luau/CodeGen/src/IrTranslation.cpp

1274 lines
46 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "IrTranslation.h"
#include "Luau/Bytecode.h"
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 19:26:13 +00:00
#include "Luau/IrBuilder.h"
#include "Luau/IrUtils.h"
#include "IrTranslateBuiltins.h"
#include "lobject.h"
#include "lstate.h"
#include "ltm.h"
namespace Luau
{
namespace CodeGen
{
// Helper to consistently define a switch to instruction fallback code
struct FallbackStreamScope
{
FallbackStreamScope(IrBuilder& build, IrOp fallback, IrOp next)
: build(build)
, next(next)
{
LUAU_ASSERT(fallback.kind == IrOpKind::Block);
LUAU_ASSERT(next.kind == IrOpKind::Block);
build.inst(IrCmd::JUMP, next);
build.beginBlock(fallback);
}
~FallbackStreamScope()
{
build.beginBlock(next);
}
IrBuilder& build;
IrOp next;
};
void translateInstLoadNil(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNIL));
}
void translateInstLoadB(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
build.inst(IrCmd::STORE_INT, build.vmReg(ra), build.constInt(LUAU_INSN_B(*pc)));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TBOOLEAN));
if (int target = LUAU_INSN_C(*pc))
build.inst(IrCmd::JUMP, build.blockAtInst(pcpos + 1 + target));
}
void translateInstLoadN(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), build.constDouble(double(LUAU_INSN_D(*pc))));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
}
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-12 18:50:47 +01:00
static void translateInstLoadConstant(IrBuilder& build, int ra, int k)
{
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-12 18:50:47 +01:00
TValue protok = build.function.proto->k[k];
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-12 18:50:47 +01:00
// Compiler only generates LOADK for source-level constants, so dynamic imports are not affected
if (protok.tt == LUA_TNIL)
{
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNIL));
}
else if (protok.tt == LUA_TBOOLEAN)
{
build.inst(IrCmd::STORE_INT, build.vmReg(ra), build.constInt(protok.value.b));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TBOOLEAN));
}
else if (protok.tt == LUA_TNUMBER)
{
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), build.constDouble(protok.value.n));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
}
else
{
// Remaining tag here right now is LUA_TSTRING, while it can be transformed to LOAD_POINTER/STORE_POINTER/STORE_TAG, it's not profitable right
// now
IrOp load = build.inst(IrCmd::LOAD_TVALUE, build.vmConst(k));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), load);
}
}
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-12 18:50:47 +01:00
void translateInstLoadK(IrBuilder& build, const Instruction* pc)
{
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-12 18:50:47 +01:00
translateInstLoadConstant(build, LUAU_INSN_A(*pc), LUAU_INSN_D(*pc));
}
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-12 18:50:47 +01:00
void translateInstLoadKX(IrBuilder& build, const Instruction* pc)
{
translateInstLoadConstant(build, LUAU_INSN_A(*pc), pc[1]);
}
void translateInstMove(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
IrOp load = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(rb));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), load);
}
void translateInstJump(IrBuilder& build, const Instruction* pc, int pcpos)
{
build.inst(IrCmd::JUMP, build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc)));
}
void translateInstJumpBack(IrBuilder& build, const Instruction* pc, int pcpos)
{
build.inst(IrCmd::INTERRUPT, build.constUint(pcpos));
build.inst(IrCmd::JUMP, build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc)));
}
void translateInstJumpIf(IrBuilder& build, const Instruction* pc, int pcpos, bool not_)
{
int ra = LUAU_INSN_A(*pc);
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 1);
// TODO: falsy/truthy conditions should be deconstructed into more primitive operations
if (not_)
build.inst(IrCmd::JUMP_IF_FALSY, build.vmReg(ra), target, next);
else
build.inst(IrCmd::JUMP_IF_TRUTHY, build.vmReg(ra), target, next);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(next))
build.beginBlock(next);
}
void translateInstJumpIfEq(IrBuilder& build, const Instruction* pc, int pcpos, bool not_)
{
int ra = LUAU_INSN_A(*pc);
int rb = pc[1];
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp numberCheck = build.block(IrBlockKind::Internal);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::JUMP_EQ_TAG, ta, tb, numberCheck, not_ ? target : next);
build.beginBlock(numberCheck);
// fast-path: number
build.inst(IrCmd::CHECK_TAG, ta, build.constTag(LUA_TNUMBER), fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra));
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rb));
build.inst(IrCmd::JUMP_CMP_NUM, va, vb, build.cond(IrCondition::NotEqual), not_ ? target : next, not_ ? next : target);
build.beginBlock(fallback);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::JUMP_CMP_ANY, build.vmReg(ra), build.vmReg(rb), build.cond(not_ ? IrCondition::NotEqual : IrCondition::Equal), target, next);
build.beginBlock(next);
}
void translateInstJumpIfCond(IrBuilder& build, const Instruction* pc, int pcpos, IrCondition cond)
{
int ra = LUAU_INSN_A(*pc);
int rb = pc[1];
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp fallback = build.block(IrBlockKind::Fallback);
// fast-path: number
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::CHECK_TAG, ta, build.constTag(LUA_TNUMBER), fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TNUMBER), fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra));
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rb));
build.inst(IrCmd::JUMP_CMP_NUM, va, vb, build.cond(cond), target, next);
build.beginBlock(fallback);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::JUMP_CMP_ANY, build.vmReg(ra), build.vmReg(rb), build.cond(cond), target, next);
build.beginBlock(next);
}
void translateInstJumpX(IrBuilder& build, const Instruction* pc, int pcpos)
{
build.inst(IrCmd::INTERRUPT, build.constUint(pcpos));
build.inst(IrCmd::JUMP, build.blockAtInst(pcpos + 1 + LUAU_INSN_E(*pc)));
}
void translateInstJumpxEqNil(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
bool not_ = (pc[1] & 0x80000000) != 0;
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::JUMP_EQ_TAG, ta, build.constTag(LUA_TNIL), not_ ? next : target, not_ ? target : next);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(next))
build.beginBlock(next);
}
void translateInstJumpxEqB(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
uint32_t aux = pc[1];
bool not_ = (aux & 0x80000000) != 0;
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp checkValue = build.block(IrBlockKind::Internal);
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::JUMP_EQ_TAG, ta, build.constTag(LUA_TBOOLEAN), checkValue, not_ ? target : next);
build.beginBlock(checkValue);
IrOp va = build.inst(IrCmd::LOAD_INT, build.vmReg(ra));
build.inst(IrCmd::JUMP_EQ_INT, va, build.constInt(aux & 0x1), not_ ? next : target, not_ ? target : next);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(next))
build.beginBlock(next);
}
void translateInstJumpxEqN(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
uint32_t aux = pc[1];
bool not_ = (aux & 0x80000000) != 0;
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp checkValue = build.block(IrBlockKind::Internal);
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::JUMP_EQ_TAG, ta, build.constTag(LUA_TNUMBER), checkValue, not_ ? target : next);
build.beginBlock(checkValue);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra));
LUAU_ASSERT(build.function.proto);
TValue protok = build.function.proto->k[aux & 0xffffff];
LUAU_ASSERT(protok.tt == LUA_TNUMBER);
IrOp vb = build.constDouble(protok.value.n);
build.inst(IrCmd::JUMP_CMP_NUM, va, vb, build.cond(IrCondition::NotEqual), not_ ? target : next, not_ ? next : target);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(next))
build.beginBlock(next);
}
void translateInstJumpxEqS(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
uint32_t aux = pc[1];
bool not_ = (aux & 0x80000000) != 0;
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp checkValue = build.block(IrBlockKind::Internal);
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::JUMP_EQ_TAG, ta, build.constTag(LUA_TSTRING), checkValue, not_ ? target : next);
build.beginBlock(checkValue);
IrOp va = build.inst(IrCmd::LOAD_POINTER, build.vmReg(ra));
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmConst(aux & 0xffffff));
build.inst(IrCmd::JUMP_EQ_POINTER, va, vb, not_ ? next : target, not_ ? target : next);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(next))
build.beginBlock(next);
}
static void translateInstBinaryNumeric(IrBuilder& build, int ra, int rb, int rc, IrOp opc, int pcpos, TMS tm)
{
IrOp fallback = build.block(IrBlockKind::Fallback);
// fast-path: number
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TNUMBER), fallback);
if (rc != -1 && rc != rb) // TODO: optimization should handle second check, but we'll test it later
{
IrOp tc = build.inst(IrCmd::LOAD_TAG, build.vmReg(rc));
build.inst(IrCmd::CHECK_TAG, tc, build.constTag(LUA_TNUMBER), fallback);
}
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rb));
IrOp vc;
IrOp result;
if (opc.kind == IrOpKind::VmConst)
{
LUAU_ASSERT(build.function.proto);
TValue protok = build.function.proto->k[vmConstOp(opc)];
LUAU_ASSERT(protok.tt == LUA_TNUMBER);
// VM has special cases for exponentiation with constants
if (tm == TM_POW && protok.value.n == 0.5)
result = build.inst(IrCmd::SQRT_NUM, vb);
else if (tm == TM_POW && protok.value.n == 2.0)
result = build.inst(IrCmd::MUL_NUM, vb, vb);
else if (tm == TM_POW && protok.value.n == 3.0)
result = build.inst(IrCmd::MUL_NUM, vb, build.inst(IrCmd::MUL_NUM, vb, vb));
else
vc = build.constDouble(protok.value.n);
}
else
{
vc = build.inst(IrCmd::LOAD_DOUBLE, opc);
}
if (result.kind == IrOpKind::None)
{
LUAU_ASSERT(vc.kind != IrOpKind::None);
switch (tm)
{
case TM_ADD:
result = build.inst(IrCmd::ADD_NUM, vb, vc);
break;
case TM_SUB:
result = build.inst(IrCmd::SUB_NUM, vb, vc);
break;
case TM_MUL:
result = build.inst(IrCmd::MUL_NUM, vb, vc);
break;
case TM_DIV:
result = build.inst(IrCmd::DIV_NUM, vb, vc);
break;
case TM_MOD:
result = build.inst(IrCmd::MOD_NUM, vb, vc);
break;
case TM_POW:
result = build.inst(IrCmd::INVOKE_LIBM, build.constUint(LBF_MATH_POW), vb, vc);
break;
default:
LUAU_ASSERT(!"Unsupported binary op");
}
}
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), result);
if (ra != rb && ra != rc) // TODO: optimization should handle second check, but we'll test this later
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::DO_ARITH, build.vmReg(ra), build.vmReg(rb), opc, build.constInt(tm));
build.inst(IrCmd::JUMP, next);
}
void translateInstBinary(IrBuilder& build, const Instruction* pc, int pcpos, TMS tm)
{
translateInstBinaryNumeric(build, LUAU_INSN_A(*pc), LUAU_INSN_B(*pc), LUAU_INSN_C(*pc), build.vmReg(LUAU_INSN_C(*pc)), pcpos, tm);
}
void translateInstBinaryK(IrBuilder& build, const Instruction* pc, int pcpos, TMS tm)
{
translateInstBinaryNumeric(build, LUAU_INSN_A(*pc), LUAU_INSN_B(*pc), -1, build.vmConst(LUAU_INSN_C(*pc)), pcpos, tm);
}
void translateInstNot(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
IrOp vb = build.inst(IrCmd::LOAD_INT, build.vmReg(rb));
IrOp va = build.inst(IrCmd::NOT_ANY, tb, vb);
build.inst(IrCmd::STORE_INT, build.vmReg(ra), va);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TBOOLEAN));
}
void translateInstMinus(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TNUMBER), fallback);
// fast-path: number
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rb));
IrOp va = build.inst(IrCmd::UNM_NUM, vb);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), va);
if (ra != rb)
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::DO_ARITH, build.vmReg(LUAU_INSN_A(*pc)), build.vmReg(LUAU_INSN_B(*pc)), build.vmReg(LUAU_INSN_B(*pc)), build.constInt(TM_UNM));
build.inst(IrCmd::JUMP, next);
}
void translateInstLength(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
// fast-path: table without __len
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
build.inst(IrCmd::CHECK_NO_METATABLE, vb, fallback);
IrOp va = build.inst(IrCmd::TABLE_LEN, vb);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), va);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::DO_LEN, build.vmReg(LUAU_INSN_A(*pc)), build.vmReg(LUAU_INSN_B(*pc)));
build.inst(IrCmd::JUMP, next);
}
void translateInstNewTable(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int b = LUAU_INSN_B(*pc);
uint32_t aux = pc[1];
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
IrOp va = build.inst(IrCmd::NEW_TABLE, build.constUint(aux), build.constUint(b == 0 ? 0 : 1 << (b - 1)));
build.inst(IrCmd::STORE_POINTER, build.vmReg(ra), va);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TTABLE));
build.inst(IrCmd::CHECK_GC);
}
void translateInstDupTable(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int k = LUAU_INSN_D(*pc);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
IrOp table = build.inst(IrCmd::LOAD_POINTER, build.vmConst(k));
IrOp va = build.inst(IrCmd::DUP_TABLE, table);
build.inst(IrCmd::STORE_POINTER, build.vmReg(ra), va);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TTABLE));
build.inst(IrCmd::CHECK_GC);
}
void translateInstGetUpval(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int up = LUAU_INSN_B(*pc);
build.inst(IrCmd::GET_UPVALUE, build.vmReg(ra), build.vmUpvalue(up));
}
void translateInstSetUpval(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int up = LUAU_INSN_B(*pc);
build.inst(IrCmd::SET_UPVALUE, build.vmUpvalue(up), build.vmReg(ra));
}
void translateInstCloseUpvals(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
build.inst(IrCmd::CLOSE_UPVALS, build.vmReg(ra));
}
IrOp translateFastCallN(IrBuilder& build, const Instruction* pc, int pcpos, bool customParams, int customParamCount, IrOp customArgs)
{
LuauOpcode opcode = LuauOpcode(LUAU_INSN_OP(*pc));
int bfid = LUAU_INSN_A(*pc);
int skip = LUAU_INSN_C(*pc);
Instruction call = pc[skip + 1];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
int ra = LUAU_INSN_A(call);
int nparams = customParams ? customParamCount : LUAU_INSN_B(call) - 1;
int nresults = LUAU_INSN_C(call) - 1;
int arg = customParams ? LUAU_INSN_B(*pc) : ra + 1;
IrOp args = customParams ? customArgs : build.vmReg(ra + 2);
IrOp builtinArgs = args;
if (customArgs.kind == IrOpKind::VmConst)
{
TValue protok = build.function.proto->k[customArgs.index];
if (protok.tt == LUA_TNUMBER)
builtinArgs = build.constDouble(protok.value.n);
}
IrOp fallback = build.block(IrBlockKind::Fallback);
// In unsafe environment, instead of retrying fastcall at 'pcpos' we side-exit directly to fallback sequence
build.inst(IrCmd::CHECK_SAFE_ENV, build.vmExit(pcpos + getOpLength(opcode)));
BuiltinImplResult br =
translateBuiltin(build, LuauBuiltinFunction(bfid), ra, arg, builtinArgs, nparams, nresults, fallback, pcpos + getOpLength(opcode));
if (br.type != BuiltinImplType::None)
{
LUAU_ASSERT(nparams != LUA_MULTRET && "builtins are not allowed to handle variadic arguments");
if (nresults == LUA_MULTRET)
build.inst(IrCmd::ADJUST_STACK_TO_REG, build.vmReg(ra), build.constInt(br.actualResultCount));
if (br.type != BuiltinImplType::UsesFallback)
{
// We ended up not using the fallback block, kill it
build.function.blockOp(fallback).kind = IrBlockKind::Dead;
return build.undef();
}
}
else
{
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
// TODO: we can skip saving pc for some well-behaved builtins which we didn't inline
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + getOpLength(opcode)));
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
IrOp res = build.inst(IrCmd::INVOKE_FASTCALL, build.constUint(bfid), build.vmReg(ra), build.vmReg(arg), args, build.constInt(nparams),
build.constInt(nresults));
build.inst(IrCmd::CHECK_FASTCALL_RES, res, fallback);
if (nresults == LUA_MULTRET)
build.inst(IrCmd::ADJUST_STACK_TO_REG, build.vmReg(ra), res);
else if (nparams == LUA_MULTRET)
build.inst(IrCmd::ADJUST_STACK_TO_TOP);
}
return fallback;
}
void translateInstForNPrep(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
IrOp loopStart = build.blockAtInst(pcpos + getOpLength(LuauOpcode(LUAU_INSN_OP(*pc))));
IrOp loopExit = build.blockAtInst(getJumpTarget(*pc, pcpos));
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp nextStep = build.block(IrBlockKind::Internal);
IrOp direct = build.block(IrBlockKind::Internal);
IrOp reverse = build.block(IrBlockKind::Internal);
IrOp tagLimit = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 0));
build.inst(IrCmd::CHECK_TAG, tagLimit, build.constTag(LUA_TNUMBER), fallback);
IrOp tagStep = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 1));
build.inst(IrCmd::CHECK_TAG, tagStep, build.constTag(LUA_TNUMBER), fallback);
IrOp tagIdx = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 2));
build.inst(IrCmd::CHECK_TAG, tagIdx, build.constTag(LUA_TNUMBER), fallback);
build.inst(IrCmd::JUMP, nextStep);
// After successful conversion of arguments to number in a fallback, we return here
build.beginBlock(nextStep);
IrOp zero = build.constDouble(0.0);
IrOp limit = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 0));
IrOp step = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 1));
IrOp idx = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 2));
// step <= 0
build.inst(IrCmd::JUMP_CMP_NUM, step, zero, build.cond(IrCondition::LessEqual), reverse, direct);
// TODO: target branches can probably be arranged better, but we need tests for NaN behavior preservation
// step <= 0 is false, check idx <= limit
build.beginBlock(direct);
build.inst(IrCmd::JUMP_CMP_NUM, idx, limit, build.cond(IrCondition::LessEqual), loopStart, loopExit);
// step <= 0 is true, check limit <= idx
build.beginBlock(reverse);
build.inst(IrCmd::JUMP_CMP_NUM, limit, idx, build.cond(IrCondition::LessEqual), loopStart, loopExit);
// Fallback will try to convert loop variables to numbers or throw an error
build.beginBlock(fallback);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::PREPARE_FORN, build.vmReg(ra + 0), build.vmReg(ra + 1), build.vmReg(ra + 2));
build.inst(IrCmd::JUMP, nextStep);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(loopStart))
build.beginBlock(loopStart);
}
void translateInstForNLoop(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
IrOp loopRepeat = build.blockAtInst(getJumpTarget(*pc, pcpos));
IrOp loopExit = build.blockAtInst(pcpos + getOpLength(LuauOpcode(LUAU_INSN_OP(*pc))));
build.inst(IrCmd::INTERRUPT, build.constUint(pcpos));
IrOp zero = build.constDouble(0.0);
IrOp limit = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 0));
IrOp step = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 1));
IrOp idx = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 2));
idx = build.inst(IrCmd::ADD_NUM, idx, step);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra + 2), idx);
IrOp direct = build.block(IrBlockKind::Internal);
IrOp reverse = build.block(IrBlockKind::Internal);
// step <= 0
build.inst(IrCmd::JUMP_CMP_NUM, step, zero, build.cond(IrCondition::LessEqual), reverse, direct);
// step <= 0 is false, check idx <= limit
build.beginBlock(direct);
build.inst(IrCmd::JUMP_CMP_NUM, idx, limit, build.cond(IrCondition::LessEqual), loopRepeat, loopExit);
// step <= 0 is true, check limit <= idx
build.beginBlock(reverse);
build.inst(IrCmd::JUMP_CMP_NUM, limit, idx, build.cond(IrCondition::LessEqual), loopRepeat, loopExit);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(loopExit))
build.beginBlock(loopExit);
}
void translateInstForGPrepNext(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp fallback = build.block(IrBlockKind::Fallback);
// fast-path: pairs/next
build.inst(IrCmd::CHECK_SAFE_ENV, build.vmExit(pcpos));
IrOp tagB = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 1));
build.inst(IrCmd::CHECK_TAG, tagB, build.constTag(LUA_TTABLE), fallback);
IrOp tagC = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 2));
build.inst(IrCmd::CHECK_TAG, tagC, build.constTag(LUA_TNIL), fallback);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNIL));
// setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(ra + 2), build.constInt(0));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra + 2), build.constTag(LUA_TLIGHTUSERDATA));
build.inst(IrCmd::JUMP, target);
build.beginBlock(fallback);
build.inst(IrCmd::FORGPREP_XNEXT_FALLBACK, build.constUint(pcpos), build.vmReg(ra), target);
}
void translateInstForGPrepInext(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp finish = build.block(IrBlockKind::Internal);
// fast-path: ipairs/inext
build.inst(IrCmd::CHECK_SAFE_ENV, build.vmExit(pcpos));
IrOp tagB = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 1));
build.inst(IrCmd::CHECK_TAG, tagB, build.constTag(LUA_TTABLE), fallback);
IrOp tagC = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 2));
build.inst(IrCmd::CHECK_TAG, tagC, build.constTag(LUA_TNUMBER), fallback);
IrOp numC = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 2));
build.inst(IrCmd::JUMP_CMP_NUM, numC, build.constDouble(0.0), build.cond(IrCondition::NotEqual), fallback, finish);
build.beginBlock(finish);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNIL));
// setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(ra + 2), build.constInt(0));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra + 2), build.constTag(LUA_TLIGHTUSERDATA));
build.inst(IrCmd::JUMP, target);
build.beginBlock(fallback);
build.inst(IrCmd::FORGPREP_XNEXT_FALLBACK, build.constUint(pcpos), build.vmReg(ra), target);
}
void translateInstForGLoopIpairs(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
LUAU_ASSERT(int(pc[1]) < 0);
IrOp loopRepeat = build.blockAtInst(getJumpTarget(*pc, pcpos));
IrOp loopExit = build.blockAtInst(pcpos + getOpLength(LuauOpcode(LUAU_INSN_OP(*pc))));
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp hasElem = build.block(IrBlockKind::Internal);
build.inst(IrCmd::INTERRUPT, build.constUint(pcpos));
// fast-path: builtin table iteration
IrOp tagA = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::CHECK_TAG, tagA, build.constTag(LUA_TNIL), fallback);
IrOp table = build.inst(IrCmd::LOAD_POINTER, build.vmReg(ra + 1));
IrOp index = build.inst(IrCmd::LOAD_INT, build.vmReg(ra + 2));
IrOp elemPtr = build.inst(IrCmd::GET_ARR_ADDR, table, index);
// Terminate if array has ended
build.inst(IrCmd::CHECK_ARRAY_SIZE, table, index, loopExit);
// Terminate if element is nil
IrOp elemTag = build.inst(IrCmd::LOAD_TAG, elemPtr);
build.inst(IrCmd::JUMP_EQ_TAG, elemTag, build.constTag(LUA_TNIL), loopExit, hasElem);
build.beginBlock(hasElem);
IrOp nextIndex = build.inst(IrCmd::ADD_INT, index, build.constInt(1));
// We update only a dword part of the userdata pointer that's reused in loop iteration as an index
// Upper bits start and remain to be 0
build.inst(IrCmd::STORE_INT, build.vmReg(ra + 2), nextIndex);
// Tag should already be set to lightuserdata
// setnvalue(ra + 3, double(index + 1));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra + 3), build.inst(IrCmd::INT_TO_NUM, nextIndex));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra + 3), build.constTag(LUA_TNUMBER));
// setobj2s(L, ra + 4, e);
IrOp elemTV = build.inst(IrCmd::LOAD_TVALUE, elemPtr);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra + 4), elemTV);
build.inst(IrCmd::JUMP, loopRepeat);
build.beginBlock(fallback);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::FORGLOOP_FALLBACK, build.vmReg(ra), build.constInt(int(pc[1])), loopRepeat, loopExit);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(loopExit))
build.beginBlock(loopExit);
}
void translateInstGetTableN(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int c = LUAU_INSN_C(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
build.inst(IrCmd::CHECK_ARRAY_SIZE, vb, build.constInt(c), fallback);
build.inst(IrCmd::CHECK_NO_METATABLE, vb, fallback);
IrOp arrEl = build.inst(IrCmd::GET_ARR_ADDR, vb, build.constInt(c));
IrOp arrElTval = build.inst(IrCmd::LOAD_TVALUE, arrEl);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), arrElTval);
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::GET_TABLE, build.vmReg(ra), build.vmReg(rb), build.constUint(c + 1));
build.inst(IrCmd::JUMP, next);
}
void translateInstSetTableN(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int c = LUAU_INSN_C(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
build.inst(IrCmd::CHECK_ARRAY_SIZE, vb, build.constInt(c), fallback);
build.inst(IrCmd::CHECK_NO_METATABLE, vb, fallback);
build.inst(IrCmd::CHECK_READONLY, vb, fallback);
IrOp arrEl = build.inst(IrCmd::GET_ARR_ADDR, vb, build.constInt(c));
IrOp tva = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(ra));
build.inst(IrCmd::STORE_TVALUE, arrEl, tva);
build.inst(IrCmd::BARRIER_TABLE_FORWARD, vb, build.vmReg(ra), build.undef());
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::SET_TABLE, build.vmReg(ra), build.vmReg(rb), build.constUint(c + 1));
build.inst(IrCmd::JUMP, next);
}
void translateInstGetTable(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp tc = build.inst(IrCmd::LOAD_TAG, build.vmReg(rc));
build.inst(IrCmd::CHECK_TAG, tc, build.constTag(LUA_TNUMBER), fallback);
// fast-path: table with a number index
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
IrOp vc = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rc));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 19:20:37 +00:00
IrOp index = build.inst(IrCmd::TRY_NUM_TO_INDEX, vc, fallback);
index = build.inst(IrCmd::SUB_INT, index, build.constInt(1));
build.inst(IrCmd::CHECK_ARRAY_SIZE, vb, index, fallback);
build.inst(IrCmd::CHECK_NO_METATABLE, vb, fallback);
IrOp arrEl = build.inst(IrCmd::GET_ARR_ADDR, vb, index);
IrOp arrElTval = build.inst(IrCmd::LOAD_TVALUE, arrEl);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), arrElTval);
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::GET_TABLE, build.vmReg(ra), build.vmReg(rb), build.vmReg(rc));
build.inst(IrCmd::JUMP, next);
}
void translateInstSetTable(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp tc = build.inst(IrCmd::LOAD_TAG, build.vmReg(rc));
build.inst(IrCmd::CHECK_TAG, tc, build.constTag(LUA_TNUMBER), fallback);
// fast-path: table with a number index
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
IrOp vc = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rc));
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 19:20:37 +00:00
IrOp index = build.inst(IrCmd::TRY_NUM_TO_INDEX, vc, fallback);
index = build.inst(IrCmd::SUB_INT, index, build.constInt(1));
build.inst(IrCmd::CHECK_ARRAY_SIZE, vb, index, fallback);
build.inst(IrCmd::CHECK_NO_METATABLE, vb, fallback);
build.inst(IrCmd::CHECK_READONLY, vb, fallback);
IrOp arrEl = build.inst(IrCmd::GET_ARR_ADDR, vb, index);
IrOp tva = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(ra));
build.inst(IrCmd::STORE_TVALUE, arrEl, tva);
build.inst(IrCmd::BARRIER_TABLE_FORWARD, vb, build.vmReg(ra), build.undef());
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::SET_TABLE, build.vmReg(ra), build.vmReg(rb), build.vmReg(rc));
build.inst(IrCmd::JUMP, next);
}
void translateInstGetImport(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int k = LUAU_INSN_D(*pc);
uint32_t aux = pc[1];
IrOp fastPath = build.block(IrBlockKind::Internal);
IrOp fallback = build.block(IrBlockKind::Fallback);
build.inst(IrCmd::CHECK_SAFE_ENV, build.vmExit(pcpos));
// note: if import failed, k[] is nil; we could check this during codegen, but we instead use runtime fallback
// this allows us to handle ahead-of-time codegen smoothly when an import fails to resolve at runtime
IrOp tk = build.inst(IrCmd::LOAD_TAG, build.vmConst(k));
build.inst(IrCmd::JUMP_EQ_TAG, tk, build.constTag(LUA_TNIL), fallback, fastPath);
build.beginBlock(fastPath);
IrOp tvk = build.inst(IrCmd::LOAD_TVALUE, build.vmConst(k));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), tvk);
IrOp next = build.blockAtInst(pcpos + 2);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::GET_IMPORT, build.vmReg(ra), build.constUint(aux));
build.inst(IrCmd::JUMP, next);
}
void translateInstGetTableKS(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
uint32_t aux = pc[1];
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
IrOp addrSlotEl = build.inst(IrCmd::GET_SLOT_NODE_ADDR, vb, build.constUint(pcpos));
build.inst(IrCmd::CHECK_SLOT_MATCH, addrSlotEl, build.vmConst(aux), fallback);
IrOp tvn = build.inst(IrCmd::LOAD_NODE_VALUE_TV, addrSlotEl);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), tvn);
IrOp next = build.blockAtInst(pcpos + 2);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::FALLBACK_GETTABLEKS, build.constUint(pcpos), build.vmReg(ra), build.vmReg(rb), build.vmConst(aux));
build.inst(IrCmd::JUMP, next);
}
void translateInstSetTableKS(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
uint32_t aux = pc[1];
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
IrOp addrSlotEl = build.inst(IrCmd::GET_SLOT_NODE_ADDR, vb, build.constUint(pcpos));
build.inst(IrCmd::CHECK_SLOT_MATCH, addrSlotEl, build.vmConst(aux), fallback);
build.inst(IrCmd::CHECK_READONLY, vb, fallback);
IrOp tva = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(ra));
build.inst(IrCmd::STORE_NODE_VALUE_TV, addrSlotEl, tva);
build.inst(IrCmd::BARRIER_TABLE_FORWARD, vb, build.vmReg(ra), build.undef());
IrOp next = build.blockAtInst(pcpos + 2);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::FALLBACK_SETTABLEKS, build.constUint(pcpos), build.vmReg(ra), build.vmReg(rb), build.vmConst(aux));
build.inst(IrCmd::JUMP, next);
}
void translateInstGetGlobal(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
uint32_t aux = pc[1];
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp env = build.inst(IrCmd::LOAD_ENV);
IrOp addrSlotEl = build.inst(IrCmd::GET_SLOT_NODE_ADDR, env, build.constUint(pcpos));
build.inst(IrCmd::CHECK_SLOT_MATCH, addrSlotEl, build.vmConst(aux), fallback);
IrOp tvn = build.inst(IrCmd::LOAD_NODE_VALUE_TV, addrSlotEl);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), tvn);
IrOp next = build.blockAtInst(pcpos + 2);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::FALLBACK_GETGLOBAL, build.constUint(pcpos), build.vmReg(ra), build.vmConst(aux));
build.inst(IrCmd::JUMP, next);
}
void translateInstSetGlobal(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
uint32_t aux = pc[1];
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp env = build.inst(IrCmd::LOAD_ENV);
IrOp addrSlotEl = build.inst(IrCmd::GET_SLOT_NODE_ADDR, env, build.constUint(pcpos));
build.inst(IrCmd::CHECK_SLOT_MATCH, addrSlotEl, build.vmConst(aux), fallback);
build.inst(IrCmd::CHECK_READONLY, env, fallback);
IrOp tva = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(ra));
build.inst(IrCmd::STORE_NODE_VALUE_TV, addrSlotEl, tva);
build.inst(IrCmd::BARRIER_TABLE_FORWARD, env, build.vmReg(ra), build.undef());
IrOp next = build.blockAtInst(pcpos + 2);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::FALLBACK_SETGLOBAL, build.constUint(pcpos), build.vmReg(ra), build.vmConst(aux));
build.inst(IrCmd::JUMP, next);
}
void translateInstConcat(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::CONCAT, build.vmReg(rb), build.constUint(rc - rb + 1));
IrOp tvb = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(rb));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), tvb);
build.inst(IrCmd::CHECK_GC);
}
void translateInstCapture(IrBuilder& build, const Instruction* pc, int pcpos)
{
int type = LUAU_INSN_A(*pc);
int index = LUAU_INSN_B(*pc);
switch (type)
{
case LCT_VAL:
build.inst(IrCmd::CAPTURE, build.vmReg(index), build.constUint(0));
break;
case LCT_REF:
build.inst(IrCmd::CAPTURE, build.vmReg(index), build.constUint(1));
break;
case LCT_UPVAL:
build.inst(IrCmd::CAPTURE, build.vmUpvalue(index), build.constUint(0));
break;
default:
LUAU_ASSERT(!"Unknown upvalue capture type");
}
}
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 19:20:37 +00:00
void translateInstNamecall(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
uint32_t aux = pc[1];
IrOp next = build.blockAtInst(pcpos + getOpLength(LOP_NAMECALL));
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp firstFastPathSuccess = build.block(IrBlockKind::Internal);
IrOp secondFastPath = build.block(IrBlockKind::Internal);
build.loadAndCheckTag(build.vmReg(rb), LUA_TTABLE, fallback);
IrOp table = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
LUAU_ASSERT(build.function.proto);
IrOp addrNodeEl = build.inst(IrCmd::GET_HASH_NODE_ADDR, table, build.constUint(tsvalue(&build.function.proto->k[aux])->hash));
// We use 'jump' version instead of 'check' guard because we are jumping away into a non-fallback block
// This is required by CFG live range analysis because both non-fallback blocks define the same registers
build.inst(IrCmd::JUMP_SLOT_MATCH, addrNodeEl, build.vmConst(aux), firstFastPathSuccess, secondFastPath);
build.beginBlock(firstFastPathSuccess);
build.inst(IrCmd::STORE_POINTER, build.vmReg(ra + 1), table);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra + 1), build.constTag(LUA_TTABLE));
IrOp nodeEl = build.inst(IrCmd::LOAD_NODE_VALUE_TV, addrNodeEl);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), nodeEl);
build.inst(IrCmd::JUMP, next);
build.beginBlock(secondFastPath);
build.inst(IrCmd::CHECK_NODE_NO_NEXT, addrNodeEl, fallback);
IrOp indexPtr = build.inst(IrCmd::TRY_CALL_FASTGETTM, table, build.constInt(TM_INDEX), fallback);
build.loadAndCheckTag(indexPtr, LUA_TTABLE, fallback);
IrOp index = build.inst(IrCmd::LOAD_POINTER, indexPtr);
IrOp addrIndexNodeEl = build.inst(IrCmd::GET_SLOT_NODE_ADDR, index, build.constUint(pcpos));
build.inst(IrCmd::CHECK_SLOT_MATCH, addrIndexNodeEl, build.vmConst(aux), fallback);
// TODO: original 'table' was clobbered by a call inside 'FASTGETTM'
// Ideally, such calls should have to effect on SSA IR values, but simple register allocator doesn't support it
IrOp table2 = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
build.inst(IrCmd::STORE_POINTER, build.vmReg(ra + 1), table2);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra + 1), build.constTag(LUA_TTABLE));
IrOp indexNodeEl = build.inst(IrCmd::LOAD_NODE_VALUE_TV, addrIndexNodeEl);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), indexNodeEl);
build.inst(IrCmd::JUMP, next);
build.beginBlock(fallback);
build.inst(IrCmd::FALLBACK_NAMECALL, build.constUint(pcpos), build.vmReg(ra), build.vmReg(rb), build.vmConst(aux));
build.inst(IrCmd::JUMP, next);
build.beginBlock(next);
}
void translateInstAndX(IrBuilder& build, const Instruction* pc, int pcpos, IrOp c)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
IrOp fallthrough = build.block(IrBlockKind::Internal);
IrOp next = build.blockAtInst(pcpos + 1);
IrOp target = (ra == rb) ? next : build.block(IrBlockKind::Internal);
build.inst(IrCmd::JUMP_IF_FALSY, build.vmReg(rb), target, fallthrough);
build.beginBlock(fallthrough);
IrOp load = build.inst(IrCmd::LOAD_TVALUE, c);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), load);
build.inst(IrCmd::JUMP, next);
if (ra == rb)
{
build.beginBlock(next);
}
else
{
build.beginBlock(target);
IrOp load1 = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(rb));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), load1);
build.inst(IrCmd::JUMP, next);
build.beginBlock(next);
}
}
void translateInstOrX(IrBuilder& build, const Instruction* pc, int pcpos, IrOp c)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
IrOp fallthrough = build.block(IrBlockKind::Internal);
IrOp next = build.blockAtInst(pcpos + 1);
IrOp target = (ra == rb) ? next : build.block(IrBlockKind::Internal);
build.inst(IrCmd::JUMP_IF_TRUTHY, build.vmReg(rb), target, fallthrough);
build.beginBlock(fallthrough);
IrOp load = build.inst(IrCmd::LOAD_TVALUE, c);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), load);
build.inst(IrCmd::JUMP, next);
if (ra == rb)
{
build.beginBlock(next);
}
else
{
build.beginBlock(target);
IrOp load1 = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(rb));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), load1);
build.inst(IrCmd::JUMP, next);
build.beginBlock(next);
}
}
Sync to upstream/release/588 (#992) Type checker/autocomplete: * `Luau::autocomplete` no longer performs typechecking internally, make sure to run `Frontend::check` before performing autocomplete requests * Autocomplete string suggestions without "" are now only suggested inside the "" * Autocomplete suggestions now include `function (anonymous autofilled)` key with a full suggestion for the function expression (with arguments included) stored in `AutocompleteEntry::insertText` * `AutocompleteEntry::indexedWithSelf` is provided for function call suggestions made with `:` * Cyclic modules now see each other type exports as `any` to prevent memory use-after-free (similar to module return type) Runtime: * Updated inline/loop unroll cost model to better handle assignments (Fixes https://github.com/Roblox/luau/issues/978) * `math.noise` speed was improved by ~30% * `table.concat` speed was improved by ~5-7% * `tonumber` and `tostring` now have fastcall paths that execute ~1.5x and ~2.5x faster respectively (fixes #777) * Fixed crash in `luaL_typename` when index refers to a non-existing value * Fixed potential out of memory scenario when using `string.sub` or `string.char` in a loop * Fixed behavior of some fastcall builtins when called without arguments under -O2 to match original functions * Support for native code execution in VM is now enabled by default (note: native code still has to be generated explicitly) * `Codegen::compile` now accepts `CodeGen_OnlyNativeModules` flag. When set, only modules that have a `--!native` hot-comment at the top will be compiled to native code In our new typechecker: * Generic type packs are no longer considered to be variadic during unification * Timeout and cancellation now works in new solver * Fixed false positive errors around 'table' and 'function' type refinements * Table literals now use covariant unification rules. This is sound since literal has no type specified and has no aliases * Fixed issues with blocked types escaping the constraint solver * Fixed more places where error messages that should've been suppressed were still reported * Fixed errors when iterating over a top table type In our native code generation (jit): * 'DebugLuauAbortingChecks' flag is now supported on A64 * LOP_NEWCLOSURE has been translated to IR
2023-07-28 16:13:53 +01:00
void translateInstNewClosure(IrBuilder& build, const Instruction* pc, int pcpos)
{
LUAU_ASSERT(unsigned(LUAU_INSN_D(*pc)) < unsigned(build.function.proto->sizep));
int ra = LUAU_INSN_A(*pc);
Proto* pv = build.function.proto->p[LUAU_INSN_D(*pc)];
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
IrOp env = build.inst(IrCmd::LOAD_ENV);
IrOp ncl = build.inst(IrCmd::NEWCLOSURE, build.constUint(pv->nups), env, build.constUint(LUAU_INSN_D(*pc)));
build.inst(IrCmd::STORE_POINTER, build.vmReg(ra), ncl);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TFUNCTION));
for (int ui = 0; ui < pv->nups; ++ui)
{
Instruction uinsn = pc[ui + 1];
LUAU_ASSERT(LUAU_INSN_OP(uinsn) == LOP_CAPTURE);
IrOp dst = build.inst(IrCmd::GET_CLOSURE_UPVAL_ADDR, ncl, build.vmUpvalue(ui));
switch (LUAU_INSN_A(uinsn))
{
case LCT_VAL:
{
IrOp src = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(LUAU_INSN_B(uinsn)));
build.inst(IrCmd::STORE_TVALUE, dst, src);
break;
}
case LCT_REF:
{
IrOp src = build.inst(IrCmd::FINDUPVAL, build.vmReg(LUAU_INSN_B(uinsn)));
build.inst(IrCmd::STORE_POINTER, dst, src);
build.inst(IrCmd::STORE_TAG, dst, build.constTag(LUA_TUPVAL));
break;
}
case LCT_UPVAL:
{
IrOp src = build.inst(IrCmd::GET_CLOSURE_UPVAL_ADDR, build.undef(), build.vmUpvalue(LUAU_INSN_B(uinsn)));
IrOp load = build.inst(IrCmd::LOAD_TVALUE, src);
build.inst(IrCmd::STORE_TVALUE, dst, load);
break;
}
default:
LUAU_ASSERT(!"Unknown upvalue capture type");
LUAU_UNREACHABLE(); // improves switch() codegen by eliding opcode bounds checks
}
}
build.inst(IrCmd::CHECK_GC);
}
} // namespace CodeGen
} // namespace Luau