
Table* (*luaH_new)(lua_State* L, int narray, int lnhash) = nullptr;
Table* (*luaH_clone)(lua_State* L, Table* tt) = nullptr;
void (*luaH_resizearray)(lua_State* L, Table* t, int nasize) = nullptr;
void (*luaC_barriertable)(lua_State* L, Table* t, GCObject* v) = nullptr;
void (*luaC_barrierf)(lua_State* L, GCObject* o, GCObject* v) = nullptr;
void (*luaC_barrierback)(lua_State* L, GCObject* o, GCObject** gclist) = nullptr;
size_t (*luaC_step)(lua_State* L, bool assist) = nullptr;
void (*luaF_close)(lua_State* L, StkId level) = nullptr;
Sync to upstream/release/588 (#992) Type checker/autocomplete: * `Luau::autocomplete` no longer performs typechecking internally, make sure to run `Frontend::check` before performing autocomplete requests * Autocomplete string suggestions without "" are now only suggested inside the "" * Autocomplete suggestions now include `function (anonymous autofilled)` key with a full suggestion for the function expression (with arguments included) stored in `AutocompleteEntry::insertText` * `AutocompleteEntry::indexedWithSelf` is provided for function call suggestions made with `:` * Cyclic modules now see each other type exports as `any` to prevent memory use-after-free (similar to module return type) Runtime: * Updated inline/loop unroll cost model to better handle assignments (Fixes https://github.com/Roblox/luau/issues/978) * `math.noise` speed was improved by ~30% * `table.concat` speed was improved by ~5-7% * `tonumber` and `tostring` now have fastcall paths that execute ~1.5x and ~2.5x faster respectively (fixes #777) * Fixed crash in `luaL_typename` when index refers to a non-existing value * Fixed potential out of memory scenario when using `string.sub` or `string.char` in a loop * Fixed behavior of some fastcall builtins when called without arguments under -O2 to match original functions * Support for native code execution in VM is now enabled by default (note: native code still has to be generated explicitly) * `Codegen::compile` now accepts `CodeGen_OnlyNativeModules` flag. When set, only modules that have a `--!native` hot-comment at the top will be compiled to native code In our new typechecker: * Generic type packs are no longer considered to be variadic during unification * Timeout and cancellation now works in new solver * Fixed false positive errors around 'table' and 'function' type refinements * Table literals now use covariant unification rules. This is sound since literal has no type specified and has no aliases * Fixed issues with blocked types escaping the constraint solver * Fixed more places where error messages that should've been suppressed were still reported * Fixed errors when iterating over a top table type In our native code generation (jit): * 'DebugLuauAbortingChecks' flag is now supported on A64 * LOP_NEWCLOSURE has been translated to IR
2023-07-28 16:13:53 +01:00
UpVal* (*luaF_findupval)(lua_State* L, StkId level) = nullptr;
Closure* (*luaF_newLclosure)(lua_State* L, int nelems, Table* e, Proto* p) = nullptr;
const TValue* (*luaT_gettm)(Table* events, TMS event, TString* ename) = nullptr;
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 19:20:37 +00:00
const TString* (*luaT_objtypenamestr)(lua_State* L, const TValue* o) = nullptr;
double (*libm_exp)(double) = nullptr;
double (*libm_pow)(double, double) = nullptr;
double (*libm_fmod)(double, double) = nullptr;
double (*libm_asin)(double) = nullptr;
double (*libm_sin)(double) = nullptr;
double (*libm_sinh)(double) = nullptr;
double (*libm_acos)(double) = nullptr;
double (*libm_cos)(double) = nullptr;
double (*libm_cosh)(double) = nullptr;
double (*libm_atan)(double) = nullptr;
double (*libm_atan2)(double, double) = nullptr;
double (*libm_tan)(double) = nullptr;
double (*libm_tanh)(double) = nullptr;
double (*libm_log)(double) = nullptr;
double (*libm_log2)(double) = nullptr;
double (*libm_log10)(double) = nullptr;
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 19:26:13 +00:00
double (*libm_ldexp)(double, int) = nullptr;
double (*libm_round)(double) = nullptr;
double (*libm_frexp)(double, int*) = nullptr;
double (*libm_modf)(double, double*) = nullptr;
// Helper functions
Sync to upstream/release/572 (#899) * Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
2023-04-14 19:06:22 +01:00
bool (*forgLoopTableIter)(lua_State* L, Table* h, int index, TValue* ra) = nullptr;
bool (*forgLoopNodeIter)(lua_State* L, Table* h, int index, TValue* ra) = nullptr;
bool (*forgLoopNonTableFallback)(lua_State* L, int insnA, int aux) = nullptr;
void (*forgPrepXnextFallback)(lua_State* L, TValue* ra, int pc) = nullptr;
Closure* (*callProlog)(lua_State* L, TValue* ra, StkId argtop, int nresults) = nullptr;
void (*callEpilogC)(lua_State* L, int nresults, int n) = nullptr;
Closure* (*callFallback)(lua_State* L, StkId ra, StkId argtop, int nresults) = nullptr;
// Opcode fallbacks, implemented in C
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
const Instruction* (*executeGETGLOBAL)(lua_State* L, const Instruction* pc, StkId base, TValue* k) = nullptr;
const Instruction* (*executeSETGLOBAL)(lua_State* L, const Instruction* pc, StkId base, TValue* k) = nullptr;
const Instruction* (*executeGETTABLEKS)(lua_State* L, const Instruction* pc, StkId base, TValue* k) = nullptr;
const Instruction* (*executeSETTABLEKS)(lua_State* L, const Instruction* pc, StkId base, TValue* k) = nullptr;
const Instruction* (*executeNEWCLOSURE)(lua_State* L, const Instruction* pc, StkId base, TValue* k) = nullptr;
const Instruction* (*executeNAMECALL)(lua_State* L, const Instruction* pc, StkId base, TValue* k) = nullptr;
const Instruction* (*executeSETLIST)(lua_State* L, const Instruction* pc, StkId base, TValue* k) = nullptr;
const Instruction* (*executeFORGPREP)(lua_State* L, const Instruction* pc, StkId base, TValue* k) = nullptr;
const Instruction* (*executeGETVARARGS)(lua_State* L, const Instruction* pc, StkId base, TValue* k) = nullptr;
const Instruction* (*executeDUPCLOSURE)(lua_State* L, const Instruction* pc, StkId base, TValue* k) = nullptr;
const Instruction* (*executePREPVARARGS)(lua_State* L, const Instruction* pc, StkId base, TValue* k) = nullptr;
// Fast call methods, implemented in C
luau_FastFunction luauF_table[256] = {};
};
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-12 18:50:47 +01:00
using GateFn = int (*)(lua_State*, Proto*, uintptr_t, NativeContext*);
struct NativeState
{
NativeState();
~NativeState();
CodeAllocator codeAllocator;
std::unique_ptr<UnwindBuilder> unwindBuilder;
uint8_t* gateData = nullptr;
size_t gateDataSize = 0;
NativeContext context;
};
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
void initFunctions(NativeState& data);
} // namespace CodeGen
} // namespace Luau