luau/prototyping/Luau/ResolveOverloads.agda

99 lines
5.3 KiB
Agda
Raw Normal View History

{-# OPTIONS --rewriting #-}
module Luau.ResolveOverloads where
open import FFI.Data.Either using (Left; Right)
open import Luau.Subtyping using (_<:_; _≮:_; Language; witness; scalar; unknown; never; function-ok)
open import Luau.Type using (Type ; _⇒_; _∩_; __; unknown; never)
open import Luau.TypeSaturation using (saturate)
open import Luau.TypeNormalization using (normalize)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.DecSubtyping using (dec-subtyping; dec-subtypingⁿ; <:-impl-<:ᵒ)
open import Properties.Functions using (_∘_)
open import Properties.Subtyping using (<:-refl; <:-trans; <:-trans-≮:; ≮:-trans-<:; <:-∩-left; <:-∩-right; <:-∩-glb; <:-impl-¬≮:; <:-unknown; <:-function; function-≮:-never; <:-never; unknown-≮:-function; scalar-≮:-function; ≮:--right; scalar-≮:-never; <:--left; <:--right)
open import Properties.TypeNormalization using (Normal; FunType; normal; _⇒_; _∩_; __; never; unknown; <:-normalize; normalize-<:; fun-≮:-never; unknown-≮:-fun; scalar-≮:-fun)
open import Properties.TypeSaturation using (Overloads; Saturated; _⊆ᵒ_; _<:ᵒ_; normal-saturate; saturated; <:-saturate; saturate-<:; defn; here; left; right)
-- The domain of a normalized type
srcⁿ : Type Type
srcⁿ (S T) = S
srcⁿ (S T) = srcⁿ S srcⁿ T
srcⁿ never = unknown
srcⁿ T = never
-- To get the domain of a type, we normalize it first We need to do
-- this, since if we try to use it on non-normalized types, we get
--
-- src(number ∩ string) = src(number) src(string) = never never
-- src(never) = unknown
--
-- so src doesn't respect type equivalence.
src : Type Type
src (S T) = S
src T = srcⁿ(normalize T)
-- Calculate the result of applying a function type `F` to an argument type `V`.
-- We do this by finding an overload of `F` that has the most precise type,
-- that is an overload `(Sʳ ⇒ Tʳ)` where `V <: Sʳ` and moreover
-- for any other such overload `(S ⇒ T)` we have that `Tʳ <: T`.
-- For example if `F` is `(number -> number) & (nil -> nil) & (number? -> number?)`
-- then to resolve `F` with argument type `number`, we pick the `number -> number`
-- overload, but if the argument is `number?`, we pick `number? -> number?`./
-- Not all types have such a most precise overload, but saturated ones do.
data ResolvedTo F G V : Set where
yes :
Overloads F ( )
(V <: )
( {S T} Overloads G (S T) (V <: S) ( <: T))
--------------------------------------------
ResolvedTo F G V
no :
( {S T} Overloads G (S T) (V ≮: S))
--------------------------------------------
ResolvedTo F G V
Resolved : Type Type Set
Resolved F V = ResolvedTo F F V
target : {F V} Resolved F V Type
target (yes _ T _ _ _) = T
target (no _) = unknown
-- We can resolve any saturated function type
resolveˢ : {F G V} FunType G Saturated F Normal V (G ⊆ᵒ F) ResolvedTo F G V
resolveˢ (Sⁿ Tⁿ) (defn sat-∩ sat-) Vⁿ G⊆F with dec-subtypingⁿ Vⁿ Sⁿ
resolveˢ (Sⁿ Tⁿ) (defn sat-∩ sat-) Vⁿ G⊆F | Left V≮:S = no (λ { here V≮:S })
resolveˢ (Sⁿ Tⁿ) (defn sat-∩ sat-) Vⁿ G⊆F | Right V<:S = yes _ _ (G⊆F here) V<:S (λ { here _ <:-refl })
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F with resolveˢ Gᶠ (defn sat-∩ sat-) Vⁿ (G⊆F left) | resolveˢ Hᶠ (defn sat-∩ sat-) Vⁿ (G⊆F right)
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ with sat-∩ o₁ o₂
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ | defn o p₁ p₂ =
yes _ _ o (<:-trans (<:-∩-glb V<:S₁ V<:S₂) p₁) (λ { (left o) p <:-trans p₂ (<:-trans <:-∩-left (tgt₁ o p)) ; (right o) p <:-trans p₂ (<:-trans <:-∩-right (tgt₂ o p)) })
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F | yes S₁ T₁ o₁ V<:S₁ tgt₁ | no src₂ =
yes _ _ o₁ V<:S₁ (λ { (left o) p tgt₁ o p ; (right o) p CONTRADICTION (<:-impl-¬≮: p (src₂ o)) })
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F | no src₁ | yes S₂ T₂ o₂ V<:S₂ tgt₂ =
yes _ _ o₂ V<:S₂ (λ { (left o) p CONTRADICTION (<:-impl-¬≮: p (src₁ o)) ; (right o) p tgt₂ o p })
resolveˢ (Gᶠ Hᶠ) (defn sat-∩ sat-) Vⁿ G⊆F | no src₁ | no src₂ =
no (λ { (left o) src₁ o ; (right o) src₂ o })
-- Which means we can resolve any normalized type, by saturating it first
resolveᶠ : {F V} FunType F Normal V Type
resolveᶠ Fᶠ Vⁿ = target (resolveˢ (normal-saturate Fᶠ) (saturated Fᶠ) Vⁿ (λ o o))
resolveⁿ : {F V} Normal F Normal V Type
resolveⁿ (Sⁿ Tⁿ) Vⁿ = resolveᶠ (Sⁿ Tⁿ) Vⁿ
resolveⁿ (Fᶠ Gᶠ) Vⁿ = resolveᶠ (Fᶠ Gᶠ) Vⁿ
resolveⁿ (Sⁿ ) Vⁿ = unknown
resolveⁿ unknown Vⁿ = unknown
resolveⁿ never Vⁿ = never
-- Which means we can resolve any type, by normalizing it first
resolve : Type Type Type
resolve F V = resolveⁿ (normal F) (normal V)