luau/EqSat/include/Luau/EGraph.h

228 lines
6.1 KiB
C
Raw Normal View History

2024-07-19 18:21:40 +01:00
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Common.h"
#include "Luau/Id.h"
#include "Luau/Language.h"
#include "Luau/UnionFind.h"
#include <optional>
#include <unordered_map>
#include <vector>
namespace Luau::EqSat
{
template<typename L, typename N>
struct EGraph;
template<typename L, typename N>
struct Analysis final
{
N analysis;
using D = typename N::Data;
template<typename T>
static D fnMake(const N& analysis, const EGraph<L, N>& egraph, const L& enode)
{
return analysis.make(egraph, *enode.template get<T>());
}
template<typename... Ts>
D make(const EGraph<L, N>& egraph, const Language<Ts...>& enode) const
{
using FnMake = D (*)(const N&, const EGraph<L, N>&, const L&);
static constexpr FnMake tableMake[sizeof...(Ts)] = {&fnMake<Ts>...};
return tableMake[enode.index()](analysis, egraph, enode);
}
void join(D& a, const D& b) const
{
return analysis.join(a, b);
}
};
/// Each e-class is a set of e-nodes representing equivalent terms from a given language,
/// and an e-node is a function symbol paired with a list of children e-classes.
template<typename L, typename D>
struct EClass final
{
Id id;
std::vector<L> nodes;
D data;
std::vector<std::pair<L, Id>> parents;
};
/// See <https://arxiv.org/pdf/2004.03082>.
template<typename L, typename N>
struct EGraph final
{
Id find(Id id) const
{
return unionfind.find(id);
}
std::optional<Id> lookup(const L& enode) const
{
LUAU_ASSERT(isCanonical(enode));
if (auto it = hashcons.find(enode); it != hashcons.end())
return it->second;
return std::nullopt;
}
Id add(L enode)
{
canonicalize(enode);
if (auto id = lookup(enode))
return *id;
Id id = makeEClass(enode);
return id;
}
void merge(Id id1, Id id2)
{
id1 = find(id1);
id2 = find(id2);
if (id1 == id2)
return;
unionfind.merge(id1, id2);
EClass<L, typename N::Data>& eclass1 = get(id1);
EClass<L, typename N::Data> eclass2 = std::move(get(id2));
classes.erase(id2);
worklist.reserve(worklist.size() + eclass2.parents.size());
for (auto [enode, id] : eclass2.parents)
worklist.push_back({std::move(enode), id});
analysis.join(eclass1.data, eclass2.data);
}
void rebuild()
{
while (!worklist.empty())
{
auto [enode, id] = worklist.back();
worklist.pop_back();
repair(get(find(id)));
}
}
size_t size() const
{
return classes.size();
}
EClass<L, typename N::Data>& operator[](Id id)
{
return get(find(id));
}
const EClass<L, typename N::Data>& operator[](Id id) const
{
return const_cast<EGraph*>(this)->get(find(id));
}
private:
Analysis<L, N> analysis;
/// A union-find data structure 𝑈 stores an equivalence relation over e-class ids.
UnionFind unionfind;
/// The e-class map 𝑀 maps e-class ids to e-classes. All equivalent e-class ids map to the same
/// e-class, i.e., 𝑎 ≡id 𝑏 iff 𝑀[𝑎] is the same set as 𝑀[𝑏]. An e-class id 𝑎 is said to refer to the
/// e-class 𝑀[find(𝑎)].
std::unordered_map<Id, EClass<L, typename N::Data>> classes;
/// The hashcons 𝐻 is a map from e-nodes to e-class ids.
std::unordered_map<L, Id, typename L::Hash> hashcons;
std::vector<std::pair<L, Id>> worklist;
private:
void canonicalize(L& enode)
{
// An e-node 𝑛 is canonical iff 𝑛 = canonicalize(𝑛), where
// canonicalize(𝑓(𝑎1, 𝑎2, ...)) = 𝑓(find(𝑎1), find(𝑎2), ...).
for (Id& id : enode.operands())
id = find(id);
}
bool isCanonical(const L& enode) const
{
bool canonical = true;
for (Id id : enode.operands())
canonical &= (id == find(id));
return canonical;
}
Id makeEClass(const L& enode)
{
LUAU_ASSERT(isCanonical(enode));
Id id = unionfind.makeSet();
classes.insert_or_assign(id, EClass<L, typename N::Data>{
id,
{enode},
analysis.make(*this, enode),
{},
});
for (Id operand : enode.operands())
get(operand).parents.push_back({enode, id});
worklist.emplace_back(enode, id);
hashcons.insert_or_assign(enode, id);
return id;
}
// Looks up for an eclass from a given non-canonicalized `id`.
// For a canonicalized eclass, use `get(find(id))` or `egraph[id]`.
EClass<L, typename N::Data>& get(Id id)
{
return classes.at(id);
}
void repair(EClass<L, typename N::Data>& eclass)
{
// In the egg paper, the `repair` function makes use of two loops over the `eclass.parents`
// by first erasing the old enode entry, and adding back the canonicalized enode with the canonical id.
// And then in another loop that follows, deduplicate it.
//
// Here, we unify the two loops. I think it's equivalent?
// After canonicalizing the enodes, the eclass may contain multiple enodes that are equivalent.
std::unordered_map<L, Id, typename L::Hash> map;
for (auto& [enode, id] : eclass.parents)
{
// By removing the old enode from the hashcons map, we will always find our new canonicalized eclass id.
hashcons.erase(enode);
canonicalize(enode);
hashcons.insert_or_assign(enode, find(id));
if (auto it = map.find(enode); it != map.end())
merge(id, it->second);
map.insert_or_assign(enode, find(id));
}
eclass.parents.clear();
for (auto it = map.begin(); it != map.end();)
{
auto node = map.extract(it++);
eclass.parents.emplace_back(std::move(node.key()), node.mapped());
}
}
};
} // namespace Luau::EqSat