luau/Common/include/Luau/Bytecode.h

529 lines
20 KiB
C
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
// clang-format off
// This header contains the bytecode definition for Luau interpreter
// Creating the bytecode is outside the scope of this file and is handled by bytecode builder (BytecodeBuilder.h) and bytecode compiler (Compiler.h)
// Note that ALL enums declared in this file are order-sensitive since the values are baked into bytecode that needs to be processed by legacy clients.
2022-06-24 02:56:00 +01:00
// # Bytecode definitions
// Bytecode instructions are using "word code" - each instruction is one or many 32-bit words.
// The first word in the instruction is always the instruction header, and *must* contain the opcode (enum below) in the least significant byte.
//
// Instruction word can be encoded using one of the following encodings:
// ABC - least-significant byte for the opcode, followed by three bytes, A, B and C; each byte declares a register index, small index into some other table or an unsigned integral value
// AD - least-significant byte for the opcode, followed by A byte, followed by D half-word (16-bit integer). D is a signed integer that commonly specifies constant table index or jump offset
// E - least-significant byte for the opcode, followed by E (24-bit integer). E is a signed integer that commonly specifies a jump offset
//
// Instruction word is sometimes followed by one extra word, indicated as AUX - this is just a 32-bit word and is decoded according to the specification for each opcode.
// For each opcode the encoding is *static* - that is, based on the opcode you know a-priory how large the instruction is, with the exception of NEWCLOSURE
2022-06-24 02:56:00 +01:00
// # Bytecode indices
// Bytecode instructions commonly refer to integer values that define offsets or indices for various entities. For each type, there's a maximum encodable value.
// Note that in some cases, the compiler will set a lower limit than the maximum encodable value is to prevent fragile code into bumping against the limits whenever we change the compilation details.
// Additionally, in some specific instructions such as ANDK, the limit on the encoded value is smaller; this means that if a value is larger, a different instruction must be selected.
//
// Registers: 0-254. Registers refer to the values on the function's stack frame, including arguments.
// Upvalues: 0-254. Upvalues refer to the values stored in the closure object.
// Constants: 0-2^23-1. Constants are stored in a table allocated with each proto; to allow for future bytecode tweaks the encodable value is limited to 23 bits.
// Closures: 0-2^15-1. Closures are created from child protos via a child index; the limit is for the number of closures immediately referenced in each function.
// Jumps: -2^23..2^23. Jump offsets are specified in word increments, so jumping over an instruction may sometimes require an offset of 2 or more.
2022-06-24 02:56:00 +01:00
// # Bytecode versions
// Bytecode serialized format embeds a version number, that dictates both the serialized form as well as the allowed instructions. As long as the bytecode version falls into supported
// range (indicated by LBC_BYTECODE_MIN / LBC_BYTECODE_MAX) and was produced by Luau compiler, it should load and execute correctly.
//
// Note that Luau runtime doesn't provide indefinite bytecode compatibility: support for older versions gets removed over time. As such, bytecode isn't a durable storage format and it's expected
// that Luau users can recompile bytecode from source on Luau version upgrades if necessary.
2022-08-04 23:35:33 +01:00
// # Bytecode version history
//
// Note: due to limitations of the versioning scheme, some bytecode blobs that carry version 2 are using features from version 3. Starting from version 3, version should be sufficient to indicate bytecode compatibility.
//
// Version 1: Baseline version for the open-source release. Supported until 0.521.
// Version 2: Adds Proto::linedefined. Currently supported.
// Version 3: Adds FORGPREP/JUMPXEQK* and enhances AUX encoding for FORGLOOP. Removes FORGLOOP_NEXT/INEXT and JUMPIFEQK/JUMPIFNOTEQK. Currently supported.
2022-06-24 02:56:00 +01:00
// Bytecode opcode, part of the instruction header
enum LuauOpcode
{
// NOP: noop
LOP_NOP,
// BREAK: debugger break
LOP_BREAK,
// LOADNIL: sets register to nil
// A: target register
LOP_LOADNIL,
// LOADB: sets register to boolean and jumps to a given short offset (used to compile comparison results into a boolean)
// A: target register
// B: value (0/1)
// C: jump offset
LOP_LOADB,
// LOADN: sets register to a number literal
// A: target register
// D: value (-32768..32767)
LOP_LOADN,
// LOADK: sets register to an entry from the constant table from the proto (number/string)
// A: target register
// D: constant table index (0..32767)
LOP_LOADK,
// MOVE: move (copy) value from one register to another
// A: target register
// B: source register
LOP_MOVE,
// GETGLOBAL: load value from global table using constant string as a key
// A: target register
// C: predicted slot index (based on hash)
// AUX: constant table index
LOP_GETGLOBAL,
// SETGLOBAL: set value in global table using constant string as a key
// A: source register
// C: predicted slot index (based on hash)
// AUX: constant table index
LOP_SETGLOBAL,
// GETUPVAL: load upvalue from the upvalue table for the current function
// A: target register
// B: upvalue index (0..255)
LOP_GETUPVAL,
// SETUPVAL: store value into the upvalue table for the current function
// A: target register
// B: upvalue index (0..255)
LOP_SETUPVAL,
// CLOSEUPVALS: close (migrate to heap) all upvalues that were captured for registers >= target
// A: target register
LOP_CLOSEUPVALS,
// GETIMPORT: load imported global table global from the constant table
// A: target register
// D: constant table index (0..32767); we assume that imports are loaded into the constant table
// AUX: 3 10-bit indices of constant strings that, combined, constitute an import path; length of the path is set by the top 2 bits (1,2,3)
LOP_GETIMPORT,
// GETTABLE: load value from table into target register using key from register
// A: target register
// B: table register
// C: index register
LOP_GETTABLE,
// SETTABLE: store source register into table using key from register
// A: source register
// B: table register
// C: index register
LOP_SETTABLE,
// GETTABLEKS: load value from table into target register using constant string as a key
// A: target register
// B: table register
// C: predicted slot index (based on hash)
// AUX: constant table index
LOP_GETTABLEKS,
// SETTABLEKS: store source register into table using constant string as a key
// A: source register
// B: table register
// C: predicted slot index (based on hash)
// AUX: constant table index
LOP_SETTABLEKS,
// GETTABLEN: load value from table into target register using small integer index as a key
// A: target register
// B: table register
// C: index-1 (index is 1..256)
LOP_GETTABLEN,
// SETTABLEN: store source register into table using small integer index as a key
// A: source register
// B: table register
// C: index-1 (index is 1..256)
LOP_SETTABLEN,
// NEWCLOSURE: create closure from a child proto; followed by a CAPTURE instruction for each upvalue
// A: target register
// D: child proto index (0..32767)
LOP_NEWCLOSURE,
// NAMECALL: prepare to call specified method by name by loading function from source register using constant index into target register and copying source register into target register + 1
// A: target register
// B: source register
// C: predicted slot index (based on hash)
// AUX: constant table index
// Note that this instruction must be followed directly by CALL; it prepares the arguments
// This instruction is roughly equivalent to GETTABLEKS + MOVE pair, but we need a special instruction to support custom __namecall metamethod
LOP_NAMECALL,
// CALL: call specified function
// A: register where the function object lives, followed by arguments; results are placed starting from the same register
// B: argument count + 1, or 0 to preserve all arguments up to top (MULTRET)
// C: result count + 1, or 0 to preserve all values and adjust top (MULTRET)
LOP_CALL,
// RETURN: returns specified values from the function
// A: register where the returned values start
// B: number of returned values + 1, or 0 to return all values up to top (MULTRET)
LOP_RETURN,
// JUMP: jumps to target offset
// D: jump offset (-32768..32767; 0 means "next instruction" aka "don't jump")
LOP_JUMP,
// JUMPBACK: jumps to target offset; this is equivalent to JUMP but is used as a safepoint to be able to interrupt while/repeat loops
// D: jump offset (-32768..32767; 0 means "next instruction" aka "don't jump")
LOP_JUMPBACK,
// JUMPIF: jumps to target offset if register is not nil/false
// A: source register
// D: jump offset (-32768..32767; 0 means "next instruction" aka "don't jump")
LOP_JUMPIF,
// JUMPIFNOT: jumps to target offset if register is nil/false
// A: source register
// D: jump offset (-32768..32767; 0 means "next instruction" aka "don't jump")
LOP_JUMPIFNOT,
// JUMPIFEQ, JUMPIFLE, JUMPIFLT, JUMPIFNOTEQ, JUMPIFNOTLE, JUMPIFNOTLT: jumps to target offset if the comparison is true (or false, for NOT variants)
// A: source register 1
// D: jump offset (-32768..32767; 0 means "next instruction" aka "don't jump")
// AUX: source register 2
LOP_JUMPIFEQ,
LOP_JUMPIFLE,
LOP_JUMPIFLT,
LOP_JUMPIFNOTEQ,
LOP_JUMPIFNOTLE,
LOP_JUMPIFNOTLT,
// ADD, SUB, MUL, DIV, MOD, POW: compute arithmetic operation between two source registers and put the result into target register
// A: target register
// B: source register 1
// C: source register 2
LOP_ADD,
LOP_SUB,
LOP_MUL,
LOP_DIV,
LOP_MOD,
LOP_POW,
// ADDK, SUBK, MULK, DIVK, MODK, POWK: compute arithmetic operation between the source register and a constant and put the result into target register
// A: target register
// B: source register
// C: constant table index (0..255)
LOP_ADDK,
LOP_SUBK,
LOP_MULK,
LOP_DIVK,
LOP_MODK,
LOP_POWK,
// AND, OR: perform `and` or `or` operation (selecting first or second register based on whether the first one is truthy) and put the result into target register
// A: target register
// B: source register 1
// C: source register 2
LOP_AND,
LOP_OR,
// ANDK, ORK: perform `and` or `or` operation (selecting source register or constant based on whether the source register is truthy) and put the result into target register
// A: target register
// B: source register
// C: constant table index (0..255)
LOP_ANDK,
LOP_ORK,
// CONCAT: concatenate all strings between B and C (inclusive) and put the result into A
// A: target register
// B: source register start
// C: source register end
LOP_CONCAT,
// NOT, MINUS, LENGTH: compute unary operation for source register and put the result into target register
// A: target register
// B: source register
LOP_NOT,
LOP_MINUS,
LOP_LENGTH,
// NEWTABLE: create table in target register
// A: target register
// B: table size, stored as 0 for v=0 and ceil(log2(v))+1 for v!=0
// AUX: array size
LOP_NEWTABLE,
// DUPTABLE: duplicate table using the constant table template to target register
// A: target register
// D: constant table index (0..32767)
LOP_DUPTABLE,
// SETLIST: set a list of values to table in target register
// A: target register
// B: source register start
// C: value count + 1, or 0 to use all values up to top (MULTRET)
// AUX: table index to start from
LOP_SETLIST,
// FORNPREP: prepare a numeric for loop, jump over the loop if first iteration doesn't need to run
// A: target register; numeric for loops assume a register layout [limit, step, index, variable]
// D: jump offset (-32768..32767)
// limit/step are immutable, index isn't visible to user code since it's copied into variable
LOP_FORNPREP,
// FORNLOOP: adjust loop variables for one iteration, jump back to the loop header if loop needs to continue
// A: target register; see FORNPREP for register layout
// D: jump offset (-32768..32767)
LOP_FORNLOOP,
// FORGLOOP: adjust loop variables for one iteration of a generic for loop, jump back to the loop header if loop needs to continue
// A: target register; generic for loops assume a register layout [generator, state, index, variables...]
// D: jump offset (-32768..32767)
2022-07-01 00:52:43 +01:00
// AUX: variable count (1..255) in the low 8 bits, high bit indicates whether to use ipairs-style traversal in the fast path
// loop variables are adjusted by calling generator(state, index) and expecting it to return a tuple that's copied to the user variables
// the first variable is then copied into index; generator/state are immutable, index isn't visible to user code
LOP_FORGLOOP,
// FORGPREP_INEXT: prepare FORGLOOP with 2 output variables (no AUX encoding), assuming generator is luaB_inext, and jump to FORGLOOP
// A: target register (see FORGLOOP for register layout)
LOP_FORGPREP_INEXT,
// removed in v3
LOP_DEP_FORGLOOP_INEXT,
// FORGPREP_NEXT: prepare FORGLOOP with 2 output variables (no AUX encoding), assuming generator is luaB_next, and jump to FORGLOOP
// A: target register (see FORGLOOP for register layout)
LOP_FORGPREP_NEXT,
// removed in v3
LOP_DEP_FORGLOOP_NEXT,
// GETVARARGS: copy variables into the target register from vararg storage for current function
// A: target register
// B: variable count + 1, or 0 to copy all variables and adjust top (MULTRET)
LOP_GETVARARGS,
// DUPCLOSURE: create closure from a pre-created function object (reusing it unless environments diverge)
// A: target register
// D: constant table index (0..32767)
LOP_DUPCLOSURE,
// PREPVARARGS: prepare stack for variadic functions so that GETVARARGS works correctly
// A: number of fixed arguments
LOP_PREPVARARGS,
// LOADKX: sets register to an entry from the constant table from the proto (number/string)
// A: target register
// AUX: constant table index
LOP_LOADKX,
// JUMPX: jumps to the target offset; like JUMPBACK, supports interruption
// E: jump offset (-2^23..2^23; 0 means "next instruction" aka "don't jump")
LOP_JUMPX,
// FASTCALL: perform a fast call of a built-in function
// A: builtin function id (see LuauBuiltinFunction)
// C: jump offset to get to following CALL
// FASTCALL is followed by one of (GETIMPORT, MOVE, GETUPVAL) instructions and by CALL instruction
// This is necessary so that if FASTCALL can't perform the call inline, it can continue normal execution
// If FASTCALL *can* perform the call, it jumps over the instructions *and* over the next CALL
// Note that FASTCALL will read the actual call arguments, such as argument/result registers and counts, from the CALL instruction
LOP_FASTCALL,
// COVERAGE: update coverage information stored in the instruction
// E: hit count for the instruction (0..2^23-1)
// The hit count is incremented by VM every time the instruction is executed, and saturates at 2^23-1
LOP_COVERAGE,
// CAPTURE: capture a local or an upvalue as an upvalue into a newly created closure; only valid after NEWCLOSURE
// A: capture type, see LuauCaptureType
// B: source register (for VAL/REF) or upvalue index (for UPVAL/UPREF)
LOP_CAPTURE,
// removed in v3
LOP_DEP_JUMPIFEQK,
LOP_DEP_JUMPIFNOTEQK,
// FASTCALL1: perform a fast call of a built-in function using 1 register argument
// A: builtin function id (see LuauBuiltinFunction)
// B: source argument register
// C: jump offset to get to following CALL
LOP_FASTCALL1,
// FASTCALL2: perform a fast call of a built-in function using 2 register arguments
// A: builtin function id (see LuauBuiltinFunction)
// B: source argument register
// C: jump offset to get to following CALL
// AUX: source register 2 in least-significant byte
LOP_FASTCALL2,
// FASTCALL2K: perform a fast call of a built-in function using 1 register argument and 1 constant argument
// A: builtin function id (see LuauBuiltinFunction)
// B: source argument register
// C: jump offset to get to following CALL
// AUX: constant index
LOP_FASTCALL2K,
2022-05-06 01:03:43 +01:00
// FORGPREP: prepare loop variables for a generic for loop, jump to the loop backedge unconditionally
// A: target register; generic for loops assume a register layout [generator, state, index, variables...]
// D: jump offset (-32768..32767)
LOP_FORGPREP,
2022-08-04 23:35:33 +01:00
// JUMPXEQKNIL, JUMPXEQKB: jumps to target offset if the comparison with constant is true (or false, see AUX)
// A: source register 1
// D: jump offset (-32768..32767; 0 means "next instruction" aka "don't jump")
// AUX: constant value (for boolean) in low bit, NOT flag (that flips comparison result) in high bit
LOP_JUMPXEQKNIL,
LOP_JUMPXEQKB,
// JUMPXEQKN, JUMPXEQKS: jumps to target offset if the comparison with constant is true (or false, see AUX)
// A: source register 1
// D: jump offset (-32768..32767; 0 means "next instruction" aka "don't jump")
// AUX: constant table index in low 24 bits, NOT flag (that flips comparison result) in high bit
LOP_JUMPXEQKN,
LOP_JUMPXEQKS,
// Enum entry for number of opcodes, not a valid opcode by itself!
LOP__COUNT
};
// Bytecode instruction header: it's always a 32-bit integer, with low byte (first byte in little endian) containing the opcode
// Some instruction types require more data and have more 32-bit integers following the header
#define LUAU_INSN_OP(insn) ((insn) & 0xff)
// ABC encoding: three 8-bit values, containing registers or small numbers
#define LUAU_INSN_A(insn) (((insn) >> 8) & 0xff)
#define LUAU_INSN_B(insn) (((insn) >> 16) & 0xff)
#define LUAU_INSN_C(insn) (((insn) >> 24) & 0xff)
// AD encoding: one 8-bit value, one signed 16-bit value
#define LUAU_INSN_D(insn) (int32_t(insn) >> 16)
// E encoding: one signed 24-bit value
#define LUAU_INSN_E(insn) (int32_t(insn) >> 8)
// Bytecode tags, used internally for bytecode encoded as a string
enum LuauBytecodeTag
{
2022-06-24 02:56:00 +01:00
// Bytecode version; runtime supports [MIN, MAX], compiler emits TARGET by default but may emit a higher version when flags are enabled
LBC_VERSION_MIN = 3,
2022-08-04 23:35:33 +01:00
LBC_VERSION_MAX = 3,
LBC_VERSION_TARGET = 3,
// Types of constant table entries
LBC_CONSTANT_NIL = 0,
LBC_CONSTANT_BOOLEAN,
LBC_CONSTANT_NUMBER,
LBC_CONSTANT_STRING,
LBC_CONSTANT_IMPORT,
LBC_CONSTANT_TABLE,
LBC_CONSTANT_CLOSURE,
};
// Builtin function ids, used in LOP_FASTCALL
enum LuauBuiltinFunction
{
LBF_NONE = 0,
// assert()
LBF_ASSERT,
// math.
LBF_MATH_ABS,
LBF_MATH_ACOS,
LBF_MATH_ASIN,
LBF_MATH_ATAN2,
LBF_MATH_ATAN,
LBF_MATH_CEIL,
LBF_MATH_COSH,
LBF_MATH_COS,
LBF_MATH_DEG,
LBF_MATH_EXP,
LBF_MATH_FLOOR,
LBF_MATH_FMOD,
LBF_MATH_FREXP,
LBF_MATH_LDEXP,
LBF_MATH_LOG10,
LBF_MATH_LOG,
LBF_MATH_MAX,
LBF_MATH_MIN,
LBF_MATH_MODF,
LBF_MATH_POW,
LBF_MATH_RAD,
LBF_MATH_SINH,
LBF_MATH_SIN,
LBF_MATH_SQRT,
LBF_MATH_TANH,
LBF_MATH_TAN,
// bit32.
LBF_BIT32_ARSHIFT,
LBF_BIT32_BAND,
LBF_BIT32_BNOT,
LBF_BIT32_BOR,
LBF_BIT32_BXOR,
LBF_BIT32_BTEST,
LBF_BIT32_EXTRACT,
LBF_BIT32_LROTATE,
LBF_BIT32_LSHIFT,
LBF_BIT32_REPLACE,
LBF_BIT32_RROTATE,
LBF_BIT32_RSHIFT,
// type()
LBF_TYPE,
// string.
LBF_STRING_BYTE,
LBF_STRING_CHAR,
LBF_STRING_LEN,
// typeof()
LBF_TYPEOF,
// string.
LBF_STRING_SUB,
// math.
LBF_MATH_CLAMP,
LBF_MATH_SIGN,
LBF_MATH_ROUND,
// raw*
LBF_RAWSET,
LBF_RAWGET,
LBF_RAWEQUAL,
// table.
LBF_TABLE_INSERT,
LBF_TABLE_UNPACK,
// vector ctor
LBF_VECTOR,
// bit32.count
LBF_BIT32_COUNTLZ,
LBF_BIT32_COUNTRZ,
// select(_, ...)
LBF_SELECT_VARARG,
2022-07-01 00:52:43 +01:00
// rawlen
LBF_RAWLEN,
// bit32.extract(_, k, k)
LBF_BIT32_EXTRACTK,
};
// Capture type, used in LOP_CAPTURE
enum LuauCaptureType
{
LCT_VAL = 0,
LCT_REF,
LCT_UPVAL,
};