luau/Analysis/include/Luau/ConstraintSolver.h

264 lines
11 KiB
C
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
2022-06-17 02:05:14 +01:00
#include "Luau/Constraint.h"
#include "Luau/Error.h"
#include "Luau/Module.h"
#include "Luau/Normalize.h"
#include "Luau/ToString.h"
#include "Luau/Type.h"
#include "Luau/TypeReduction.h"
#include "Luau/Variant.h"
#include <vector>
namespace Luau
{
struct DcrLogger;
// TypeId, TypePackId, or Constraint*. It is impossible to know which, but we
// never dereference this pointer.
using BlockedConstraintId = Variant<TypeId, TypePackId, const Constraint*>;
struct HashBlockedConstraintId
{
size_t operator()(const BlockedConstraintId& bci) const;
};
struct ModuleResolver;
2022-08-04 23:35:33 +01:00
struct InstantiationSignature
{
TypeFun fn;
std::vector<TypeId> arguments;
std::vector<TypePackId> packArguments;
bool operator==(const InstantiationSignature& rhs) const;
bool operator!=(const InstantiationSignature& rhs) const
{
return !((*this) == rhs);
}
};
struct HashInstantiationSignature
{
size_t operator()(const InstantiationSignature& signature) const;
};
struct ConstraintSolver
{
NotNull<TypeArena> arena;
NotNull<BuiltinTypes> builtinTypes;
InternalErrorReporter iceReporter;
NotNull<Normalizer> normalizer;
2022-08-04 23:35:33 +01:00
// The entire set of constraints that the solver is trying to resolve.
std::vector<NotNull<Constraint>> constraints;
2022-07-29 05:24:07 +01:00
NotNull<Scope> rootScope;
ModuleName currentModuleName;
2022-08-04 23:35:33 +01:00
// Constraints that the solver has generated, rather than sourcing from the
// scope tree.
std::vector<std::unique_ptr<Constraint>> solverConstraints;
// This includes every constraint that has not been fully solved.
// A constraint can be both blocked and unsolved, for instance.
2022-06-17 02:05:14 +01:00
std::vector<NotNull<const Constraint>> unsolvedConstraints;
// A mapping of constraint pointer to how many things the constraint is
// blocked on. Can be empty or 0 for constraints that are not blocked on
// anything.
2022-06-17 02:05:14 +01:00
std::unordered_map<NotNull<const Constraint>, size_t> blockedConstraints;
// A mapping of type/pack pointers to the constraints they block.
std::unordered_map<BlockedConstraintId, std::vector<NotNull<const Constraint>>, HashBlockedConstraintId> blocked;
2022-08-04 23:35:33 +01:00
// Memoized instantiations of type aliases.
DenseHashMap<InstantiationSignature, TypeId, HashInstantiationSignature> instantiatedAliases{{}};
2022-06-17 02:05:14 +01:00
// Recorded errors that take place within the solver.
ErrorVec errors;
NotNull<ModuleResolver> moduleResolver;
std::vector<RequireCycle> requireCycles;
DcrLogger* logger;
explicit ConstraintSolver(NotNull<Normalizer> normalizer, NotNull<Scope> rootScope, std::vector<NotNull<Constraint>> constraints,
ModuleName moduleName, NotNull<ModuleResolver> moduleResolver, std::vector<RequireCycle> requireCycles, DcrLogger* logger);
// Randomize the order in which to dispatch constraints
void randomize(unsigned seed);
/**
* Attempts to dispatch all pending constraints and reach a type solution
2022-06-17 02:05:14 +01:00
* that satisfies all of the constraints.
**/
void run();
bool isDone();
void finalizeModule();
/** Attempt to dispatch a constraint. Returns true if it was successful. If
* tryDispatch() returns false, the constraint remains in the unsolved set
* and will be retried later.
2022-07-01 00:52:43 +01:00
*/
2022-06-17 02:05:14 +01:00
bool tryDispatch(NotNull<const Constraint> c, bool force);
2022-07-01 00:52:43 +01:00
2022-06-17 02:05:14 +01:00
bool tryDispatch(const SubtypeConstraint& c, NotNull<const Constraint> constraint, bool force);
bool tryDispatch(const PackSubtypeConstraint& c, NotNull<const Constraint> constraint, bool force);
bool tryDispatch(const GeneralizationConstraint& c, NotNull<const Constraint> constraint, bool force);
bool tryDispatch(const InstantiationConstraint& c, NotNull<const Constraint> constraint, bool force);
2022-07-01 00:52:43 +01:00
bool tryDispatch(const UnaryConstraint& c, NotNull<const Constraint> constraint, bool force);
bool tryDispatch(const BinaryConstraint& c, NotNull<const Constraint> constraint, bool force);
bool tryDispatch(const IterableConstraint& c, NotNull<const Constraint> constraint, bool force);
2022-06-24 02:56:00 +01:00
bool tryDispatch(const NameConstraint& c, NotNull<const Constraint> constraint);
2022-08-04 23:35:33 +01:00
bool tryDispatch(const TypeAliasExpansionConstraint& c, NotNull<const Constraint> constraint);
bool tryDispatch(const FunctionCallConstraint& c, NotNull<const Constraint> constraint);
2022-09-23 20:17:25 +01:00
bool tryDispatch(const PrimitiveTypeConstraint& c, NotNull<const Constraint> constraint);
bool tryDispatch(const HasPropConstraint& c, NotNull<const Constraint> constraint);
bool tryDispatch(const SetPropConstraint& c, NotNull<const Constraint> constraint, bool force);
bool tryDispatch(const SetIndexerConstraint& c, NotNull<const Constraint> constraint, bool force);
bool tryDispatch(const SingletonOrTopTypeConstraint& c, NotNull<const Constraint> constraint);
bool tryDispatch(const UnpackConstraint& c, NotNull<const Constraint> constraint);
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-12 18:50:47 +01:00
bool tryDispatch(const ReduceConstraint& c, NotNull<const Constraint> constraint, bool force);
bool tryDispatch(const ReducePackConstraint& c, NotNull<const Constraint> constraint, bool force);
// for a, ... in some_table do
// also handles __iter metamethod
bool tryDispatchIterableTable(TypeId iteratorTy, const IterableConstraint& c, NotNull<const Constraint> constraint, bool force);
// for a, ... in next_function, t, ... do
bool tryDispatchIterableFunction(
TypeId nextTy, TypeId tableTy, TypeId firstIndexTy, const IterableConstraint& c, NotNull<const Constraint> constraint, bool force);
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
std::pair<std::vector<TypeId>, std::optional<TypeId>> lookupTableProp(TypeId subjectType, const std::string& propName);
std::pair<std::vector<TypeId>, std::optional<TypeId>> lookupTableProp(TypeId subjectType, const std::string& propName, std::unordered_set<TypeId>& seen);
2022-06-17 02:05:14 +01:00
void block(NotNull<const Constraint> target, NotNull<const Constraint> constraint);
/**
* Block a constraint on the resolution of a Type.
2022-06-17 02:05:14 +01:00
* @returns false always. This is just to allow tryDispatch to return the result of block()
*/
bool block(TypeId target, NotNull<const Constraint> constraint);
bool block(TypePackId target, NotNull<const Constraint> constraint);
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-17 19:20:37 +00:00
/**
* For all constraints that are blocked on one constraint, make them block
* on a new constraint.
* @param source the constraint to copy blocks from.
* @param addition the constraint that other constraints should now block on.
*/
void inheritBlocks(NotNull<const Constraint> source, NotNull<const Constraint> addition);
// Traverse the type. If any blocked or pending types are found, block
2022-09-23 20:17:25 +01:00
// the constraint on them.
//
// Returns false if a type blocks the constraint.
//
// FIXME: This use of a boolean for the return result is an appalling
// interface.
bool recursiveBlock(TypeId target, NotNull<const Constraint> constraint);
bool recursiveBlock(TypePackId target, NotNull<const Constraint> constraint);
2022-06-17 02:05:14 +01:00
void unblock(NotNull<const Constraint> progressed);
void unblock(TypeId progressed);
void unblock(TypePackId progressed);
void unblock(const std::vector<TypeId>& types);
void unblock(const std::vector<TypePackId>& packs);
2022-06-17 02:05:14 +01:00
/**
* @returns true if the TypeId is in a blocked state.
*/
bool isBlocked(TypeId ty);
/**
* @returns true if the TypePackId is in a blocked state.
*/
bool isBlocked(TypePackId tp);
/**
* Returns whether the constraint is blocked on anything.
* @param constraint the constraint to check.
*/
2022-06-17 02:05:14 +01:00
bool isBlocked(NotNull<const Constraint> constraint);
/**
* Creates a new Unifier and performs a single unification operation. Commits
2022-06-17 02:05:14 +01:00
* the result.
* @param subType the sub-type to unify.
* @param superType the super-type to unify.
*/
void unify(TypeId subType, TypeId superType, NotNull<Scope> scope);
/**
* Creates a new Unifier and performs a single unification operation. Commits
2022-06-17 02:05:14 +01:00
* the result.
* @param subPack the sub-type pack to unify.
* @param superPack the super-type pack to unify.
*/
void unify(TypePackId subPack, TypePackId superPack, NotNull<Scope> scope);
2022-06-17 02:05:14 +01:00
2022-08-04 23:35:33 +01:00
/** Pushes a new solver constraint to the solver.
* @param cv the body of the constraint.
**/
NotNull<Constraint> pushConstraint(NotNull<Scope> scope, const Location& location, ConstraintV cv);
/**
* Attempts to resolve a module from its module information. Returns the
* module-level return type of the module, or the error type if one cannot
* be found. Reports errors to the solver if the module cannot be found or
* the require is illegal.
* @param module the module information to look up.
* @param location the location where the require is taking place; used for
* error locations.
**/
TypeId resolveModule(const ModuleInfo& module, const Location& location);
2022-08-04 23:35:33 +01:00
void reportError(TypeErrorData&& data, const Location& location);
void reportError(TypeError e);
2022-06-17 02:05:14 +01:00
private:
/** Helper used by tryDispatch(SubtypeConstraint) and
* tryDispatch(PackSubtypeConstraint)
*
* Attempts to unify subTy with superTy. If doing so would require unifying
* BlockedTypes, fail and block the constraint on those BlockedTypes.
*
* If unification fails, replace all free types with errorType.
*
* If unification succeeds, unblock every type changed by the unification.
*/
template <typename TID>
bool tryUnify(NotNull<const Constraint> constraint, TID subTy, TID superTy);
2022-06-17 02:05:14 +01:00
/**
* Marks a constraint as being blocked on a type or type pack. The constraint
* solver will not attempt to dispatch blocked constraints until their
* dependencies have made progress.
* @param target the type or type pack pointer that the constraint is blocked on.
* @param constraint the constraint to block.
**/
void block_(BlockedConstraintId target, NotNull<const Constraint> constraint);
/**
* Informs the solver that progress has been made on a type or type pack. The
* solver will wake up all constraints that are blocked on the type or type pack,
* and will resume attempting to dispatch them.
* @param progressed the type or type pack pointer that has progressed.
**/
void unblock_(BlockedConstraintId progressed);
TypeId errorRecoveryType() const;
TypePackId errorRecoveryTypePack() const;
TypeId unionOfTypes(TypeId a, TypeId b, NotNull<Scope> scope, bool unifyFreeTypes);
ToStringOptions opts;
};
2022-07-29 05:24:07 +01:00
void dump(NotNull<Scope> rootScope, struct ToStringOptions& opts);
} // namespace Luau