mirror of
https://github.com/luau-lang/luau.git
synced 2024-12-13 05:20:38 +00:00
168 lines
5.4 KiB
Python
168 lines
5.4 KiB
Python
|
#!/usr/bin/python3
|
||
|
# This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
|
||
|
|
||
|
import argparse
|
||
|
import json
|
||
|
from collections import Counter
|
||
|
import pandas as pd
|
||
|
## needed for 'to_markdown' method for pandas data frame
|
||
|
import tabulate
|
||
|
|
||
|
|
||
|
def getArgs():
|
||
|
parser = argparse.ArgumentParser(description='Analyze compiler statistics')
|
||
|
parser.add_argument('--bytecode-bin-factor', dest='bytecodeBinFactor',default=10,help='Bytecode bin size as a multiple of 1000 (10 by default)')
|
||
|
parser.add_argument('--block-bin-factor', dest='blockBinFactor',default=1,help='Block bin size as a multiple of 1000 (1 by default)')
|
||
|
parser.add_argument('--block-instruction-bin-factor', dest='blockInstructionBinFactor',default=1,help='Block bin size as a multiple of 1000 (1 by default)')
|
||
|
parser.add_argument('statsFile', help='stats.json file generated by running luau-compile')
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
def readStats(statsFile):
|
||
|
with open(statsFile) as f:
|
||
|
stats = json.load(f)
|
||
|
|
||
|
scripts = []
|
||
|
functionCounts = []
|
||
|
bytecodeLengths = []
|
||
|
blockPreOptCounts = []
|
||
|
blockPostOptCounts = []
|
||
|
maxBlockInstructionCounts = []
|
||
|
|
||
|
for path, fileStat in stats.items():
|
||
|
scripts.append(path)
|
||
|
functionCounts.append(fileStat['lowerStats']['totalFunctions'] - fileStat['lowerStats']['skippedFunctions'])
|
||
|
bytecodeLengths.append(fileStat['bytecode'])
|
||
|
blockPreOptCounts.append(fileStat['lowerStats']['blocksPreOpt'])
|
||
|
blockPostOptCounts.append(fileStat['lowerStats']['blocksPostOpt'])
|
||
|
maxBlockInstructionCounts.append(fileStat['lowerStats']['maxBlockInstructions'])
|
||
|
|
||
|
stats_df = pd.DataFrame({
|
||
|
'Script': scripts,
|
||
|
'FunctionCount': functionCounts,
|
||
|
'BytecodeLength': bytecodeLengths,
|
||
|
'BlockPreOptCount': blockPreOptCounts,
|
||
|
'BlockPostOptCount': blockPostOptCounts,
|
||
|
'MaxBlockInstructionCount': maxBlockInstructionCounts
|
||
|
})
|
||
|
|
||
|
return stats_df
|
||
|
|
||
|
|
||
|
def analyzeBytecodeStats(stats_df, config):
|
||
|
binFactor = config.bytecodeBinFactor
|
||
|
divisor = binFactor * 1000
|
||
|
totalScriptCount = len(stats_df.index)
|
||
|
|
||
|
lengthLabels = []
|
||
|
scriptCounts = []
|
||
|
scriptPercs = []
|
||
|
|
||
|
counter = Counter()
|
||
|
|
||
|
for index, row in stats_df.iterrows():
|
||
|
value = row['BytecodeLength']
|
||
|
factor = int(value / divisor)
|
||
|
counter[factor] += 1
|
||
|
|
||
|
for factor, scriptCount in sorted(counter.items()):
|
||
|
left = factor * binFactor
|
||
|
right = left + binFactor
|
||
|
lengthLabel = '{left}K-{right}K'.format(left=left, right=right)
|
||
|
lengthLabels.append(lengthLabel)
|
||
|
scriptCounts.append(scriptCount)
|
||
|
scriptPerc = round(scriptCount * 100 / totalScriptCount, 1)
|
||
|
scriptPercs.append(scriptPerc)
|
||
|
|
||
|
bcode_df = pd.DataFrame({
|
||
|
'BytecodeLength': lengthLabels,
|
||
|
'ScriptCount': scriptCounts,
|
||
|
'ScriptPerc': scriptPercs
|
||
|
})
|
||
|
|
||
|
return bcode_df
|
||
|
|
||
|
|
||
|
def analyzeBlockStats(stats_df, config, field):
|
||
|
binFactor = config.blockBinFactor
|
||
|
divisor = binFactor * 1000
|
||
|
totalScriptCount = len(stats_df.index)
|
||
|
|
||
|
blockLabels = []
|
||
|
scriptCounts = []
|
||
|
scriptPercs = []
|
||
|
|
||
|
counter = Counter()
|
||
|
|
||
|
for index, row in stats_df.iterrows():
|
||
|
value = row[field]
|
||
|
factor = int(value / divisor)
|
||
|
counter[factor] += 1
|
||
|
|
||
|
for factor, scriptCount in sorted(counter.items()):
|
||
|
left = factor * binFactor
|
||
|
right = left + binFactor
|
||
|
blockLabel = '{left}K-{right}K'.format(left=left, right=right)
|
||
|
blockLabels.append(blockLabel)
|
||
|
scriptCounts.append(scriptCount)
|
||
|
scriptPerc = round((scriptCount * 100) / totalScriptCount, 1)
|
||
|
scriptPercs.append(scriptPerc)
|
||
|
|
||
|
block_df = pd.DataFrame({
|
||
|
field: blockLabels,
|
||
|
'ScriptCount': scriptCounts,
|
||
|
'ScriptPerc': scriptPercs
|
||
|
})
|
||
|
|
||
|
return block_df
|
||
|
|
||
|
def analyzeMaxBlockInstructionStats(stats_df, config):
|
||
|
binFactor = config.blockInstructionBinFactor
|
||
|
divisor = binFactor * 1000
|
||
|
totalScriptCount = len(stats_df.index)
|
||
|
|
||
|
blockLabels = []
|
||
|
scriptCounts = []
|
||
|
scriptPercs = []
|
||
|
|
||
|
counter = Counter()
|
||
|
|
||
|
for index, row in stats_df.iterrows():
|
||
|
value = row['MaxBlockInstructionCount']
|
||
|
factor = int(value / divisor)
|
||
|
counter[factor] += 1
|
||
|
|
||
|
for factor, scriptCount in sorted(counter.items()):
|
||
|
left = factor * binFactor
|
||
|
right = left + binFactor
|
||
|
blockLabel = '{left}K-{right}K'.format(left=left, right=right)
|
||
|
blockLabels.append(blockLabel)
|
||
|
scriptCounts.append(scriptCount)
|
||
|
scriptPerc = round((scriptCount * 100) / totalScriptCount, 1)
|
||
|
scriptPercs.append(scriptPerc)
|
||
|
|
||
|
block_df = pd.DataFrame({
|
||
|
'MaxBlockInstructionCount': blockLabels,
|
||
|
'ScriptCount': scriptCounts,
|
||
|
'ScriptPerc': scriptPercs
|
||
|
})
|
||
|
|
||
|
return block_df
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
config = getArgs()
|
||
|
|
||
|
stats_df = readStats(config.statsFile)
|
||
|
|
||
|
bcode_df = analyzeBytecodeStats(stats_df, config)
|
||
|
print(bcode_df.to_markdown())
|
||
|
|
||
|
block_df = analyzeBlockStats(stats_df, config, 'BlockPreOptCount')
|
||
|
print(block_df.to_markdown())
|
||
|
|
||
|
block_df = analyzeBlockStats(stats_df, config, 'BlockPostOptCount')
|
||
|
print(block_df.to_markdown())
|
||
|
|
||
|
block_df = analyzeMaxBlockInstructionStats(stats_df, config)
|
||
|
print(block_df.to_markdown())
|