luau/tests/Autocomplete.test.cpp

3481 lines
84 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/Autocomplete.h"
#include "Luau/BuiltinDefinitions.h"
#include "Luau/TypeInfer.h"
#include "Luau/Type.h"
#include "Luau/VisitType.h"
#include "Luau/StringUtils.h"
#include "Fixture.h"
#include "ScopedFlags.h"
#include "doctest.h"
#include <map>
LUAU_FASTFLAG(LuauTraceTypesInNonstrictMode2)
LUAU_FASTFLAG(LuauSetMetatableDoesNotTimeTravel)
using namespace Luau;
static std::optional<AutocompleteEntryMap> nullCallback(std::string tag, std::optional<const ClassType*> ptr, std::optional<std::string> contents)
{
return std::nullopt;
}
template<class BaseType>
struct ACFixtureImpl : BaseType
{
2022-04-07 22:29:01 +01:00
ACFixtureImpl()
2022-05-13 20:36:37 +01:00
: BaseType(true, true)
2022-04-07 22:29:01 +01:00
{
}
AutocompleteResult autocomplete(unsigned row, unsigned column)
{
return Luau::autocomplete(this->frontend, "MainModule", Position{row, column}, nullCallback);
}
AutocompleteResult autocomplete(char marker, StringCompletionCallback callback = nullCallback)
{
return Luau::autocomplete(this->frontend, "MainModule", getPosition(marker), callback);
}
CheckResult check(const std::string& source)
{
markerPosition.clear();
std::string filteredSource;
filteredSource.reserve(source.size());
Position curPos(0, 0);
char prevChar{};
for (char c : source)
{
if (prevChar == '@')
{
LUAU_ASSERT("Illegal marker character" && c >= '0' && c <= '9');
LUAU_ASSERT("Duplicate marker found" && markerPosition.count(c) == 0);
markerPosition.insert(std::pair{c, curPos});
}
else if (c == '@')
{
// skip the '@' character
}
else
{
filteredSource.push_back(c);
if (c == '\n')
{
curPos.line++;
curPos.column = 0;
}
else
{
curPos.column++;
}
}
prevChar = c;
}
LUAU_ASSERT("Digit expected after @ symbol" && prevChar != '@');
2022-04-07 22:29:01 +01:00
return BaseType::check(filteredSource);
}
LoadDefinitionFileResult loadDefinition(const std::string& source)
{
GlobalTypes& globals = this->frontend.globalsForAutocomplete;
unfreeze(globals.globalTypes);
LoadDefinitionFileResult result =
loadDefinitionFile(this->frontend.typeChecker, globals, globals.globalScope, source, "@test", /* captureComments */ false);
freeze(globals.globalTypes);
2022-04-07 22:29:01 +01:00
REQUIRE_MESSAGE(result.success, "loadDefinition: unable to load definition file");
return result;
}
const Position& getPosition(char marker) const
{
auto i = markerPosition.find(marker);
LUAU_ASSERT(i != markerPosition.end());
return i->second;
}
// Maps a marker character (0-9 inclusive) to a position in the source code.
std::map<char, Position> markerPosition;
};
struct ACFixture : ACFixtureImpl<Fixture>
2022-05-13 20:36:37 +01:00
{
ACFixture()
: ACFixtureImpl<Fixture>()
{
addGlobalBinding(frontend.globals, "table", Binding{builtinTypes->anyType});
addGlobalBinding(frontend.globals, "math", Binding{builtinTypes->anyType});
addGlobalBinding(frontend.globalsForAutocomplete, "table", Binding{builtinTypes->anyType});
addGlobalBinding(frontend.globalsForAutocomplete, "math", Binding{builtinTypes->anyType});
2022-05-13 20:36:37 +01:00
}
};
struct ACBuiltinsFixture : ACFixtureImpl<BuiltinsFixture>
{
};
TEST_SUITE_BEGIN("AutocompleteTest");
TEST_CASE_FIXTURE(ACFixture, "empty_program")
{
check(" @1");
auto ac = autocomplete('1');
CHECK(!ac.entryMap.empty());
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "local_initializer")
{
check("local a = @1");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
CHECK_EQ(ac.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "leave_numbers_alone")
{
check("local a = 3.@11");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "user_defined_globals")
{
check("local myLocal = 4; @1");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("myLocal"));
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "dont_suggest_local_before_its_definition")
{
check(R"(
local myLocal = 4
function abc()
@1 local myInnerLocal = 1
@2
end
@3 )");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("myLocal"));
CHECK(!ac.entryMap.count("myInnerLocal"));
ac = autocomplete('2');
CHECK(ac.entryMap.count("myLocal"));
CHECK(ac.entryMap.count("myInnerLocal"));
ac = autocomplete('3');
CHECK(ac.entryMap.count("myLocal"));
CHECK(!ac.entryMap.count("myInnerLocal"));
}
TEST_CASE_FIXTURE(ACFixture, "recursive_function")
{
check(R"(
function foo()
@1 end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("foo"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "nested_recursive_function")
{
check(R"(
local function outer()
local function inner()
@1 end
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("inner"));
CHECK(ac.entryMap.count("outer"));
}
TEST_CASE_FIXTURE(ACFixture, "user_defined_local_functions_in_own_definition")
{
check(R"(
local function abc()
@1
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("abc"));
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
check(R"(
local abc = function()
@1
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("abc")); // FIXME: This is actually incorrect!
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
}
TEST_CASE_FIXTURE(ACFixture, "global_functions_are_not_scoped_lexically")
{
check(R"(
if true then
function abc()
end
end
@1 )");
auto ac = autocomplete('1');
CHECK(!ac.entryMap.empty());
CHECK(ac.entryMap.count("abc"));
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
}
TEST_CASE_FIXTURE(ACFixture, "local_functions_fall_out_of_scope")
{
check(R"(
if true then
local function abc()
end
end
@1 )");
auto ac = autocomplete('1');
CHECK_NE(0, ac.entryMap.size());
CHECK(!ac.entryMap.count("abc"));
}
TEST_CASE_FIXTURE(ACFixture, "function_parameters")
{
check(R"(
function abc(test)
@1 end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("test"));
}
2022-05-13 20:36:37 +01:00
TEST_CASE_FIXTURE(ACBuiltinsFixture, "get_member_completions")
{
check(R"(
local a = table.@1
)");
auto ac = autocomplete('1');
2022-03-31 22:01:51 +01:00
CHECK_EQ(17, ac.entryMap.size());
CHECK(ac.entryMap.count("find"));
CHECK(ac.entryMap.count("pack"));
CHECK(!ac.entryMap.count("math"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "nested_member_completions")
{
check(R"(
local tbl = { abc = { def = 1234, egh = false } }
tbl.abc. @1
)");
auto ac = autocomplete('1');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("def"));
CHECK(ac.entryMap.count("egh"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "unsealed_table")
{
check(R"(
local tbl = {}
tbl.prop = 5
tbl.@1
)");
auto ac = autocomplete('1');
CHECK_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("prop"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "unsealed_table_2")
{
check(R"(
local tbl = {}
local inner = { prop = 5 }
tbl.inner = inner
tbl.inner. @1
)");
auto ac = autocomplete('1');
CHECK_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("prop"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "cyclic_table")
{
check(R"(
local abc = {}
local def = { abc = abc }
abc.def = def
abc.def. @1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("abc"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "table_union")
{
check(R"(
type t1 = { a1 : string, b2 : number }
type t2 = { b2 : string, c3 : string }
function func(abc : t1 | t2)
abc. @1
end
)");
auto ac = autocomplete('1');
CHECK_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("b2"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "table_intersection")
{
check(R"(
type t1 = { a1 : string, b2 : number }
type t2 = { b2 : number, c3 : string }
function func(abc : t1 & t2)
abc. @1
end
)");
auto ac = autocomplete('1');
CHECK_EQ(3, ac.entryMap.size());
CHECK(ac.entryMap.count("a1"));
CHECK(ac.entryMap.count("b2"));
CHECK(ac.entryMap.count("c3"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
2022-05-13 20:36:37 +01:00
TEST_CASE_FIXTURE(ACBuiltinsFixture, "get_string_completions")
{
check(R"(
local a = ("foo"):@1
)");
auto ac = autocomplete('1');
CHECK_EQ(17, ac.entryMap.size());
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "get_suggestions_for_new_statement")
{
check("@1");
auto ac = autocomplete('1');
CHECK_NE(0, ac.entryMap.size());
CHECK(ac.entryMap.count("table"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "get_suggestions_for_the_very_start_of_the_script")
{
check(R"(@1
function aaa() end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("table"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "method_call_inside_function_body")
{
check(R"(
local game = { GetService=function(s) return 'hello' end }
function a()
game: @1
end
)");
auto ac = autocomplete('1');
CHECK_NE(0, ac.entryMap.size());
CHECK(!ac.entryMap.count("math"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
2022-05-13 20:36:37 +01:00
TEST_CASE_FIXTURE(ACBuiltinsFixture, "method_call_inside_if_conditional")
{
check(R"(
if table: @1
)");
auto ac = autocomplete('1');
CHECK_NE(0, ac.entryMap.size());
CHECK(ac.entryMap.count("concat"));
CHECK(!ac.entryMap.count("math"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "statement_between_two_statements")
{
check(R"(
function getmyscripts() end
g@1
getmyscripts()
)");
auto ac = autocomplete('1');
CHECK_NE(0, ac.entryMap.size());
CHECK(ac.entryMap.count("getmyscripts"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "bias_toward_inner_scope")
{
check(R"(
local A = {one=1}
function B()
local A = {two=2}
A @1
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("A"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
TypeId t = follow(*ac.entryMap["A"].type);
const TableType* tt = get<TableType>(t);
REQUIRE(tt);
CHECK(tt->props.count("two"));
}
TEST_CASE_FIXTURE(ACFixture, "recommend_statement_starting_keywords")
{
check("@1");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("local"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
check("local i = @1");
auto ac2 = autocomplete('1');
CHECK(!ac2.entryMap.count("local"));
CHECK_EQ(ac2.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "do_not_overwrite_context_sensitive_kws")
{
check(R"(
local function continue()
end
@1 )");
auto ac = autocomplete('1');
AutocompleteEntry entry = ac.entryMap["continue"];
CHECK(entry.kind == AutocompleteEntryKind::Binding);
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "dont_offer_any_suggestions_from_within_a_comment")
{
check(R"(
--!strict
local foo = {}
function foo:bar() end
--[[
foo:@1
]]
)");
auto ac = autocomplete('1');
CHECK_EQ(0, ac.entryMap.size());
CHECK_EQ(ac.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "dont_offer_any_suggestions_from_the_end_of_a_comment")
{
check(R"(
--!strict@1
)");
auto ac = autocomplete('1');
CHECK_EQ(0, ac.entryMap.size());
CHECK_EQ(ac.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "dont_offer_any_suggestions_from_within_a_broken_comment")
{
check(R"(
--[[ @1
)");
auto ac = autocomplete('1');
CHECK_EQ(0, ac.entryMap.size());
CHECK_EQ(ac.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "dont_offer_any_suggestions_from_within_a_broken_comment_at_the_very_end_of_the_file")
{
check("--[[@1");
auto ac = autocomplete('1');
CHECK_EQ(0, ac.entryMap.size());
CHECK_EQ(ac.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_for_middle_keywords")
{
check(R"(
for x @1=
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.count("do"), 0);
CHECK_EQ(ac1.entryMap.count("end"), 0);
CHECK_EQ(ac1.context, AutocompleteContext::Unknown);
check(R"(
for x =@1 1
)");
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("do"), 0);
CHECK_EQ(ac2.entryMap.count("end"), 0);
CHECK_EQ(ac2.context, AutocompleteContext::Unknown);
check(R"(
for x = 1,@1 2
)");
auto ac3 = autocomplete('1');
CHECK_EQ(1, ac3.entryMap.size());
CHECK_EQ(ac3.entryMap.count("do"), 1);
CHECK_EQ(ac3.context, AutocompleteContext::Keyword);
check(R"(
for x = 1, @12,
)");
auto ac4 = autocomplete('1');
CHECK_EQ(ac4.entryMap.count("do"), 0);
CHECK_EQ(ac4.entryMap.count("end"), 0);
CHECK_EQ(ac4.context, AutocompleteContext::Expression);
check(R"(
for x = 1, 2, @15
)");
auto ac5 = autocomplete('1');
CHECK_EQ(ac5.entryMap.count("math"), 1);
CHECK_EQ(ac5.entryMap.count("do"), 0);
CHECK_EQ(ac5.entryMap.count("end"), 0);
CHECK_EQ(ac5.context, AutocompleteContext::Expression);
check(R"(
for x = 1, 2, 5 f@1
)");
auto ac6 = autocomplete('1');
CHECK_EQ(ac6.entryMap.size(), 1);
CHECK_EQ(ac6.entryMap.count("do"), 1);
CHECK_EQ(ac6.context, AutocompleteContext::Keyword);
check(R"(
for x = 1, 2, 5 do @1
)");
auto ac7 = autocomplete('1');
CHECK_EQ(ac7.entryMap.count("end"), 1);
CHECK_EQ(ac7.context, AutocompleteContext::Statement);
check(R"(local Foo = 1
for x = @11, @22, @35
)");
for (int i = 0; i < 3; ++i)
{
auto ac8 = autocomplete('1' + i);
CHECK_EQ(ac8.entryMap.count("Foo"), 1);
CHECK_EQ(ac8.entryMap.count("do"), 0);
}
check(R"(local Foo = 1
for x = @11, @22
)");
for (int i = 0; i < 2; ++i)
{
auto ac9 = autocomplete('1' + i);
CHECK_EQ(ac9.entryMap.count("Foo"), 1);
CHECK_EQ(ac9.entryMap.count("do"), 0);
}
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_for_in_middle_keywords")
{
check(R"(
for @1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(0, ac1.entryMap.size());
CHECK_EQ(ac1.context, AutocompleteContext::Unknown);
check(R"(
for x@1 @2
)");
auto ac2 = autocomplete('1');
CHECK_EQ(0, ac2.entryMap.size());
CHECK_EQ(ac2.context, AutocompleteContext::Unknown);
auto ac2a = autocomplete('2');
CHECK_EQ(1, ac2a.entryMap.size());
CHECK_EQ(1, ac2a.entryMap.count("in"));
CHECK_EQ(ac2a.context, AutocompleteContext::Keyword);
check(R"(
for x in y@1
)");
auto ac3 = autocomplete('1');
CHECK_EQ(ac3.entryMap.count("table"), 1);
CHECK_EQ(ac3.entryMap.count("do"), 0);
CHECK_EQ(ac3.context, AutocompleteContext::Expression);
check(R"(
for x in y @1
)");
auto ac4 = autocomplete('1');
CHECK_EQ(ac4.entryMap.size(), 1);
CHECK_EQ(ac4.entryMap.count("do"), 1);
CHECK_EQ(ac4.context, AutocompleteContext::Keyword);
check(R"(
for x in f f@1
)");
auto ac5 = autocomplete('1');
CHECK_EQ(ac5.entryMap.size(), 1);
CHECK_EQ(ac5.entryMap.count("do"), 1);
CHECK_EQ(ac5.context, AutocompleteContext::Keyword);
check(R"(
for x in y do @1
)");
auto ac6 = autocomplete('1');
CHECK_EQ(ac6.entryMap.count("in"), 0);
CHECK_EQ(ac6.entryMap.count("table"), 1);
CHECK_EQ(ac6.entryMap.count("end"), 1);
CHECK_EQ(ac6.entryMap.count("function"), 1);
CHECK_EQ(ac6.context, AutocompleteContext::Statement);
check(R"(
for x in y do e@1
)");
auto ac7 = autocomplete('1');
CHECK_EQ(ac7.entryMap.count("in"), 0);
CHECK_EQ(ac7.entryMap.count("table"), 1);
CHECK_EQ(ac7.entryMap.count("end"), 1);
CHECK_EQ(ac7.entryMap.count("function"), 1);
CHECK_EQ(ac7.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_while_middle_keywords")
{
check(R"(
while@1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.count("do"), 0);
CHECK_EQ(ac1.entryMap.count("end"), 0);
CHECK_EQ(ac1.context, AutocompleteContext::Expression);
check(R"(
while true @1
)");
auto ac2 = autocomplete('1');
CHECK_EQ(3, ac2.entryMap.size());
CHECK_EQ(ac2.entryMap.count("do"), 1);
CHECK_EQ(ac2.entryMap.count("and"), 1);
CHECK_EQ(ac2.entryMap.count("or"), 1);
CHECK_EQ(ac2.context, AutocompleteContext::Keyword);
check(R"(
while true do @1
)");
auto ac3 = autocomplete('1');
CHECK_EQ(ac3.entryMap.count("end"), 1);
CHECK_EQ(ac3.context, AutocompleteContext::Statement);
check(R"(
while true d@1
)");
auto ac4 = autocomplete('1');
CHECK_EQ(3, ac4.entryMap.size());
CHECK_EQ(ac4.entryMap.count("do"), 1);
CHECK_EQ(ac4.entryMap.count("and"), 1);
CHECK_EQ(ac4.entryMap.count("or"), 1);
CHECK_EQ(ac4.context, AutocompleteContext::Keyword);
check(R"(
while t@1
)");
auto ac5 = autocomplete('1');
CHECK_EQ(ac5.entryMap.count("do"), 0);
CHECK_EQ(ac5.entryMap.count("true"), 1);
CHECK_EQ(ac5.entryMap.count("false"), 1);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_if_middle_keywords")
{
check(R"(
if @1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.count("then"), 0);
CHECK_EQ(ac1.entryMap.count("function"),
1); // FIXME: This is kind of dumb. It is technically syntactically valid but you can never do anything interesting with this.
CHECK_EQ(ac1.entryMap.count("table"), 1);
CHECK_EQ(ac1.entryMap.count("else"), 0);
CHECK_EQ(ac1.entryMap.count("elseif"), 0);
CHECK_EQ(ac1.entryMap.count("end"), 0);
CHECK_EQ(ac1.context, AutocompleteContext::Expression);
check(R"(
if x @1
)");
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("then"), 1);
CHECK_EQ(ac2.entryMap.count("function"), 0);
CHECK_EQ(ac2.entryMap.count("else"), 0);
CHECK_EQ(ac2.entryMap.count("elseif"), 0);
CHECK_EQ(ac2.entryMap.count("end"), 0);
CHECK_EQ(ac2.context, AutocompleteContext::Keyword);
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 19:26:13 +00:00
check(R"(
if x t@1
)");
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 19:26:13 +00:00
auto ac3 = autocomplete('1');
CHECK_EQ(3, ac3.entryMap.size());
CHECK_EQ(ac3.entryMap.count("then"), 1);
CHECK_EQ(ac3.entryMap.count("and"), 1);
CHECK_EQ(ac3.entryMap.count("or"), 1);
CHECK_EQ(ac3.context, AutocompleteContext::Keyword);
check(R"(
if x then
@1
end
)");
auto ac4 = autocomplete('1');
CHECK_EQ(ac4.entryMap.count("then"), 0);
CHECK_EQ(ac4.entryMap.count("else"), 1);
CHECK_EQ(ac4.entryMap.count("function"), 1);
CHECK_EQ(ac4.entryMap.count("elseif"), 1);
CHECK_EQ(ac4.entryMap.count("end"), 0);
CHECK_EQ(ac4.context, AutocompleteContext::Statement);
check(R"(
if x then
t@1
end
)");
auto ac4a = autocomplete('1');
CHECK_EQ(ac4a.entryMap.count("then"), 0);
CHECK_EQ(ac4a.entryMap.count("table"), 1);
CHECK_EQ(ac4a.entryMap.count("else"), 1);
CHECK_EQ(ac4a.entryMap.count("elseif"), 1);
CHECK_EQ(ac4a.context, AutocompleteContext::Statement);
check(R"(
if x then
@1
elseif x then
end
)");
auto ac5 = autocomplete('1');
CHECK_EQ(ac5.entryMap.count("then"), 0);
CHECK_EQ(ac5.entryMap.count("function"), 1);
CHECK_EQ(ac5.entryMap.count("else"), 0);
CHECK_EQ(ac5.entryMap.count("elseif"), 0);
CHECK_EQ(ac5.entryMap.count("end"), 0);
CHECK_EQ(ac5.context, AutocompleteContext::Statement);
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 19:26:13 +00:00
check(R"(
if t@1
)");
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 19:26:13 +00:00
auto ac6 = autocomplete('1');
CHECK_EQ(ac6.entryMap.count("true"), 1);
CHECK_EQ(ac6.entryMap.count("false"), 1);
CHECK_EQ(ac6.entryMap.count("then"), 0);
CHECK_EQ(ac6.entryMap.count("function"), 1);
CHECK_EQ(ac6.entryMap.count("else"), 0);
CHECK_EQ(ac6.entryMap.count("elseif"), 0);
CHECK_EQ(ac6.entryMap.count("end"), 0);
CHECK_EQ(ac6.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_until_in_repeat")
{
check(R"(
repeat @1
)");
auto ac = autocomplete('1');
CHECK_EQ(ac.entryMap.count("table"), 1);
CHECK_EQ(ac.entryMap.count("until"), 1);
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_until_expression")
{
check(R"(
repeat
until @1
)");
auto ac = autocomplete('1');
CHECK_EQ(ac.entryMap.count("table"), 1);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "local_names")
{
check(R"(
local ab@1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.size(), 1);
CHECK_EQ(ac1.entryMap.count("function"), 1);
CHECK_EQ(ac1.context, AutocompleteContext::Unknown);
check(R"(
local ab, cd@1
)");
auto ac2 = autocomplete('1');
CHECK(ac2.entryMap.empty());
CHECK_EQ(ac2.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_end_with_fn_exprs")
{
check(R"(
local function f() @1
)");
auto ac = autocomplete('1');
CHECK_EQ(ac.entryMap.count("end"), 1);
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_end_with_lambda")
{
check(R"(
local a = function() local bar = foo en@1
)");
auto ac = autocomplete('1');
CHECK_EQ(ac.entryMap.count("end"), 1);
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "stop_at_first_stat_when_recommending_keywords")
{
check(R"(
repeat
for x @1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.count("in"), 1);
CHECK_EQ(ac1.entryMap.count("until"), 0);
CHECK_EQ(ac1.context, AutocompleteContext::Keyword);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_repeat_middle_keyword")
{
check(R"(
repeat @1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.count("do"), 1);
CHECK_EQ(ac1.entryMap.count("function"), 1);
CHECK_EQ(ac1.entryMap.count("until"), 1);
check(R"(
repeat f f@1
)");
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("function"), 1);
CHECK_EQ(ac2.entryMap.count("until"), 1);
check(R"(
repeat
u@1
until
)");
auto ac3 = autocomplete('1');
CHECK_EQ(ac3.entryMap.count("until"), 0);
}
TEST_CASE_FIXTURE(ACFixture, "local_function")
{
check(R"(
local f@1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.size(), 1);
CHECK_EQ(ac1.entryMap.count("function"), 1);
check(R"(
local f@1, cd
)");
auto ac2 = autocomplete('1');
CHECK(ac2.entryMap.empty());
}
TEST_CASE_FIXTURE(ACFixture, "local_function")
{
check(R"(
local function @1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
check(R"(
local function @1s@2
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
ac = autocomplete('2');
CHECK(ac.entryMap.empty());
check(R"(
local function @1()@2
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
ac = autocomplete('2');
CHECK(ac.entryMap.count("end"));
check(R"(
local function something@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
check(R"(
local tbl = {}
function tbl.something@1() end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
}
TEST_CASE_FIXTURE(ACFixture, "local_function_params")
{
check(R"(
local function @1a@2bc(@3d@4ef)@5 @6
)");
CHECK(autocomplete('1').entryMap.empty());
CHECK(autocomplete('2').entryMap.empty());
CHECK(autocomplete('3').entryMap.empty());
CHECK(autocomplete('4').entryMap.empty());
CHECK(!autocomplete('5').entryMap.empty());
CHECK(!autocomplete('6').entryMap.empty());
check(R"(
local function abc(def)
@1 end
)");
for (unsigned int i = 23; i < 31; ++i)
{
CHECK(autocomplete(1, i).entryMap.empty());
}
CHECK(!autocomplete(1, 32).entryMap.empty());
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("abc"), 1);
CHECK_EQ(ac2.entryMap.count("def"), 1);
CHECK_EQ(ac2.context, AutocompleteContext::Statement);
check(R"(
local function abc(def, ghi@1)
end
)");
auto ac3 = autocomplete('1');
CHECK(ac3.entryMap.empty());
CHECK_EQ(ac3.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "global_function_params")
{
check(R"(
function abc(def)
)");
for (unsigned int i = 17; i < 25; ++i)
{
CHECK(autocomplete(1, i).entryMap.empty());
}
CHECK(!autocomplete(1, 26).entryMap.empty());
check(R"(
function abc(def)
end
)");
for (unsigned int i = 17; i < 25; ++i)
{
CHECK(autocomplete(1, i).entryMap.empty());
}
CHECK(!autocomplete(1, 26).entryMap.empty());
check(R"(
function abc(def)
@1
end
)");
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("abc"), 1);
CHECK_EQ(ac2.entryMap.count("def"), 1);
CHECK_EQ(ac2.context, AutocompleteContext::Statement);
check(R"(
function abc(def, ghi@1)
end
)");
auto ac3 = autocomplete('1');
CHECK(ac3.entryMap.empty());
CHECK_EQ(ac3.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "arguments_to_global_lambda")
{
check(R"(
abc = function(def, ghi@1)
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
}
TEST_CASE_FIXTURE(ACFixture, "function_expr_params")
{
check(R"(
abc = function(def) @1
)");
for (unsigned int i = 20; i < 27; ++i)
{
CHECK(autocomplete(1, i).entryMap.empty());
}
CHECK(!autocomplete('1').entryMap.empty());
check(R"(
abc = function(def) @1
end
)");
for (unsigned int i = 20; i < 27; ++i)
{
CHECK(autocomplete(1, i).entryMap.empty());
}
CHECK(!autocomplete('1').entryMap.empty());
check(R"(
abc = function(def)
@1
end
)");
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("def"), 1);
CHECK_EQ(ac2.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "local_initializer")
{
check(R"(
local a = t@1
)");
auto ac = autocomplete('1');
CHECK_EQ(ac.entryMap.count("table"), 1);
CHECK_EQ(ac.entryMap.count("true"), 1);
}
TEST_CASE_FIXTURE(ACFixture, "local_initializer_2")
{
check(R"(
local a=@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("table"));
}
TEST_CASE_FIXTURE(ACFixture, "get_member_completions")
{
check(R"(
local a = 12.@13
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
}
TEST_CASE_FIXTURE(ACFixture, "sometimes_the_metatable_is_an_error")
{
check(R"(
local T = {}
T.__index = T
function T.new()
return setmetatable({x=6}, X) -- oops!
end
local t = T.new()
t. @1
)");
autocomplete('1');
// Don't crash!
}
TEST_CASE_FIXTURE(ACFixture, "local_types_builtin")
{
check(R"(
local a: n@1
local b: string = "don't trip"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "private_types")
{
check(R"(
do
type num = number
local a: n@1u
local b: nu@2m
end
local a: nu@3
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("num"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('2');
CHECK(ac.entryMap.count("num"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('3');
CHECK(!ac.entryMap.count("num"));
CHECK(ac.entryMap.count("number"));
}
TEST_CASE_FIXTURE(ACFixture, "type_scoping_easy")
{
check(R"(
type Table = { a: number, b: number }
do
type Table = { x: string, y: string }
local a: T@1
end
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("Table"));
REQUIRE(ac.entryMap["Table"].type);
const TableType* tv = get<TableType>(follow(*ac.entryMap["Table"].type));
REQUIRE(tv);
CHECK(tv->props.count("x"));
}
TEST_CASE_FIXTURE(ACFixture, "modules_with_types")
{
fileResolver.source["Module/A"] = R"(
export type A = { x: number, y: number }
export type B = { z: number, w: number }
return {}
)";
LUAU_REQUIRE_NO_ERRORS(frontend.check("Module/A"));
fileResolver.source["Module/B"] = R"(
local aaa = require(script.Parent.A)
local a: aa
)";
frontend.check("Module/B");
auto ac = Luau::autocomplete(frontend, "Module/B", Position{2, 11}, nullCallback);
CHECK(ac.entryMap.count("aaa"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "module_type_members")
{
fileResolver.source["Module/A"] = R"(
export type A = { x: number, y: number }
export type B = { z: number, w: number }
return {}
)";
LUAU_REQUIRE_NO_ERRORS(frontend.check("Module/A"));
fileResolver.source["Module/B"] = R"(
local aaa = require(script.Parent.A)
local a: aaa.
)";
frontend.check("Module/B");
auto ac = Luau::autocomplete(frontend, "Module/B", Position{2, 13}, nullCallback);
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("A"));
CHECK(ac.entryMap.count("B"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "argument_types")
{
check(R"(
local function f(a: n@1
local b: string = "don't trip"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "return_types")
{
check(R"(
local function f(a: number): n@1
local b: string = "don't trip"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "as_types")
{
check(R"(
local a: any = 5
local b: number = (a :: n@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "function_type_types")
{
check(R"(
local a: (n@1
local b: (number, (n@2
local c: (number, (number) -> n@3
local d: (number, (number) -> (number, n@4
local e: (n: n@5
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('2');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('3');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('4');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('5');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
}
TEST_CASE_FIXTURE(ACFixture, "generic_types")
{
check(R"(
function f<Tee, Use>(a: T@1
local b: string = "don't trip"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("Tee"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_suggestion_in_argument")
{
// local
check(R"(
local function target(a: number, b: string) return a + #b end
local one = 4
local two = "hello"
return target(o@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::None);
check(R"(
local function target(a: number, b: string) return a + #b end
local one = 4
local two = "hello"
return target(one, t@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("two"));
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::None);
// member
check(R"(
local function target(a: number, b: string) return a + #b end
local a = { one = 4, two = "hello" }
return target(a.@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::None);
check(R"(
local function target(a: number, b: string) return a + #b end
local a = { one = 4, two = "hello" }
return target(a.one, a.@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("two"));
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::None);
// union match
check(R"(
local function target(a: string?) return #b end
local a = { one = 4, two = "hello" }
return target(a.@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("two"));
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::None);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_suggestion_in_table")
{
check(R"(
type Foo = { a: number, b: string }
local a = { one = 4, two = "hello" }
local b: Foo = { a = a.@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::None);
CHECK_EQ(ac.context, AutocompleteContext::Property);
check(R"(
type Foo = { a: number, b: string }
local a = { one = 4, two = "hello" }
local b: Foo = { b = a.@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("two"));
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::None);
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_function_return_types")
{
check(R"(
local function target(a: number, b: string) return a + #b end
local function bar1(a: number) return -a end
local function bar2(a: string) return a .. 'x' end
return target(b@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("bar1"));
CHECK(ac.entryMap["bar1"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
CHECK(ac.entryMap["bar2"].typeCorrect == TypeCorrectKind::None);
check(R"(
local function target(a: number, b: string) return a + #b end
local function bar1(a: number) return -a end
local function bar2(a: string) return a .. 'x' end
return target(bar1, b@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("bar2"));
CHECK(ac.entryMap["bar2"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
CHECK(ac.entryMap["bar1"].typeCorrect == TypeCorrectKind::None);
check(R"(
local function target(a: number, b: string) return a + #b end
local function bar1(a: number): (...number) return -a, a end
local function bar2(a: string) return a .. 'x' end
return target(b@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("bar1"));
CHECK(ac.entryMap["bar1"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
CHECK(ac.entryMap["bar2"].typeCorrect == TypeCorrectKind::None);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_local_type_suggestion")
{
check(R"(
local b: s@1 = "str"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function f() return "str" end
local b: s@1 = f()
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: s@1, c: n@2 = "str", 2
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function f() return 1, "str", 3 end
local a: b@1, b: n@2, c: s@3, d: n@4 = false, f()
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("boolean"));
CHECK(ac.entryMap["boolean"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('3');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('4');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function f(): ...number return 1, 2, 3 end
local a: boolean, b: n@1 = false, f()
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_function_type_suggestion")
{
check(R"(
local b: (n@1) -> number = function(a: number, b: string) return a + #b end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: (number, s@1 = function(a: number, b: string) return a + #b end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: (number, string) -> b@1 = function(a: number, b: string): boolean return a + #b == 0 end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("boolean"));
CHECK(ac.entryMap["boolean"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: (number, ...s@1) = function(a: number, ...: string) return a end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: (number) -> ...s@1 = function(a: number): ...string return "a", "b", "c" end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_full_type_suggestion")
{
check(R"(
local b:@1 @2= "str"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: @1= function(a: number) return -a end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("(number) -> number"));
CHECK(ac.entryMap["(number) -> number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_argument_type_suggestion")
{
check(R"(
local function target(a: number, b: string) return a + #b end
local function d(a: n@1, b)
return target(a, b)
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(a: number, b: string) return a + #b end
local function d(a, b: s@1)
return target(a, b)
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(a: number, b: string) return a + #b end
local function d(a:@1 @2, b)
return target(a, b)
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(a: number, b: string) return a + #b end
local function d(a, b: @1)@2: number
return target(a, b)
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::None);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_argument_type_suggestion")
{
check(R"(
local function target(callback: (a: number, b: string) -> number) return callback(4, "hello") end
local x = target(function(a: @1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: (a: number, b: string) -> number) return callback(4, "hello") end
local x = target(function(a: n@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: (a: number, b: string) -> number) return callback(4, "hello") end
local x = target(function(a: n@1, b: @2)
return a + #b
end)
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: (...number) -> number) return callback(1, 2, 3) end
local x = target(function(a: n@1)
return a
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_argument_type_pack_suggestion")
{
check(R"(
local function target(callback: (...number) -> number) return callback(1, 2, 3) end
local x = target(function(...:n@1)
return a
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: (...number) -> number) return callback(1, 2, 3) end
local x = target(function(a:number, b:number, ...:@1)
return a + b
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_return_type_suggestion")
{
check(R"(
local function target(callback: () -> number) return callback() end
local x = target(function(): n@1
return 1
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: () -> (number, number)) return callback() end
local x = target(function(): (number, n@1
return 1, 2
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_return_type_pack_suggestion")
{
check(R"(
local function target(callback: () -> ...number) return callback() end
local x = target(function(): ...n@1
return 1, 2, 3
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: () -> ...number) return callback() end
local x = target(function(): (number, number, ...n@1
return 1, 2, 3
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_argument_type_suggestion_optional")
{
check(R"(
local function target(callback: nil | (a: number, b: string) -> number) return callback(4, "hello") end
local x = target(function(a: @1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_argument_type_suggestion_self")
{
check(R"(
local t = {}
t.x = 5
function t:target(callback: (a: number, b: string) -> number) return callback(self.x, "hello") end
local x = t:target(function(a: @1, b:@2 ) end)
local y = t.target(t, function(a: number, b: @3) end)
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('3');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "do_not_suggest_internal_module_type")
{
fileResolver.source["Module/A"] = R"(
type done = { x: number, y: number }
local function a(a: (done) -> number) return a({x=1, y=2}) end
local function b(a: ((done) -> number) -> number) return a(function(done) return 1 end) end
return {a = a, b = b}
)";
LUAU_REQUIRE_NO_ERRORS(frontend.check("Module/A"));
fileResolver.source["Module/B"] = R"(
local ex = require(script.Parent.A)
ex.a(function(x:
)";
frontend.check("Module/B");
auto ac = Luau::autocomplete(frontend, "Module/B", Position{2, 16}, nullCallback);
CHECK(!ac.entryMap.count("done"));
fileResolver.source["Module/C"] = R"(
local ex = require(script.Parent.A)
ex.b(function(x:
)";
frontend.check("Module/C");
ac = Luau::autocomplete(frontend, "Module/C", Position{2, 16}, nullCallback);
CHECK(!ac.entryMap.count("(done) -> number"));
}
2022-05-13 20:36:37 +01:00
TEST_CASE_FIXTURE(ACBuiltinsFixture, "suggest_external_module_type")
{
fileResolver.source["Module/A"] = R"(
export type done = { x: number, y: number }
local function a(a: (done) -> number) return a({x=1, y=2}) end
local function b(a: ((done) -> number) -> number) return a(function(done) return 1 end) end
return {a = a, b = b}
)";
LUAU_REQUIRE_NO_ERRORS(frontend.check("Module/A"));
fileResolver.source["Module/B"] = R"(
local ex = require(script.Parent.A)
ex.a(function(x:
)";
frontend.check("Module/B");
auto ac = Luau::autocomplete(frontend, "Module/B", Position{2, 16}, nullCallback);
CHECK(!ac.entryMap.count("done"));
CHECK(ac.entryMap.count("ex.done"));
CHECK(ac.entryMap["ex.done"].typeCorrect == TypeCorrectKind::Correct);
fileResolver.source["Module/C"] = R"(
local ex = require(script.Parent.A)
ex.b(function(x:
)";
frontend.check("Module/C");
ac = Luau::autocomplete(frontend, "Module/C", Position{2, 16}, nullCallback);
CHECK(!ac.entryMap.count("(done) -> number"));
CHECK(ac.entryMap.count("(ex.done) -> number"));
CHECK(ac.entryMap["(ex.done) -> number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "do_not_suggest_synthetic_table_name")
{
check(R"(
local foo = { a = 1, b = 2 }
local bar: @1= foo
)");
auto ac = autocomplete('1');
CHECK(!ac.entryMap.count("foo"));
}
2022-03-11 16:55:02 +00:00
TEST_CASE_FIXTURE(ACFixture, "type_correct_function_no_parenthesis")
{
2022-03-11 16:55:02 +00:00
check(R"(
local function target(a: (number) -> number) return a(4) end
local function bar1(a: number) return -a end
local function bar2(a: string) return a .. 'x' end
return target(b@1
)");
2022-03-11 16:55:02 +00:00
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("bar1"));
CHECK(ac.entryMap["bar1"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["bar1"].parens == ParenthesesRecommendation::None);
CHECK(ac.entryMap["bar2"].typeCorrect == TypeCorrectKind::None);
}
TEST_CASE_FIXTURE(ACFixture, "function_in_assignment_has_parentheses")
{
check(R"(
local function bar(a: number) return -a end
local abc = b@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("bar"));
CHECK(ac.entryMap["bar"].parens == ParenthesesRecommendation::CursorInside);
}
TEST_CASE_FIXTURE(ACFixture, "function_result_passed_to_function_has_parentheses")
{
check(R"(
local function foo() return 1 end
local function bar(a: number) return -a end
2022-08-04 23:35:33 +01:00
local abc = bar(@1)
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("foo"));
CHECK(ac.entryMap["foo"].parens == ParenthesesRecommendation::CursorAfter);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_sealed_table")
{
check(R"(
local function f(a: { x: number, y: number }) return a.x + a.y end
local fp: @1= f
)");
auto ac = autocomplete('1');
2022-06-17 02:05:14 +01:00
REQUIRE_EQ("({| x: number, y: number |}) -> number", toString(requireType("f")));
CHECK(ac.entryMap.count("({ x: number, y: number }) -> number"));
}
2022-03-11 16:55:02 +00:00
TEST_CASE_FIXTURE(ACFixture, "type_correct_keywords")
{
2022-03-11 16:55:02 +00:00
check(R"(
local function a(x: boolean) end
local function b(x: number?) end
local function c(x: (number) -> string) end
local function d(x: ((number) -> string)?) end
local function e(x: ((number) -> string) & ((boolean) -> number)) end
local tru = {}
local ni = false
local ac = a(t@1)
local bc = b(n@2)
local cc = c(f@3)
local dc = d(f@4)
local ec = e(f@5)
)");
2022-03-11 16:55:02 +00:00
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("tru"));
CHECK(ac.entryMap["tru"].typeCorrect == TypeCorrectKind::None);
CHECK(ac.entryMap["true"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["false"].typeCorrect == TypeCorrectKind::Correct);
2022-03-11 16:55:02 +00:00
ac = autocomplete('2');
CHECK(ac.entryMap.count("ni"));
CHECK(ac.entryMap["ni"].typeCorrect == TypeCorrectKind::None);
CHECK(ac.entryMap["nil"].typeCorrect == TypeCorrectKind::Correct);
2022-03-11 16:55:02 +00:00
ac = autocomplete('3');
CHECK(ac.entryMap.count("false"));
CHECK(ac.entryMap["false"].typeCorrect == TypeCorrectKind::None);
CHECK(ac.entryMap["function"].typeCorrect == TypeCorrectKind::Correct);
2022-03-11 16:55:02 +00:00
ac = autocomplete('4');
CHECK(ac.entryMap["function"].typeCorrect == TypeCorrectKind::Correct);
2022-03-11 16:55:02 +00:00
ac = autocomplete('5');
CHECK(ac.entryMap["function"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_suggestion_for_overloads")
{
check(R"(
local target: ((number) -> string) & ((string) -> number))
local one = 4
local two = "hello"
return target(o@1)
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local target: ((number) -> string) & ((number) -> number))
local one = 4
local two = "hello"
return target(o@1)
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::None);
check(R"(
local target: ((number, number) -> string) & ((string) -> number))
local one = 4
local two = "hello"
return target(1, o@1)
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::None);
}
TEST_CASE_FIXTURE(ACFixture, "optional_members")
{
check(R"(
local a = { x = 2, y = 3 }
type A = typeof(a)
local b: A? = a
return b.@1
)");
auto ac = autocomplete('1');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
check(R"(
local a = { x = 2, y = 3 }
type A = typeof(a)
local b: nil | A = a
return b.@1
)");
ac = autocomplete('1');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
check(R"(
local b: nil | nil
return b.@1
)");
ac = autocomplete('1');
CHECK_EQ(0, ac.entryMap.size());
}
TEST_CASE_FIXTURE(ACFixture, "no_function_name_suggestions")
{
check(R"(
function na@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
check(R"(
local function @1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
check(R"(
local function na@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
}
TEST_CASE_FIXTURE(ACFixture, "skip_current_local")
{
check(R"(
local other = 1
local name = na@1
)");
auto ac = autocomplete('1');
CHECK(!ac.entryMap.count("name"));
CHECK(ac.entryMap.count("other"));
check(R"(
local other = 1
local name, test = na@1
)");
ac = autocomplete('1');
CHECK(!ac.entryMap.count("name"));
CHECK(!ac.entryMap.count("test"));
CHECK(ac.entryMap.count("other"));
}
TEST_CASE_FIXTURE(ACFixture, "keyword_members")
{
check(R"(
local a = { done = 1, forever = 2 }
local b = a.do@1
local c = a.for@2
local d = a.@3
do
end
)");
auto ac = autocomplete('1');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("done"));
CHECK(ac.entryMap.count("forever"));
ac = autocomplete('2');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("done"));
CHECK(ac.entryMap.count("forever"));
ac = autocomplete('3');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("done"));
CHECK(ac.entryMap.count("forever"));
}
TEST_CASE_FIXTURE(ACFixture, "keyword_methods")
{
check(R"(
local a = {}
function a:done() end
local b = a:do@1
)");
auto ac = autocomplete('1');
CHECK_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("done"));
}
TEST_CASE_FIXTURE(ACFixture, "keyword_types")
{
fileResolver.source["Module/A"] = R"(
export type done = { x: number, y: number }
export type other = { z: number, w: number }
return {}
)";
LUAU_REQUIRE_NO_ERRORS(frontend.check("Module/A"));
fileResolver.source["Module/B"] = R"(
local aaa = require(script.Parent.A)
local a: aaa.do
)";
frontend.check("Module/B");
auto ac = Luau::autocomplete(frontend, "Module/B", Position{2, 15}, nullCallback);
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("done"));
CHECK(ac.entryMap.count("other"));
}
2022-07-14 23:52:26 +01:00
TEST_CASE_FIXTURE(ACFixture, "comments")
{
2022-07-14 23:52:26 +01:00
fileResolver.source["Comments"] = "--!str";
2022-07-14 23:52:26 +01:00
auto ac = Luau::autocomplete(frontend, "Comments", Position{0, 6}, nullCallback);
CHECK_EQ(0, ac.entryMap.size());
}
2022-05-13 20:36:37 +01:00
TEST_CASE_FIXTURE(ACBuiltinsFixture, "autocompleteProp_index_function_metamethod_is_variadic")
{
2022-07-14 23:52:26 +01:00
fileResolver.source["Module/A"] = R"(
type Foo = {x: number}
local t = {}
setmetatable(t, {
__index = function(index: string): ...Foo
return {x = 1}, {x = 2}
end
})
local a = t. -- Line 9
-- | Column 20
)";
2022-07-14 23:52:26 +01:00
auto ac = Luau::autocomplete(frontend, "Module/A", Position{9, 20}, nullCallback);
REQUIRE_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("x"));
}
TEST_CASE_FIXTURE(ACFixture, "if_then_else_full_keywords")
{
check(R"(
local thenceforth = false
local elsewhere = false
local doover = false
local endurance = true
if 1 then@1
else@2
end
while false do@3
end
repeat@4
until
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.size() == 1);
CHECK(ac.entryMap.count("then"));
ac = autocomplete('2');
CHECK(ac.entryMap.count("else"));
CHECK(ac.entryMap.count("elseif"));
ac = autocomplete('3');
CHECK(ac.entryMap.count("do"));
ac = autocomplete('4');
CHECK(ac.entryMap.count("do"));
// FIXME: ideally we want to handle start and end of all statements as well
}
TEST_CASE_FIXTURE(ACFixture, "if_then_else_elseif_completions")
{
check(R"(
local elsewhere = false
if true then
return 1
el@1
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("else"));
CHECK(ac.entryMap.count("elseif"));
CHECK(ac.entryMap.count("elsewhere") == 0);
check(R"(
local elsewhere = false
if true then
return 1
else
return 2
el@1
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK(ac.entryMap.count("elsewhere"));
check(R"(
local elsewhere = false
if true then
print("1")
elif true then
print("2")
el@1
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("else"));
CHECK(ac.entryMap.count("elseif"));
CHECK(ac.entryMap.count("elsewhere"));
}
2022-07-14 23:52:26 +01:00
TEST_CASE_FIXTURE(ACFixture, "not_the_var_we_are_defining")
{
2022-07-14 23:52:26 +01:00
fileResolver.source["Module/A"] = "abc,de";
2022-07-14 23:52:26 +01:00
auto ac = Luau::autocomplete(frontend, "Module/A", Position{0, 6}, nullCallback);
CHECK(!ac.entryMap.count("de"));
}
2022-07-14 23:52:26 +01:00
TEST_CASE_FIXTURE(ACFixture, "recursive_function_global")
{
2022-07-14 23:52:26 +01:00
fileResolver.source["global"] = R"(function abc()
end
)";
2022-07-14 23:52:26 +01:00
auto ac = Luau::autocomplete(frontend, "global", Position{1, 0}, nullCallback);
CHECK(ac.entryMap.count("abc"));
}
2022-07-14 23:52:26 +01:00
TEST_CASE_FIXTURE(ACFixture, "recursive_function_local")
{
fileResolver.source["local"] = R"(local function abc()
end
)";
2022-07-14 23:52:26 +01:00
auto ac = Luau::autocomplete(frontend, "local", Position{1, 0}, nullCallback);
CHECK(ac.entryMap.count("abc"));
}
TEST_CASE_FIXTURE(ACFixture, "suggest_table_keys")
{
check(R"(
type Test = { first: number, second: number }
local t: Test = { f@1 }
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Intersection
check(R"(
type Test = { first: number } & { second: number }
local t: Test = { f@1 }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Union
check(R"(
type Test = { first: number, second: number } | { second: number, third: number }
local t: Test = { s@1 }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("second"));
CHECK(!ac.entryMap.count("first"));
CHECK(!ac.entryMap.count("third"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// No parenthesis suggestion
check(R"(
type Test = { first: (number) -> number, second: number }
local t: Test = { f@1 }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap["first"].parens == ParenthesesRecommendation::None);
CHECK_EQ(ac.context, AutocompleteContext::Property);
// When key is changed
check(R"(
type Test = { first: number, second: number }
local t: Test = { f@1 = 2 }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Alternative key syntax
check(R"(
type Test = { first: number, second: number }
local t: Test = { ["f@1"] }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Not an alternative key syntax
check(R"(
type Test = { first: number, second: number }
local t: Test = { "f@1" }
)");
ac = autocomplete('1');
CHECK(!ac.entryMap.count("first"));
CHECK(!ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::String);
// Skip keys that are already defined
check(R"(
type Test = { first: number, second: number }
local t: Test = { first = 2, s@1 }
)");
ac = autocomplete('1');
CHECK(!ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Don't skip active key
check(R"(
type Test = { first: number, second: number }
local t: Test = { first@1 }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Inference after first key
check(R"(
local t = {
{ first = 5, second = 10 },
{ f@1 }
}
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
check(R"(
local t = {
[2] = { first = 5, second = 10 },
[5] = { f@1 }
}
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
2022-04-07 22:29:01 +01:00
TEST_CASE_FIXTURE(ACFixture, "autocomplete_documentation_symbols")
{
2022-03-11 16:55:02 +00:00
loadDefinition(R"(
declare y: {
x: number,
}
)");
2022-04-07 22:29:01 +01:00
check(R"(
local a = y.@1
)");
2022-04-07 22:29:01 +01:00
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("x"));
CHECK_EQ(ac.entryMap["x"].documentationSymbol, "@test/global/y.x");
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_ifelse_expressions")
{
2022-02-04 16:45:57 +00:00
check(R"(
local temp = false
local even = true;
local a = true
a = if t@1emp then t
a = if temp t@2
a = if temp then e@3
a = if temp then even e@4
a = if temp then even elseif t@5
a = if temp then even elseif true t@6
a = if temp then even elseif true then t@7
a = if temp then even elseif true then temp e@8
a = if temp then even elseif true then temp else e@9
)");
2022-02-04 16:45:57 +00:00
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("temp"));
CHECK(ac.entryMap.count("true"));
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
2022-02-04 16:45:57 +00:00
ac = autocomplete('2');
CHECK(ac.entryMap.count("temp") == 0);
CHECK(ac.entryMap.count("true") == 0);
CHECK(ac.entryMap.count("then"));
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Keyword);
2022-02-04 16:45:57 +00:00
ac = autocomplete('3');
CHECK(ac.entryMap.count("even"));
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
2022-02-04 16:45:57 +00:00
ac = autocomplete('4');
CHECK(ac.entryMap.count("even") == 0);
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else"));
CHECK(ac.entryMap.count("elseif"));
CHECK_EQ(ac.context, AutocompleteContext::Keyword);
2022-02-04 16:45:57 +00:00
ac = autocomplete('5');
CHECK(ac.entryMap.count("temp"));
CHECK(ac.entryMap.count("true"));
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
2022-02-04 16:45:57 +00:00
ac = autocomplete('6');
CHECK(ac.entryMap.count("temp") == 0);
CHECK(ac.entryMap.count("true") == 0);
CHECK(ac.entryMap.count("then"));
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Keyword);
2022-02-04 16:45:57 +00:00
ac = autocomplete('7');
CHECK(ac.entryMap.count("temp"));
CHECK(ac.entryMap.count("true"));
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
2022-02-04 16:45:57 +00:00
ac = autocomplete('8');
CHECK(ac.entryMap.count("even") == 0);
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else"));
CHECK(ac.entryMap.count("elseif"));
CHECK_EQ(ac.context, AutocompleteContext::Keyword);
2022-02-04 16:45:57 +00:00
ac = autocomplete('9');
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
}
2022-02-18 01:18:01 +00:00
TEST_CASE_FIXTURE(ACFixture, "autocomplete_if_else_regression")
{
check(R"(
local abcdef = 0;
local temp = false
local even = true;
local a
a = if temp then even else@1
a = if temp then even else @2
a = if temp then even else abc@3
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("else") == 0);
ac = autocomplete('2');
CHECK(ac.entryMap.count("else") == 0);
ac = autocomplete('3');
CHECK(ac.entryMap.count("abcdef"));
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_interpolated_string_constant")
{
check(R"(f(`@1`))");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::String);
check(R"(f(`@1 {"a"}`))");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::String);
check(R"(f(`{"a"} @1`))");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::String);
check(R"(f(`{"a"} @1 {"b"}`))");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::String);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_interpolated_string_expression")
{
check(R"(f(`expression = {@1}`))");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("table"));
CHECK_EQ(ac.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_interpolated_string_expression_with_comments")
{
check(R"(f(`expression = {--[[ bla bla bla ]]@1`))");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("table"));
CHECK_EQ(ac.context, AutocompleteContext::Expression);
check(R"(f(`expression = {@1 --[[ bla bla bla ]]`))");
ac = autocomplete('1');
CHECK(!ac.entryMap.empty());
CHECK(ac.entryMap.count("table"));
CHECK_EQ(ac.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_interpolated_string_as_singleton")
{
check(R"(
--!strict
local function f(a: "cat" | "dog") end
f(`@1`)
f(`uhhh{'try'}@2`)
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("cat"));
CHECK_EQ(ac.context, AutocompleteContext::String);
ac = autocomplete('2');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::String);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_explicit_type_pack")
{
check(R"(
type A<T...> = () -> T...
local a: A<(number, s@1>
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap.count("string"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_first_function_arg_expected_type")
{
check(R"(
local function foo1() return 1 end
local function foo2() return "1" end
local function bar0() return "got" .. a end
local function bar1(a: number) return "got " .. a end
local function bar2(a: number, b: string) return "got " .. a .. b end
local t = {}
function t:bar1(a: number) return "got " .. a end
local r1 = bar0(@1)
local r2 = bar1(@2)
local r3 = bar2(@3)
local r4 = t:bar1(@4)
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("foo1"));
CHECK(ac.entryMap["foo1"].typeCorrect == TypeCorrectKind::None);
REQUIRE(ac.entryMap.count("foo2"));
CHECK(ac.entryMap["foo2"].typeCorrect == TypeCorrectKind::None);
ac = autocomplete('2');
REQUIRE(ac.entryMap.count("foo1"));
CHECK(ac.entryMap["foo1"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
REQUIRE(ac.entryMap.count("foo2"));
CHECK(ac.entryMap["foo2"].typeCorrect == TypeCorrectKind::None);
ac = autocomplete('3');
REQUIRE(ac.entryMap.count("foo1"));
CHECK(ac.entryMap["foo1"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
REQUIRE(ac.entryMap.count("foo2"));
CHECK(ac.entryMap["foo2"].typeCorrect == TypeCorrectKind::None);
ac = autocomplete('4');
REQUIRE(ac.entryMap.count("foo1"));
CHECK(ac.entryMap["foo1"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
REQUIRE(ac.entryMap.count("foo2"));
CHECK(ac.entryMap["foo2"].typeCorrect == TypeCorrectKind::None);
}
2022-01-14 16:20:09 +00:00
TEST_CASE_FIXTURE(ACFixture, "autocomplete_default_type_parameters")
{
check(R"(
type A<T = @1> = () -> T
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap.count("string"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
2022-01-14 16:20:09 +00:00
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_default_type_pack_parameters")
{
check(R"(
type A<T... = ...@1> = () -> T
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap.count("string"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
2022-01-14 16:20:09 +00:00
}
2022-05-13 20:36:37 +01:00
TEST_CASE_FIXTURE(ACBuiltinsFixture, "autocomplete_oop_implicit_self")
2022-01-14 16:20:09 +00:00
{
check(R"(
--!strict
local Class = {}
Class.__index = Class
type Class = typeof(setmetatable({} :: { x: number }, Class))
function Class.new(x: number): Class
2022-05-13 20:36:37 +01:00
return setmetatable({x = x}, Class)
2022-01-14 16:20:09 +00:00
end
function Class.getx(self: Class)
2022-05-13 20:36:37 +01:00
return self.x
2022-01-14 16:20:09 +00:00
end
function test()
2022-05-13 20:36:37 +01:00
local c = Class.new(42)
local n = c:@1
print(n)
2022-01-14 16:20:09 +00:00
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("getx"));
}
2022-05-13 20:36:37 +01:00
TEST_CASE_FIXTURE(ACBuiltinsFixture, "autocomplete_on_string_singletons")
{
check(R"(
--!strict
local foo: "hello" | "bye" = "hello"
foo:@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("format"));
}
2022-04-07 22:29:01 +01:00
TEST_CASE_FIXTURE(ACFixture, "autocomplete_string_singletons")
{
check(R"(
type tag = "cat" | "dog"
local function f(a: tag) end
f("@1")
f(@2)
local x: tag = "@3"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("cat"));
CHECK(ac.entryMap.count("dog"));
CHECK_EQ(ac.context, AutocompleteContext::String);
2022-04-07 22:29:01 +01:00
ac = autocomplete('2');
CHECK(ac.entryMap.count("\"cat\""));
CHECK(ac.entryMap.count("\"dog\""));
CHECK_EQ(ac.context, AutocompleteContext::Expression);
2022-04-07 22:29:01 +01:00
ac = autocomplete('3');
CHECK(ac.entryMap.count("cat"));
CHECK(ac.entryMap.count("dog"));
CHECK_EQ(ac.context, AutocompleteContext::String);
2022-04-07 22:29:01 +01:00
check(R"(
type tagged = {tag:"cat", fieldx:number} | {tag:"dog", fieldy:number}
local x: tagged = {tag="@4"}
)");
ac = autocomplete('4');
CHECK(ac.entryMap.count("cat"));
CHECK(ac.entryMap.count("dog"));
CHECK_EQ(ac.context, AutocompleteContext::String);
2022-04-07 22:29:01 +01:00
}
TEST_CASE_FIXTURE(ACFixture, "string_singleton_as_table_key")
{
ScopedFastFlag sff{"LuauCompleteTableKeysBetter", true};
check(R"(
type Direction = "up" | "down"
local a: {[Direction]: boolean} = {[@1] = true}
local b: {[Direction]: boolean} = {["@2"] = true}
local c: {[Direction]: boolean} = {u@3 = true}
local d: {[Direction]: boolean} = {[u@4] = true}
local e: {[Direction]: boolean} = {[@5]}
local f: {[Direction]: boolean} = {["@6"]}
local g: {[Direction]: boolean} = {u@7}
local h: {[Direction]: boolean} = {[u@8]}
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("\"up\""));
CHECK(ac.entryMap.count("\"down\""));
ac = autocomplete('2');
CHECK(ac.entryMap.count("up"));
CHECK(ac.entryMap.count("down"));
ac = autocomplete('3');
CHECK(ac.entryMap.count("up"));
CHECK(ac.entryMap.count("down"));
ac = autocomplete('4');
CHECK(!ac.entryMap.count("up"));
CHECK(!ac.entryMap.count("down"));
CHECK(ac.entryMap.count("\"up\""));
CHECK(ac.entryMap.count("\"down\""));
ac = autocomplete('5');
CHECK(ac.entryMap.count("\"up\""));
CHECK(ac.entryMap.count("\"down\""));
ac = autocomplete('6');
CHECK(ac.entryMap.count("up"));
CHECK(ac.entryMap.count("down"));
ac = autocomplete('7');
CHECK(ac.entryMap.count("up"));
CHECK(ac.entryMap.count("down"));
ac = autocomplete('8');
CHECK(!ac.entryMap.count("up"));
CHECK(!ac.entryMap.count("down"));
CHECK(ac.entryMap.count("\"up\""));
CHECK(ac.entryMap.count("\"down\""));
}
2022-04-07 22:29:01 +01:00
TEST_CASE_FIXTURE(ACFixture, "autocomplete_string_singleton_equality")
{
check(R"(
type tagged = {tag:"cat", fieldx:number} | {tag:"dog", fieldy:number}
local x: tagged = {tag="cat", fieldx=2}
if x.tag == "@1" or "@2" ~= x.tag then end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("cat"));
CHECK(ac.entryMap.count("dog"));
ac = autocomplete('2');
CHECK(ac.entryMap.count("cat"));
CHECK(ac.entryMap.count("dog"));
// CLI-48823: assignment to x.tag should also autocomplete, but union l-values are not supported yet
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_boolean_singleton")
{
check(R"(
local function f(x: true) end
f(@1)
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("true"));
CHECK(ac.entryMap["true"].typeCorrect == TypeCorrectKind::Correct);
REQUIRE(ac.entryMap.count("false"));
CHECK(ac.entryMap["false"].typeCorrect == TypeCorrectKind::None);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
2022-04-07 22:29:01 +01:00
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_string_singleton_escape")
{
check(R"(
type tag = "strange\t\"cat\"" | 'nice\t"dog"'
local function f(x: tag) end
f(@1)
f("@2")
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("\"strange\\t\\\"cat\\\"\""));
CHECK(ac.entryMap.count("\"nice\\t\\\"dog\\\"\""));
ac = autocomplete('2');
CHECK(ac.entryMap.count("strange\\t\\\"cat\\\""));
CHECK(ac.entryMap.count("nice\\t\\\"dog\\\""));
}
TEST_CASE_FIXTURE(ACFixture, "function_in_assignment_has_parentheses_2")
{
check(R"(
local bar: ((number) -> number) & (number, number) -> number)
local abc = b@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("bar"));
CHECK(ac.entryMap["bar"].parens == ParenthesesRecommendation::CursorInside);
}
2022-03-18 00:46:04 +00:00
TEST_CASE_FIXTURE(ACFixture, "no_incompatible_self_calls_on_class")
{
loadDefinition(R"(
declare class Foo
function one(self): number
two: () -> number
end
)");
{
check(R"(
local t: Foo
t:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("one"));
REQUIRE(ac.entryMap.count("two"));
CHECK(!ac.entryMap["one"].wrongIndexType);
CHECK(ac.entryMap["two"].wrongIndexType);
}
{
check(R"(
local t: Foo
t.@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("one"));
REQUIRE(ac.entryMap.count("two"));
CHECK(ac.entryMap["one"].wrongIndexType);
CHECK(!ac.entryMap["two"].wrongIndexType);
}
}
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
TEST_CASE_FIXTURE(ACFixture, "simple")
{
check(R"(
local t = {}
function t:m() end
t:m()
)");
// auto ac = autocomplete('1');
// REQUIRE(ac.entryMap.count("m"));
// CHECK(!ac.entryMap["m"].wrongIndexType);
}
2022-07-29 05:24:07 +01:00
TEST_CASE_FIXTURE(ACFixture, "do_compatible_self_calls")
{
check(R"(
local t = {}
function t:m() end
t:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("m"));
CHECK(!ac.entryMap["m"].wrongIndexType);
}
2022-03-18 00:46:04 +00:00
TEST_CASE_FIXTURE(ACFixture, "no_incompatible_self_calls")
{
check(R"(
local t = {}
function t.m() end
t:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("m"));
CHECK(ac.entryMap["m"].wrongIndexType);
}
TEST_CASE_FIXTURE(ACFixture, "no_incompatible_self_calls_2")
{
check(R"(
local f: (() -> number) & ((number) -> number) = function(x: number?) return 2 end
local t = {}
t.f = f
t:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("f"));
CHECK(ac.entryMap["f"].wrongIndexType);
}
2022-07-29 05:24:07 +01:00
TEST_CASE_FIXTURE(ACFixture, "do_wrong_compatible_self_calls")
2022-03-18 00:46:04 +00:00
{
check(R"(
local t = {}
function t.m(x: typeof(t)) end
t:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("m"));
// We can make changes to mark this as a wrong way to call even though it's compatible
CHECK(!ac.entryMap["m"].wrongIndexType);
}
2022-07-29 05:24:07 +01:00
TEST_CASE_FIXTURE(ACFixture, "no_wrong_compatible_self_calls_with_generics")
{
check(R"(
local t = {}
function t.m<T>(a: T) end
t:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("m"));
// While this call is compatible with the type, this requires instantiation of a generic type which we don't perform
CHECK(ac.entryMap["m"].wrongIndexType);
}
2022-03-18 00:46:04 +00:00
TEST_CASE_FIXTURE(ACFixture, "string_prim_self_calls_are_fine")
{
check(R"(
local s = "hello"
s:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("byte"));
CHECK(ac.entryMap["byte"].wrongIndexType == false);
REQUIRE(ac.entryMap.count("char"));
CHECK(ac.entryMap["char"].wrongIndexType == true);
REQUIRE(ac.entryMap.count("sub"));
CHECK(ac.entryMap["sub"].wrongIndexType == false);
}
TEST_CASE_FIXTURE(ACFixture, "string_prim_non_self_calls_are_avoided")
{
check(R"(
local s = "hello"
s.@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("char"));
CHECK(ac.entryMap["char"].wrongIndexType == false);
REQUIRE(ac.entryMap.count("sub"));
CHECK(ac.entryMap["sub"].wrongIndexType == true);
}
TEST_CASE_FIXTURE(ACBuiltinsFixture, "library_non_self_calls_are_fine")
2022-03-18 00:46:04 +00:00
{
check(R"(
string.@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("byte"));
CHECK(ac.entryMap["byte"].wrongIndexType == false);
REQUIRE(ac.entryMap.count("char"));
CHECK(ac.entryMap["char"].wrongIndexType == false);
REQUIRE(ac.entryMap.count("sub"));
CHECK(ac.entryMap["sub"].wrongIndexType == false);
check(R"(
table.@1
)");
ac = autocomplete('1');
REQUIRE(ac.entryMap.count("remove"));
CHECK(ac.entryMap["remove"].wrongIndexType == false);
REQUIRE(ac.entryMap.count("getn"));
CHECK(ac.entryMap["getn"].wrongIndexType == false);
REQUIRE(ac.entryMap.count("insert"));
CHECK(ac.entryMap["insert"].wrongIndexType == false);
2022-03-18 00:46:04 +00:00
}
TEST_CASE_FIXTURE(ACBuiltinsFixture, "library_self_calls_are_invalid")
2022-03-18 00:46:04 +00:00
{
check(R"(
string:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("byte"));
CHECK(ac.entryMap["byte"].wrongIndexType == true);
REQUIRE(ac.entryMap.count("char"));
CHECK(ac.entryMap["char"].wrongIndexType == true);
2022-07-29 05:24:07 +01:00
// We want the next test to evaluate to 'true', but we have to allow function defined with 'self' to be callable with ':'
// We may change the definition of the string metatable to not use 'self' types in the future (like byte/char/pack/unpack)
2022-03-18 00:46:04 +00:00
REQUIRE(ac.entryMap.count("sub"));
2022-07-29 05:24:07 +01:00
CHECK(ac.entryMap["sub"].wrongIndexType == false);
2022-03-18 00:46:04 +00:00
}
2022-04-21 22:44:27 +01:00
TEST_CASE_FIXTURE(ACFixture, "source_module_preservation_and_invalidation")
{
check(R"(
local a = { x = 2, y = 4 }
a.@1
)");
frontend.clear();
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
frontend.check("MainModule", {});
ac = autocomplete('1');
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
frontend.markDirty("MainModule", nullptr);
ac = autocomplete('1');
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
frontend.check("MainModule", {});
ac = autocomplete('1');
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
}
TEST_CASE_FIXTURE(ACFixture, "globals_are_order_independent")
{
check(R"(
local myLocal = 4
function abc0()
local myInnerLocal = 1
@1
end
function abc1()
local myInnerLocal = 1
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("myLocal"));
CHECK(ac.entryMap.count("myInnerLocal"));
CHECK(ac.entryMap.count("abc0"));
CHECK(ac.entryMap.count("abc1"));
}
TEST_CASE_FIXTURE(ACFixture, "type_reduction_is_hooked_up_to_autocomplete")
{
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 19:26:13 +00:00
ScopedFastFlag sff{"DebugLuauDeferredConstraintResolution", true};
check(R"(
type T = { x: (number & string)? }
function f(thingamabob: T)
thingamabob.@1
end
function g(thingamabob: T)
thingama@2
end
)");
ToStringOptions opts;
opts.exhaustive = true;
auto ac1 = autocomplete('1');
REQUIRE(ac1.entryMap.count("x"));
std::optional<TypeId> ty1 = ac1.entryMap.at("x").type;
REQUIRE(ty1);
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 19:26:13 +00:00
CHECK("nil" == toString(*ty1, opts));
auto ac2 = autocomplete('2');
REQUIRE(ac2.entryMap.count("thingamabob"));
std::optional<TypeId> ty2 = ac2.entryMap.at("thingamabob").type;
REQUIRE(ty2);
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 19:26:13 +00:00
CHECK("{| x: nil |}" == toString(*ty2, opts));
}
TEST_CASE_FIXTURE(ACFixture, "string_contents_is_available_to_callback")
{
loadDefinition(R"(
declare function require(path: string): any
)");
std::optional<Binding> require = frontend.globalsForAutocomplete.globalScope->linearSearchForBinding("require");
REQUIRE(require);
Luau::unfreeze(frontend.globalsForAutocomplete.globalTypes);
attachTag(require->typeId, "RequireCall");
Luau::freeze(frontend.globalsForAutocomplete.globalTypes);
check(R"(
local x = require("testing/@1")
)");
bool isCorrect = false;
auto ac1 = autocomplete(
'1', [&isCorrect](std::string, std::optional<const ClassType*>, std::optional<std::string> contents) -> std::optional<AutocompleteEntryMap> {
isCorrect = contents && *contents == "testing/";
return std::nullopt;
});
CHECK(isCorrect);
}
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
TEST_CASE_FIXTURE(ACFixture, "autocomplete_response_perf1" * doctest::timeout(0.5))
{
ScopedFastFlag luauAutocompleteSkipNormalization{"LuauAutocompleteSkipNormalization", true};
// Build a function type with a large overload set
const int parts = 100;
std::string source;
for (int i = 0; i < parts; i++)
formatAppend(source, "type T%d = { f%d: number }\n", i, i);
source += "type Instance = { new: (('s0', extra: Instance?) -> T0)";
for (int i = 1; i < parts; i++)
formatAppend(source, " & (('s%d', extra: Instance?) -> T%d)", i, i);
source += " }\n";
source += "local Instance: Instance = {} :: any\n";
source += "local function c(): boolean return t@1 end\n";
check(source);
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("true"));
CHECK(ac.entryMap.count("Instance"));
}
TEST_SUITE_END();