luau/prototyping/Luau/TypeCheck.agda

163 lines
4.2 KiB
Agda
Raw Normal View History

{-# OPTIONS --rewriting #-}
open import Luau.Type using (Mode)
module Luau.TypeCheck (m : Mode) where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (Maybe; just)
2022-03-02 23:26:58 +00:00
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; number; bool; string; val; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.Type using (Type; Mode; nil; any; number; boolean; string; _⇒_; tgt)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import FFI.Data.Vector using (Vector)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Properties.Product using (_×_; _,_)
src : Type Type
src = Luau.Type.src m
orAny : Maybe Type Type
orAny nothing = any
orAny (just T) = T
srcBinOp : BinaryOperator Type
srcBinOp + = number
srcBinOp - = number
srcBinOp * = number
srcBinOp / = number
srcBinOp < = number
srcBinOp > = number
srcBinOp == = any
srcBinOp ~= = any
srcBinOp <= = number
srcBinOp >= = number
srcBinOp ·· = string
tgtBinOp : BinaryOperator Type
tgtBinOp + = number
tgtBinOp - = number
tgtBinOp * = number
tgtBinOp / = number
tgtBinOp < = boolean
tgtBinOp > = boolean
tgtBinOp == = boolean
tgtBinOp ~= = boolean
tgtBinOp <= = boolean
tgtBinOp >= = boolean
2022-03-02 23:26:58 +00:00
tgtBinOp ·· = string
data _⊢ᴮ_∈_ : VarCtxt Block yes Type Set
data _⊢ᴱ_∈_ : VarCtxt Expr yes Type Set
data _⊢ᴮ_∈_ where
done : {Γ}
---------------
Γ ⊢ᴮ done nil
return : {M B T U Γ}
Γ ⊢ᴱ M T
Γ ⊢ᴮ B U
---------------------
Γ ⊢ᴮ return M B T
local : {x M B T U V Γ}
Γ ⊢ᴱ M U
(Γ x T) ⊢ᴮ B V
--------------------------------
Γ ⊢ᴮ local var x T M B V
function : {f x B C T U V W Γ}
(Γ x T) ⊢ᴮ C V
(Γ f (T U)) ⊢ᴮ B W
-------------------------------------------------
Γ ⊢ᴮ function f var x T ⟩∈ U is C end B W
data _⊢ᴱ_∈_ where
nil : {Γ}
--------------------
Γ ⊢ᴱ (val nil) nil
var : {x T Γ}
T orAny(Γ [ x ]ⱽ)
----------------
Γ ⊢ᴱ (var x) T
addr : {a Γ} T
-----------------
Γ ⊢ᴱ val(addr a) T
number : {n Γ}
---------------------------
Γ ⊢ᴱ val(number n) number
bool : {b Γ}
--------------------------
Γ ⊢ᴱ val(bool b) boolean
2022-03-02 23:26:58 +00:00
string : {x Γ}
---------------------------
Γ ⊢ᴱ val(string x) string
app : {M N T U Γ}
Γ ⊢ᴱ M T
Γ ⊢ᴱ N U
----------------------
Γ ⊢ᴱ (M $ N) (tgt T)
function : {f x B T U V Γ}
(Γ x T) ⊢ᴮ B V
-----------------------------------------------------
Γ ⊢ᴱ (function f var x T ⟩∈ U is B end) (T U)
block : {b B T U Γ}
Γ ⊢ᴮ B U
------------------------------------
Γ ⊢ᴱ (block var b T is B end) T
binexp : {op Γ M N T U}
Γ ⊢ᴱ M T
Γ ⊢ᴱ N U
----------------------------------
Γ ⊢ᴱ (binexp M op N) tgtBinOp op
data ⊢ᴼ_ : Maybe(Object yes) Set where
nothing :
---------
⊢ᴼ nothing
function : {f x T U V B}
(x T) ⊢ᴮ B V
----------------------------------------------
⊢ᴼ (just function f var x T ⟩∈ U is B end)
⊢ᴴ_ : Heap yes Set
⊢ᴴ H = a {O} (H [ a ]ᴴ O) (⊢ᴼ O)
_⊢ᴴᴱ_▷_∈_ : VarCtxt Heap yes Expr yes Type Set
(Γ ⊢ᴴᴱ H M T) = (⊢ᴴ H) × (Γ ⊢ᴱ M T)
_⊢ᴴᴮ_▷_∈_ : VarCtxt Heap yes Block yes Type Set
(Γ ⊢ᴴᴮ H B T) = (⊢ᴴ H) × (Γ ⊢ᴮ B T)