luau/Analysis/src/TypeVar.cpp

1210 lines
33 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/TypeVar.h"
#include "Luau/BuiltinDefinitions.h"
#include "Luau/Common.h"
#include "Luau/DenseHash.h"
#include "Luau/Error.h"
#include "Luau/RecursionCounter.h"
#include "Luau/StringUtils.h"
#include "Luau/ToString.h"
#include "Luau/TypeInfer.h"
#include "Luau/TypePack.h"
#include "Luau/VisitTypeVar.h"
#include <algorithm>
#include <optional>
#include <stdexcept>
#include <unordered_map>
#include <unordered_set>
LUAU_FASTFLAG(DebugLuauFreezeArena)
LUAU_FASTINTVARIABLE(LuauTypeMaximumStringifierLength, 500)
LUAU_FASTINTVARIABLE(LuauTableTypeMaximumStringifierLength, 0)
LUAU_FASTINT(LuauTypeInferRecursionLimit)
LUAU_FASTFLAG(LuauLengthOnCompositeType)
2022-01-14 16:20:09 +00:00
LUAU_FASTFLAGVARIABLE(LuauMetatableAreEqualRecursion, false)
LUAU_FASTFLAGVARIABLE(LuauRefactorTypeVarQuestions, false)
LUAU_FASTFLAG(LuauErrorRecoveryType)
namespace Luau
{
std::optional<ExprResult<TypePackId>> magicFunctionFormat(
TypeChecker& typechecker, const ScopePtr& scope, const AstExprCall& expr, ExprResult<TypePackId> exprResult);
TypeId follow(TypeId t)
{
return follow(t, [](TypeId t) {
return t;
});
}
TypeId follow(TypeId t, std::function<TypeId(TypeId)> mapper)
{
auto advance = [&mapper](TypeId ty) -> std::optional<TypeId> {
if (auto btv = get<Unifiable::Bound<TypeId>>(mapper(ty)))
return btv->boundTo;
else if (auto ttv = get<TableTypeVar>(mapper(ty)))
return ttv->boundTo;
else
return std::nullopt;
};
auto force = [&mapper](TypeId ty) {
if (auto ltv = get_if<LazyTypeVar>(&mapper(ty)->ty))
{
TypeId res = ltv->thunk();
if (get<LazyTypeVar>(res))
throw std::runtime_error("Lazy TypeVar cannot resolve to another Lazy TypeVar");
*asMutable(ty) = BoundTypeVar(res);
}
};
force(t);
TypeId cycleTester = t; // Null once we've determined that there is no cycle
if (auto a = advance(cycleTester))
cycleTester = *a;
else
return t;
while (true)
{
force(t);
auto a1 = advance(t);
if (a1)
t = *a1;
else
return t;
if (nullptr != cycleTester)
{
auto a2 = advance(cycleTester);
if (a2)
{
auto a3 = advance(*a2);
if (a3)
cycleTester = *a3;
else
cycleTester = nullptr;
}
else
cycleTester = nullptr;
if (t == cycleTester)
throw std::runtime_error("Luau::follow detected a TypeVar cycle!!");
}
}
}
std::vector<TypeId> flattenIntersection(TypeId ty)
{
if (!get<IntersectionTypeVar>(follow(ty)))
return {ty};
std::unordered_set<TypeId> seen;
std::deque<TypeId> queue{ty};
std::vector<TypeId> result;
while (!queue.empty())
{
TypeId current = follow(queue.front());
queue.pop_front();
if (seen.find(current) != seen.end())
continue;
seen.insert(current);
if (auto itv = get<IntersectionTypeVar>(current))
{
for (TypeId ty : itv->parts)
queue.push_back(ty);
}
else
result.push_back(current);
}
return result;
}
bool isPrim(TypeId ty, PrimitiveTypeVar::Type primType)
{
auto p = get<PrimitiveTypeVar>(follow(ty));
return p && p->type == primType;
}
bool isNil(TypeId ty)
{
return isPrim(ty, PrimitiveTypeVar::NilType);
}
bool isBoolean(TypeId ty)
{
if (FFlag::LuauRefactorTypeVarQuestions)
{
if (isPrim(ty, PrimitiveTypeVar::Boolean) || get<BooleanSingleton>(get<SingletonTypeVar>(follow(ty))))
return true;
if (auto utv = get<UnionTypeVar>(follow(ty)))
return std::all_of(begin(utv), end(utv), isBoolean);
return false;
}
else
{
return isPrim(ty, PrimitiveTypeVar::Boolean);
}
}
bool isNumber(TypeId ty)
{
return isPrim(ty, PrimitiveTypeVar::Number);
}
bool isString(TypeId ty)
{
if (FFlag::LuauRefactorTypeVarQuestions)
{
if (isPrim(ty, PrimitiveTypeVar::String) || get<StringSingleton>(get<SingletonTypeVar>(follow(ty))))
return true;
if (auto utv = get<UnionTypeVar>(follow(ty)))
return std::all_of(begin(utv), end(utv), isString);
return false;
}
else
{
return isPrim(ty, PrimitiveTypeVar::String);
}
}
bool isThread(TypeId ty)
{
return isPrim(ty, PrimitiveTypeVar::Thread);
}
bool isOptional(TypeId ty)
{
if (isNil(ty))
return true;
if (FFlag::LuauRefactorTypeVarQuestions)
{
auto utv = get<UnionTypeVar>(follow(ty));
if (!utv)
return false;
return std::any_of(begin(utv), end(utv), isNil);
}
else
{
std::unordered_set<TypeId> seen;
std::deque<TypeId> queue{ty};
while (!queue.empty())
{
TypeId current = follow(queue.front());
queue.pop_front();
if (seen.count(current))
continue;
seen.insert(current);
if (isNil(current))
return true;
if (auto u = get<UnionTypeVar>(current))
{
for (TypeId option : u->options)
{
if (isNil(option))
return true;
queue.push_back(option);
}
}
}
return false;
}
}
bool isTableIntersection(TypeId ty)
{
if (!get<IntersectionTypeVar>(follow(ty)))
return false;
std::vector<TypeId> parts = flattenIntersection(ty);
return std::all_of(parts.begin(), parts.end(), getTableType);
}
bool isOverloadedFunction(TypeId ty)
{
if (!get<IntersectionTypeVar>(follow(ty)))
return false;
auto isFunction = [](TypeId part) -> bool {
return get<FunctionTypeVar>(part);
};
std::vector<TypeId> parts = flattenIntersection(ty);
return std::all_of(parts.begin(), parts.end(), isFunction);
}
std::optional<TypeId> getMetatable(TypeId type)
{
if (const MetatableTypeVar* mtType = get<MetatableTypeVar>(type))
return mtType->metatable;
else if (const ClassTypeVar* classType = get<ClassTypeVar>(type))
return classType->metatable;
else if (FFlag::LuauRefactorTypeVarQuestions)
{
if (isString(type))
{
auto ptv = get<PrimitiveTypeVar>(getSingletonTypes().stringType);
LUAU_ASSERT(ptv && ptv->metatable);
return ptv->metatable;
}
else
return std::nullopt;
}
else
{
if (const PrimitiveTypeVar* primitiveType = get<PrimitiveTypeVar>(type); primitiveType && primitiveType->metatable)
{
LUAU_ASSERT(primitiveType->type == PrimitiveTypeVar::String);
return primitiveType->metatable;
}
else
return std::nullopt;
}
}
const TableTypeVar* getTableType(TypeId type)
{
if (const TableTypeVar* ttv = get<TableTypeVar>(type))
return ttv;
else if (const MetatableTypeVar* mtv = get<MetatableTypeVar>(type))
return get<TableTypeVar>(mtv->table);
else
return nullptr;
}
TableTypeVar* getMutableTableType(TypeId type)
{
return const_cast<TableTypeVar*>(getTableType(type));
}
const std::string* getName(TypeId type)
{
type = follow(type);
if (auto mtv = get<MetatableTypeVar>(type))
{
if (mtv->syntheticName)
return &*mtv->syntheticName;
type = mtv->table;
}
if (auto ttv = get<TableTypeVar>(type))
{
if (ttv->name)
return &*ttv->name;
if (ttv->syntheticName)
return &*ttv->syntheticName;
}
return nullptr;
}
bool isSubset(const UnionTypeVar& super, const UnionTypeVar& sub)
{
std::unordered_set<TypeId> superTypes;
for (TypeId id : super.options)
superTypes.insert(id);
for (TypeId id : sub.options)
{
if (superTypes.find(id) == superTypes.end())
return false;
}
return true;
}
// When typechecking an assignment `x = e`, we typecheck `x:T` and `e:U`,
// then instantiate U if `isGeneric(U)` is true, and `maybeGeneric(T)` is false.
bool isGeneric(TypeId ty)
{
ty = follow(ty);
if (auto ftv = get<FunctionTypeVar>(ty))
return ftv->generics.size() > 0 || ftv->genericPacks.size() > 0;
else
// TODO: recurse on type synonyms CLI-39914
// TODO: recurse on table types CLI-39914
return false;
}
bool maybeGeneric(TypeId ty)
{
ty = follow(ty);
if (get<FreeTypeVar>(ty))
return true;
else if (auto ttv = get<TableTypeVar>(ty))
{
// TODO: recurse on table types CLI-39914
(void)ttv;
return true;
}
else
return isGeneric(ty);
}
bool maybeSingleton(TypeId ty)
{
ty = follow(ty);
if (get<SingletonTypeVar>(ty))
return true;
if (const UnionTypeVar* utv = get<UnionTypeVar>(ty))
for (TypeId option : utv)
if (get<SingletonTypeVar>(follow(option)))
return true;
return false;
}
bool hasLength(TypeId ty, DenseHashSet<TypeId>& seen, int* recursionCount)
{
LUAU_ASSERT(FFlag::LuauLengthOnCompositeType);
RecursionLimiter _rl(recursionCount, FInt::LuauTypeInferRecursionLimit);
ty = follow(ty);
if (seen.contains(ty))
return true;
if (isPrim(ty, PrimitiveTypeVar::String) || get<AnyTypeVar>(ty) || get<TableTypeVar>(ty) || get<MetatableTypeVar>(ty))
return true;
if (auto uty = get<UnionTypeVar>(ty))
{
seen.insert(ty);
for (TypeId part : uty->options)
{
if (!hasLength(part, seen, recursionCount))
return false;
}
return true;
}
if (auto ity = get<IntersectionTypeVar>(ty))
{
seen.insert(ty);
for (TypeId part : ity->parts)
{
if (hasLength(part, seen, recursionCount))
return true;
}
return false;
}
return false;
}
FunctionTypeVar::FunctionTypeVar(TypePackId argTypes, TypePackId retType, std::optional<FunctionDefinition> defn, bool hasSelf)
: argTypes(argTypes)
, retType(retType)
, definition(std::move(defn))
, hasSelf(hasSelf)
{
}
FunctionTypeVar::FunctionTypeVar(TypeLevel level, TypePackId argTypes, TypePackId retType, std::optional<FunctionDefinition> defn, bool hasSelf)
: level(level)
, argTypes(argTypes)
, retType(retType)
, definition(std::move(defn))
, hasSelf(hasSelf)
{
}
FunctionTypeVar::FunctionTypeVar(std::vector<TypeId> generics, std::vector<TypePackId> genericPacks, TypePackId argTypes, TypePackId retType,
std::optional<FunctionDefinition> defn, bool hasSelf)
: generics(generics)
, genericPacks(genericPacks)
, argTypes(argTypes)
, retType(retType)
, definition(std::move(defn))
, hasSelf(hasSelf)
{
}
FunctionTypeVar::FunctionTypeVar(TypeLevel level, std::vector<TypeId> generics, std::vector<TypePackId> genericPacks, TypePackId argTypes,
TypePackId retType, std::optional<FunctionDefinition> defn, bool hasSelf)
: level(level)
, generics(generics)
, genericPacks(genericPacks)
, argTypes(argTypes)
, retType(retType)
, definition(std::move(defn))
, hasSelf(hasSelf)
{
}
TableTypeVar::TableTypeVar(TableState state, TypeLevel level)
: state(state)
, level(level)
{
}
TableTypeVar::TableTypeVar(const Props& props, const std::optional<TableIndexer>& indexer, TypeLevel level, TableState state)
: props(props)
, indexer(indexer)
, state(state)
, level(level)
{
}
// Test TypeVars for equivalence
// More complex than we'd like because TypeVars can self-reference.
bool areSeen(SeenSet& seen, const void* lhs, const void* rhs)
{
if (lhs == rhs)
return true;
auto p = std::make_pair(const_cast<void*>(lhs), const_cast<void*>(rhs));
if (seen.find(p) != seen.end())
return true;
seen.insert(p);
return false;
}
bool areEqual(SeenSet& seen, const FunctionTypeVar& lhs, const FunctionTypeVar& rhs)
{
if (areSeen(seen, &lhs, &rhs))
return true;
// TODO: check generics CLI-39915
if (!areEqual(seen, *lhs.argTypes, *rhs.argTypes))
return false;
if (!areEqual(seen, *lhs.retType, *rhs.retType))
return false;
return true;
}
bool areEqual(SeenSet& seen, const TableTypeVar& lhs, const TableTypeVar& rhs)
{
if (areSeen(seen, &lhs, &rhs))
return true;
if (lhs.state != rhs.state)
return false;
if (lhs.props.size() != rhs.props.size())
return false;
if (bool(lhs.indexer) != bool(rhs.indexer))
return false;
if (lhs.indexer && rhs.indexer)
{
if (!areEqual(seen, *lhs.indexer->indexType, *rhs.indexer->indexType))
return false;
if (!areEqual(seen, *lhs.indexer->indexResultType, *rhs.indexer->indexResultType))
return false;
}
auto l = lhs.props.begin();
auto r = rhs.props.begin();
while (l != lhs.props.end())
{
if (l->first != r->first)
return false;
if (!areEqual(seen, *l->second.type, *r->second.type))
return false;
++l;
++r;
}
return true;
}
static bool areEqual(SeenSet& seen, const MetatableTypeVar& lhs, const MetatableTypeVar& rhs)
{
2022-01-14 16:20:09 +00:00
if (FFlag::LuauMetatableAreEqualRecursion && areSeen(seen, &lhs, &rhs))
return true;
return areEqual(seen, *lhs.table, *rhs.table) && areEqual(seen, *lhs.metatable, *rhs.metatable);
}
bool areEqual(SeenSet& seen, const TypeVar& lhs, const TypeVar& rhs)
{
if (auto bound = get_if<BoundTypeVar>(&lhs.ty))
return areEqual(seen, *bound->boundTo, rhs);
if (auto bound = get_if<BoundTypeVar>(&rhs.ty))
return areEqual(seen, lhs, *bound->boundTo);
if (lhs.ty.index() != rhs.ty.index())
return false;
{
const FreeTypeVar* lf = get_if<FreeTypeVar>(&lhs.ty);
const FreeTypeVar* rf = get_if<FreeTypeVar>(&rhs.ty);
if (lf && rf)
return lf->index == rf->index;
}
{
const GenericTypeVar* lg = get_if<GenericTypeVar>(&lhs.ty);
const GenericTypeVar* rg = get_if<GenericTypeVar>(&rhs.ty);
if (lg && rg)
return lg->index == rg->index;
}
{
const PrimitiveTypeVar* lp = get_if<PrimitiveTypeVar>(&lhs.ty);
const PrimitiveTypeVar* rp = get_if<PrimitiveTypeVar>(&rhs.ty);
if (lp && rp)
return lp->type == rp->type;
}
{
const GenericTypeVar* lg = get_if<GenericTypeVar>(&lhs.ty);
const GenericTypeVar* rg = get_if<GenericTypeVar>(&rhs.ty);
if (lg && rg)
return lg->index == rg->index;
}
{
const ErrorTypeVar* le = get_if<ErrorTypeVar>(&lhs.ty);
const ErrorTypeVar* re = get_if<ErrorTypeVar>(&rhs.ty);
if (le && re)
return le->index == re->index;
}
{
const FunctionTypeVar* lf = get_if<FunctionTypeVar>(&lhs.ty);
const FunctionTypeVar* rf = get_if<FunctionTypeVar>(&rhs.ty);
if (lf && rf)
return areEqual(seen, *lf, *rf);
}
{
const TableTypeVar* lt = get_if<TableTypeVar>(&lhs.ty);
const TableTypeVar* rt = get_if<TableTypeVar>(&rhs.ty);
if (lt && rt)
return areEqual(seen, *lt, *rt);
}
{
const MetatableTypeVar* lmt = get_if<MetatableTypeVar>(&lhs.ty);
const MetatableTypeVar* rmt = get_if<MetatableTypeVar>(&rhs.ty);
if (lmt && rmt)
return areEqual(seen, *lmt, *rmt);
}
if (get_if<AnyTypeVar>(&lhs.ty) && get_if<AnyTypeVar>(&rhs.ty))
return true;
return false;
}
TypeVar* asMutable(TypeId ty)
{
return const_cast<TypeVar*>(ty);
}
bool TypeVar::operator==(const TypeVar& rhs) const
{
SeenSet seen;
return areEqual(seen, *this, rhs);
}
bool TypeVar::operator!=(const TypeVar& rhs) const
{
SeenSet seen;
return !areEqual(seen, *this, rhs);
}
TypeVar& TypeVar::operator=(const TypeVariant& rhs)
{
ty = rhs;
return *this;
}
TypeVar& TypeVar::operator=(TypeVariant&& rhs)
{
ty = std::move(rhs);
return *this;
}
TypeId makeFunction(TypeArena& arena, std::optional<TypeId> selfType, std::initializer_list<TypeId> generics,
std::initializer_list<TypePackId> genericPacks, std::initializer_list<TypeId> paramTypes, std::initializer_list<std::string> paramNames,
std::initializer_list<TypeId> retTypes);
static TypeVar nilType_{PrimitiveTypeVar{PrimitiveTypeVar::NilType}, /*persistent*/ true};
static TypeVar numberType_{PrimitiveTypeVar{PrimitiveTypeVar::Number}, /*persistent*/ true};
static TypeVar stringType_{PrimitiveTypeVar{PrimitiveTypeVar::String}, /*persistent*/ true};
static TypeVar booleanType_{PrimitiveTypeVar{PrimitiveTypeVar::Boolean}, /*persistent*/ true};
static TypeVar threadType_{PrimitiveTypeVar{PrimitiveTypeVar::Thread}, /*persistent*/ true};
static TypeVar anyType_{AnyTypeVar{}};
static TypeVar errorType_{ErrorTypeVar{}};
static TypeVar optionalNumberType_{UnionTypeVar{{&numberType_, &nilType_}}};
static TypePackVar anyTypePack_{VariadicTypePack{&anyType_}, true};
static TypePackVar errorTypePack_{Unifiable::Error{}};
SingletonTypes::SingletonTypes()
: nilType(&nilType_)
, numberType(&numberType_)
, stringType(&stringType_)
, booleanType(&booleanType_)
, threadType(&threadType_)
, anyType(&anyType_)
, optionalNumberType(&optionalNumberType_)
, anyTypePack(&anyTypePack_)
, arena(new TypeArena)
{
TypeId stringMetatable = makeStringMetatable();
stringType_.ty = PrimitiveTypeVar{PrimitiveTypeVar::String, stringMetatable};
persist(stringMetatable);
debugFreezeArena = FFlag::DebugLuauFreezeArena;
freeze(*arena);
}
SingletonTypes::~SingletonTypes()
{
// Destroy the arena with the same memory management flags it was created with
bool prevFlag = FFlag::DebugLuauFreezeArena;
FFlag::DebugLuauFreezeArena.value = debugFreezeArena;
unfreeze(*arena);
arena.reset(nullptr);
FFlag::DebugLuauFreezeArena.value = prevFlag;
}
TypeId SingletonTypes::makeStringMetatable()
{
const TypeId optionalNumber = arena->addType(UnionTypeVar{{nilType, numberType}});
const TypeId optionalString = arena->addType(UnionTypeVar{{nilType, stringType}});
const TypeId optionalBoolean = arena->addType(UnionTypeVar{{nilType, &booleanType_}});
const TypePackId oneStringPack = arena->addTypePack({stringType});
const TypePackId anyTypePack = arena->addTypePack(TypePackVar{VariadicTypePack{anyType}, true});
FunctionTypeVar formatFTV{arena->addTypePack(TypePack{{stringType}, anyTypePack}), oneStringPack};
formatFTV.magicFunction = &magicFunctionFormat;
const TypeId formatFn = arena->addType(formatFTV);
const TypePackId emptyPack = arena->addTypePack({});
const TypePackId stringVariadicList = arena->addTypePack(TypePackVar{VariadicTypePack{stringType}});
const TypePackId numberVariadicList = arena->addTypePack(TypePackVar{VariadicTypePack{numberType}});
const TypeId stringToStringType = makeFunction(*arena, std::nullopt, {}, {}, {stringType}, {}, {stringType});
const TypeId replArgType = arena->addType(
UnionTypeVar{{stringType, arena->addType(TableTypeVar({}, TableIndexer(stringType, stringType), TypeLevel{}, TableState::Generic)),
makeFunction(*arena, std::nullopt, {}, {}, {stringType}, {}, {stringType})}});
const TypeId gsubFunc = makeFunction(*arena, stringType, {}, {}, {stringType, replArgType, optionalNumber}, {}, {stringType, numberType});
const TypeId gmatchFunc =
makeFunction(*arena, stringType, {}, {}, {stringType}, {}, {arena->addType(FunctionTypeVar{emptyPack, stringVariadicList})});
TableTypeVar::Props stringLib = {
{"byte", {arena->addType(FunctionTypeVar{arena->addTypePack({stringType, optionalNumber, optionalNumber}), numberVariadicList})}},
{"char", {arena->addType(FunctionTypeVar{arena->addTypePack(TypePack{{numberType}, numberVariadicList}), arena->addTypePack({stringType})})}},
{"find", {makeFunction(*arena, stringType, {}, {}, {stringType, optionalNumber, optionalBoolean}, {}, {optionalNumber, optionalNumber})}},
{"format", {formatFn}}, // FIXME
{"gmatch", {gmatchFunc}},
{"gsub", {gsubFunc}},
{"len", {makeFunction(*arena, stringType, {}, {}, {}, {}, {numberType})}},
{"lower", {stringToStringType}},
{"match", {makeFunction(*arena, stringType, {}, {}, {stringType, optionalNumber}, {}, {optionalString})}},
{"rep", {makeFunction(*arena, stringType, {}, {}, {numberType}, {}, {stringType})}},
{"reverse", {stringToStringType}},
{"sub", {makeFunction(*arena, stringType, {}, {}, {numberType, optionalNumber}, {}, {stringType})}},
{"upper", {stringToStringType}},
{"split", {makeFunction(*arena, stringType, {}, {}, {optionalString}, {},
{arena->addType(TableTypeVar{{}, TableIndexer{numberType, stringType}, TypeLevel{}})})}},
{"pack", {arena->addType(FunctionTypeVar{
arena->addTypePack(TypePack{{stringType}, anyTypePack}),
oneStringPack,
})}},
{"packsize", {makeFunction(*arena, stringType, {}, {}, {}, {}, {numberType})}},
{"unpack", {arena->addType(FunctionTypeVar{
arena->addTypePack(TypePack{{stringType, stringType, optionalNumber}}),
anyTypePack,
})}},
};
assignPropDocumentationSymbols(stringLib, "@luau/global/string");
TypeId tableType = arena->addType(TableTypeVar{std::move(stringLib), std::nullopt, TypeLevel{}, TableState::Sealed});
if (TableTypeVar* ttv = getMutable<TableTypeVar>(tableType))
ttv->name = "string";
return arena->addType(TableTypeVar{{{{"__index", {tableType}}}}, std::nullopt, TypeLevel{}, TableState::Sealed});
}
TypeId SingletonTypes::errorRecoveryType()
{
return &errorType_;
}
TypePackId SingletonTypes::errorRecoveryTypePack()
{
return &errorTypePack_;
}
TypeId SingletonTypes::errorRecoveryType(TypeId guess)
{
if (FFlag::LuauErrorRecoveryType)
return guess;
else
return &errorType_;
}
TypePackId SingletonTypes::errorRecoveryTypePack(TypePackId guess)
{
if (FFlag::LuauErrorRecoveryType)
return guess;
else
return &errorTypePack_;
}
SingletonTypes& getSingletonTypes()
{
static SingletonTypes singletonTypes;
return singletonTypes;
}
void persist(TypeId ty)
{
std::deque<TypeId> queue{ty};
while (!queue.empty())
{
TypeId t = queue.front();
queue.pop_front();
if (t->persistent)
continue;
asMutable(t)->persistent = true;
if (auto btv = get<BoundTypeVar>(t))
queue.push_back(btv->boundTo);
else if (auto ftv = get<FunctionTypeVar>(t))
{
persist(ftv->argTypes);
persist(ftv->retType);
}
else if (auto ttv = get<TableTypeVar>(t))
{
for (const auto& [_name, prop] : ttv->props)
queue.push_back(prop.type);
if (ttv->indexer)
{
queue.push_back(ttv->indexer->indexType);
queue.push_back(ttv->indexer->indexResultType);
}
}
else if (auto ctv = get<ClassTypeVar>(t))
{
for (const auto& [_name, prop] : ctv->props)
queue.push_back(prop.type);
}
else if (auto utv = get<UnionTypeVar>(t))
{
for (TypeId opt : utv->options)
queue.push_back(opt);
}
else if (auto itv = get<IntersectionTypeVar>(t))
{
for (TypeId opt : itv->parts)
queue.push_back(opt);
}
else if (auto mtv = get<MetatableTypeVar>(t))
{
queue.push_back(mtv->table);
queue.push_back(mtv->metatable);
}
else if (get<GenericTypeVar>(t) || get<AnyTypeVar>(t) || get<FreeTypeVar>(t) || get<SingletonTypeVar>(t) || get<PrimitiveTypeVar>(t))
{
}
else
{
LUAU_ASSERT(!"TypeId is not supported in a persist call");
}
}
}
void persist(TypePackId tp)
{
if (tp->persistent)
return;
asMutable(tp)->persistent = true;
if (auto p = get<TypePack>(tp))
{
for (TypeId ty : p->head)
persist(ty);
if (p->tail)
persist(*p->tail);
}
else if (auto vtp = get<VariadicTypePack>(tp))
{
persist(vtp->ty);
}
else if (get<GenericTypePack>(tp))
{
}
else
{
LUAU_ASSERT(!"TypePackId is not supported in a persist call");
}
}
const TypeLevel* getLevel(TypeId ty)
{
ty = follow(ty);
if (auto ftv = get<Unifiable::Free>(ty))
return &ftv->level;
else if (auto ttv = get<TableTypeVar>(ty))
return &ttv->level;
else if (auto ftv = get<FunctionTypeVar>(ty))
return &ftv->level;
else
return nullptr;
}
TypeLevel* getMutableLevel(TypeId ty)
{
return const_cast<TypeLevel*>(getLevel(ty));
}
const Property* lookupClassProp(const ClassTypeVar* cls, const Name& name)
{
while (cls)
{
auto it = cls->props.find(name);
if (it != cls->props.end())
return &it->second;
if (cls->parent)
cls = get<ClassTypeVar>(*cls->parent);
else
return nullptr;
LUAU_ASSERT(cls);
}
return nullptr;
}
bool isSubclass(const ClassTypeVar* cls, const ClassTypeVar* parent)
{
while (cls)
{
if (cls == parent)
return true;
else if (!cls->parent)
return false;
cls = get<ClassTypeVar>(*cls->parent);
LUAU_ASSERT(cls);
}
return false;
}
UnionTypeVarIterator::UnionTypeVarIterator(const UnionTypeVar* utv)
{
LUAU_ASSERT(utv);
if (!utv->options.empty())
stack.push_front({utv, 0});
seen.insert(utv);
}
UnionTypeVarIterator& UnionTypeVarIterator::operator++()
{
advance();
descend();
return *this;
}
UnionTypeVarIterator UnionTypeVarIterator::operator++(int)
{
UnionTypeVarIterator copy = *this;
++copy;
return copy;
}
bool UnionTypeVarIterator::operator!=(const UnionTypeVarIterator& rhs)
{
return !(*this == rhs);
}
bool UnionTypeVarIterator::operator==(const UnionTypeVarIterator& rhs)
{
if (!stack.empty() && !rhs.stack.empty())
return stack.front() == rhs.stack.front();
return stack.empty() && rhs.stack.empty();
}
const TypeId& UnionTypeVarIterator::operator*()
{
LUAU_ASSERT(!stack.empty());
descend();
auto [utv, currentIndex] = stack.front();
LUAU_ASSERT(utv);
LUAU_ASSERT(currentIndex < utv->options.size());
const TypeId& ty = utv->options[currentIndex];
LUAU_ASSERT(!get<UnionTypeVar>(follow(ty)));
return ty;
}
void UnionTypeVarIterator::advance()
{
while (!stack.empty())
{
auto& [utv, currentIndex] = stack.front();
++currentIndex;
if (currentIndex >= utv->options.size())
stack.pop_front();
else
break;
}
}
void UnionTypeVarIterator::descend()
{
while (!stack.empty())
{
auto [utv, currentIndex] = stack.front();
if (auto innerUnion = get<UnionTypeVar>(follow(utv->options[currentIndex])))
{
// If we're about to descend into a cyclic UnionTypeVar, we should skip over this.
// Ideally this should never happen, but alas it does from time to time. :(
if (seen.find(innerUnion) != seen.end())
advance();
else
{
seen.insert(innerUnion);
stack.push_front({innerUnion, 0});
}
continue;
}
break;
}
}
UnionTypeVarIterator begin(const UnionTypeVar* utv)
{
return UnionTypeVarIterator{utv};
}
UnionTypeVarIterator end(const UnionTypeVar* utv)
{
return UnionTypeVarIterator{};
}
static std::vector<TypeId> parseFormatString(TypeChecker& typechecker, const char* data, size_t size)
{
const char* options = "cdiouxXeEfgGqs";
std::vector<TypeId> result;
for (size_t i = 0; i < size; ++i)
{
if (data[i] == '%')
{
i++;
if (i < size && data[i] == '%')
continue;
// we just ignore all characters (including flags/precision) up until first alphabetic character
while (i < size && !(data[i] > 0 && isalpha(data[i])))
i++;
if (i == size)
break;
if (data[i] == 'q' || data[i] == 's')
result.push_back(typechecker.stringType);
else if (strchr(options, data[i]))
result.push_back(typechecker.numberType);
else
result.push_back(typechecker.errorRecoveryType(typechecker.anyType));
}
}
return result;
}
std::optional<ExprResult<TypePackId>> magicFunctionFormat(
TypeChecker& typechecker, const ScopePtr& scope, const AstExprCall& expr, ExprResult<TypePackId> exprResult)
{
auto [paramPack, _predicates] = exprResult;
TypeArena& arena = typechecker.currentModule->internalTypes;
AstExprConstantString* fmt = nullptr;
if (auto index = expr.func->as<AstExprIndexName>(); index && expr.self)
{
if (auto group = index->expr->as<AstExprGroup>())
fmt = group->expr->as<AstExprConstantString>();
else
fmt = index->expr->as<AstExprConstantString>();
}
if (!expr.self && expr.args.size > 0)
fmt = expr.args.data[0]->as<AstExprConstantString>();
if (!fmt)
return std::nullopt;
std::vector<TypeId> expected = parseFormatString(typechecker, fmt->value.data, fmt->value.size);
const auto& [params, tail] = flatten(paramPack);
size_t paramOffset = 1;
size_t dataOffset = expr.self ? 0 : 1;
// unify the prefix one argument at a time
for (size_t i = 0; i < expected.size() && i + paramOffset < params.size(); ++i)
{
Location location = expr.args.data[std::min(i + dataOffset, expr.args.size - 1)]->location;
typechecker.unify(params[i + paramOffset], expected[i], location);
}
// if we know the argument count or if we have too many arguments for sure, we can issue an error
size_t actualParamSize = params.size() - paramOffset;
if (expected.size() != actualParamSize && (!tail || expected.size() < actualParamSize))
typechecker.reportError(TypeError{expr.location, CountMismatch{expected.size(), actualParamSize}});
return ExprResult<TypePackId>{arena.addTypePack({typechecker.stringType})};
}
std::vector<TypeId> filterMap(TypeId type, TypeIdPredicate predicate)
{
type = follow(type);
if (auto utv = get<UnionTypeVar>(type))
{
std::set<TypeId> options;
for (TypeId option : utv)
if (auto out = predicate(follow(option)))
options.insert(*out);
return std::vector<TypeId>(options.begin(), options.end());
}
else if (auto out = predicate(type))
return {*out};
return {};
}
static Tags* getTags(TypeId ty)
{
ty = follow(ty);
if (auto ftv = getMutable<FunctionTypeVar>(ty))
return &ftv->tags;
else if (auto ttv = getMutable<TableTypeVar>(ty))
return &ttv->tags;
else if (auto ctv = getMutable<ClassTypeVar>(ty))
return &ctv->tags;
return nullptr;
}
void attachTag(TypeId ty, const std::string& tagName)
{
if (auto tags = getTags(ty))
tags->push_back(tagName);
else
LUAU_ASSERT(!"This TypeId does not support tags");
}
void attachTag(Property& prop, const std::string& tagName)
{
prop.tags.push_back(tagName);
}
// We would ideally not expose this because it could cause a footgun.
// If the Base class has a tag and you ask if Derived has that tag, it would return false.
// Unfortunately, there's already use cases that's hard to disentangle. For now, we expose it.
bool hasTag(const Tags& tags, const std::string& tagName)
{
return std::find(tags.begin(), tags.end(), tagName) != tags.end();
}
bool hasTag(TypeId ty, const std::string& tagName)
{
ty = follow(ty);
// We special case classes because getTags only returns a pointer to one vector of tags.
// But classes has multiple vector of tags, represented throughout the hierarchy.
if (auto ctv = get<ClassTypeVar>(ty))
{
while (ctv)
{
if (hasTag(ctv->tags, tagName))
return true;
else if (!ctv->parent)
return false;
ctv = get<ClassTypeVar>(*ctv->parent);
LUAU_ASSERT(ctv);
}
}
else if (auto tags = getTags(ty))
return hasTag(*tags, tagName);
return false;
}
bool hasTag(const Property& prop, const std::string& tagName)
{
return hasTag(prop.tags, tagName);
}
} // namespace Luau