luau/CodeGen/src/AssemblyBuilderA64.cpp

1041 lines
27 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/AssemblyBuilderA64.h"
#include "ByteUtils.h"
#include <stdarg.h>
namespace Luau
{
namespace CodeGen
{
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
namespace A64
{
static const uint8_t codeForCondition[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
static_assert(sizeof(codeForCondition) / sizeof(codeForCondition[0]) == size_t(ConditionA64::Count), "all conditions have to be covered");
static const char* textForCondition[] = {
"b.eq", "b.ne", "b.cs", "b.cc", "b.mi", "b.pl", "b.vs", "b.vc", "b.hi", "b.ls", "b.ge", "b.lt", "b.gt", "b.le", "b.al"};
static_assert(sizeof(textForCondition) / sizeof(textForCondition[0]) == size_t(ConditionA64::Count), "all conditions have to be covered");
const unsigned kMaxAlign = 32;
AssemblyBuilderA64::AssemblyBuilderA64(bool logText, unsigned int features)
: logText(logText)
, features(features)
{
data.resize(4096);
dataPos = data.size(); // data is filled backwards
code.resize(1024);
codePos = code.data();
codeEnd = code.data() + code.size();
}
AssemblyBuilderA64::~AssemblyBuilderA64()
{
LUAU_ASSERT(finalized);
}
void AssemblyBuilderA64::mov(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::w || dst.kind == KindA64::x || dst == sp);
LUAU_ASSERT(dst.kind == src.kind || (dst.kind == KindA64::x && src == sp) || (dst == sp && src.kind == KindA64::x));
if (dst == sp || src == sp)
placeR1("mov", dst, src, 0b00'100010'0'000000000000);
else
placeSR2("mov", dst, src, 0b01'01010);
}
void AssemblyBuilderA64::mov(RegisterA64 dst, int src)
{
if (src >= 0)
{
movz(dst, src & 0xffff);
if (src > 0xffff)
movk(dst, src >> 16, 16);
}
else
{
movn(dst, ~src & 0xffff);
if (src < -0x10000)
movk(dst, (src >> 16) & 0xffff, 16);
}
}
void AssemblyBuilderA64::movz(RegisterA64 dst, uint16_t src, int shift)
{
placeI16("movz", dst, src, 0b10'100101, shift);
}
void AssemblyBuilderA64::movn(RegisterA64 dst, uint16_t src, int shift)
{
placeI16("movn", dst, src, 0b00'100101, shift);
}
void AssemblyBuilderA64::movk(RegisterA64 dst, uint16_t src, int shift)
{
placeI16("movk", dst, src, 0b11'100101, shift);
}
void AssemblyBuilderA64::add(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, int shift)
{
placeSR3("add", dst, src1, src2, 0b00'01011, shift);
}
void AssemblyBuilderA64::add(RegisterA64 dst, RegisterA64 src1, uint16_t src2)
{
placeI12("add", dst, src1, src2, 0b00'10001);
}
void AssemblyBuilderA64::sub(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, int shift)
{
placeSR3("sub", dst, src1, src2, 0b10'01011, shift);
}
void AssemblyBuilderA64::sub(RegisterA64 dst, RegisterA64 src1, uint16_t src2)
{
placeI12("sub", dst, src1, src2, 0b10'10001);
}
void AssemblyBuilderA64::neg(RegisterA64 dst, RegisterA64 src)
{
placeSR2("neg", dst, src, 0b10'01011);
}
void AssemblyBuilderA64::cmp(RegisterA64 src1, RegisterA64 src2)
{
RegisterA64 dst = src1.kind == KindA64::x ? xzr : wzr;
placeSR3("cmp", dst, src1, src2, 0b11'01011);
}
void AssemblyBuilderA64::cmp(RegisterA64 src1, uint16_t src2)
{
RegisterA64 dst = src1.kind == KindA64::x ? xzr : wzr;
placeI12("cmp", dst, src1, src2, 0b11'10001);
}
void AssemblyBuilderA64::csel(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, ConditionA64 cond)
{
LUAU_ASSERT(dst.kind == KindA64::x || dst.kind == KindA64::w);
placeCS("csel", dst, src1, src2, cond, 0b11010'10'0, 0b00);
}
void AssemblyBuilderA64::and_(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2)
{
placeSR3("and", dst, src1, src2, 0b00'01010);
}
void AssemblyBuilderA64::orr(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2)
{
placeSR3("orr", dst, src1, src2, 0b01'01010);
}
void AssemblyBuilderA64::eor(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2)
{
placeSR3("eor", dst, src1, src2, 0b10'01010);
}
void AssemblyBuilderA64::mvn(RegisterA64 dst, RegisterA64 src)
{
placeSR2("mvn", dst, src, 0b01'01010, 0b1);
}
void AssemblyBuilderA64::lsl(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2)
{
placeR3("lsl", dst, src1, src2, 0b11010110, 0b0010'00);
}
void AssemblyBuilderA64::lsr(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2)
{
placeR3("lsr", dst, src1, src2, 0b11010110, 0b0010'01);
}
void AssemblyBuilderA64::asr(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2)
{
placeR3("asr", dst, src1, src2, 0b11010110, 0b0010'10);
}
void AssemblyBuilderA64::ror(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2)
{
placeR3("ror", dst, src1, src2, 0b11010110, 0b0010'11);
}
void AssemblyBuilderA64::clz(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::w || dst.kind == KindA64::x);
LUAU_ASSERT(dst.kind == src.kind);
placeR1("clz", dst, src, 0b10'11010110'00000'00010'0);
}
void AssemblyBuilderA64::rbit(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::w || dst.kind == KindA64::x);
LUAU_ASSERT(dst.kind == src.kind);
placeR1("rbit", dst, src, 0b10'11010110'00000'0000'00);
}
void AssemblyBuilderA64::ldr(RegisterA64 dst, AddressA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::x || dst.kind == KindA64::w || dst.kind == KindA64::d || dst.kind == KindA64::q);
switch (dst.kind)
{
case KindA64::w:
placeA("ldr", dst, src, 0b11100001, 0b10, 2);
break;
case KindA64::x:
placeA("ldr", dst, src, 0b11100001, 0b11, 3);
break;
case KindA64::d:
placeA("ldr", dst, src, 0b11110001, 0b11, 3);
break;
case KindA64::q:
placeA("ldr", dst, src, 0b11110011, 0b00, 4);
break;
case KindA64::none:
LUAU_ASSERT(!"Unexpected register kind");
}
}
void AssemblyBuilderA64::ldrb(RegisterA64 dst, AddressA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::w);
placeA("ldrb", dst, src, 0b11100001, 0b00, 2);
}
void AssemblyBuilderA64::ldrh(RegisterA64 dst, AddressA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::w);
placeA("ldrh", dst, src, 0b11100001, 0b01, 2);
}
void AssemblyBuilderA64::ldrsb(RegisterA64 dst, AddressA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::x || dst.kind == KindA64::w);
placeA("ldrsb", dst, src, 0b11100010 | uint8_t(dst.kind == KindA64::w), 0b00, 0);
}
void AssemblyBuilderA64::ldrsh(RegisterA64 dst, AddressA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::x || dst.kind == KindA64::w);
placeA("ldrsh", dst, src, 0b11100010 | uint8_t(dst.kind == KindA64::w), 0b01, 1);
}
void AssemblyBuilderA64::ldrsw(RegisterA64 dst, AddressA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::x);
placeA("ldrsw", dst, src, 0b11100010, 0b10, 2);
}
void AssemblyBuilderA64::ldp(RegisterA64 dst1, RegisterA64 dst2, AddressA64 src)
{
LUAU_ASSERT(dst1.kind == KindA64::x || dst1.kind == KindA64::w);
LUAU_ASSERT(dst1.kind == dst2.kind);
placeP("ldp", dst1, dst2, src, 0b101'0'010'1, uint8_t(dst1.kind == KindA64::x) << 1, dst1.kind == KindA64::x ? 3 : 2);
}
void AssemblyBuilderA64::str(RegisterA64 src, AddressA64 dst)
{
LUAU_ASSERT(src.kind == KindA64::x || src.kind == KindA64::w || src.kind == KindA64::d || src.kind == KindA64::q);
switch (src.kind)
{
case KindA64::w:
placeA("str", src, dst, 0b11100000, 0b10, 2);
break;
case KindA64::x:
placeA("str", src, dst, 0b11100000, 0b11, 3);
break;
case KindA64::d:
placeA("str", src, dst, 0b11110000, 0b11, 3);
break;
case KindA64::q:
placeA("str", src, dst, 0b11110010, 0b00, 4);
break;
case KindA64::none:
LUAU_ASSERT(!"Unexpected register kind");
}
}
void AssemblyBuilderA64::strb(RegisterA64 src, AddressA64 dst)
{
LUAU_ASSERT(src.kind == KindA64::w);
placeA("strb", src, dst, 0b11100000, 0b00, 2);
}
void AssemblyBuilderA64::strh(RegisterA64 src, AddressA64 dst)
{
LUAU_ASSERT(src.kind == KindA64::w);
placeA("strh", src, dst, 0b11100000, 0b01, 2);
}
void AssemblyBuilderA64::stp(RegisterA64 src1, RegisterA64 src2, AddressA64 dst)
{
LUAU_ASSERT(src1.kind == KindA64::x || src1.kind == KindA64::w);
LUAU_ASSERT(src1.kind == src2.kind);
placeP("stp", src1, src2, dst, 0b101'0'010'0, uint8_t(src1.kind == KindA64::x) << 1, src1.kind == KindA64::x ? 3 : 2);
}
void AssemblyBuilderA64::b(Label& label)
{
// Note: we aren't using 'b' form since it has a 26-bit immediate which requires custom fixup logic
placeBC("b", label, 0b0101010'0, codeForCondition[int(ConditionA64::Always)]);
}
void AssemblyBuilderA64::b(ConditionA64 cond, Label& label)
{
placeBC(textForCondition[int(cond)], label, 0b0101010'0, codeForCondition[int(cond)]);
}
void AssemblyBuilderA64::cbz(RegisterA64 src, Label& label)
{
placeBCR("cbz", label, 0b011010'0, src);
}
void AssemblyBuilderA64::cbnz(RegisterA64 src, Label& label)
{
placeBCR("cbnz", label, 0b011010'1, src);
}
void AssemblyBuilderA64::br(RegisterA64 src)
{
placeBR("br", src, 0b1101011'0'0'00'11111'0000'0'0);
}
void AssemblyBuilderA64::blr(RegisterA64 src)
{
placeBR("blr", src, 0b1101011'0'0'01'11111'0000'0'0);
}
void AssemblyBuilderA64::ret()
{
place0("ret", 0b1101011'0'0'10'11111'0000'0'0'11110'00000);
}
void AssemblyBuilderA64::adr(RegisterA64 dst, const void* ptr, size_t size)
{
size_t pos = allocateData(size, 4);
uint32_t location = getCodeSize();
memcpy(&data[pos], ptr, size);
placeADR("adr", dst, 0b10000);
patchImm19(location, -int(location) - int((data.size() - pos) / 4));
}
void AssemblyBuilderA64::adr(RegisterA64 dst, uint64_t value)
{
size_t pos = allocateData(8, 8);
uint32_t location = getCodeSize();
writeu64(&data[pos], value);
placeADR("adr", dst, 0b10000);
patchImm19(location, -int(location) - int((data.size() - pos) / 4));
}
void AssemblyBuilderA64::adr(RegisterA64 dst, double value)
{
size_t pos = allocateData(8, 8);
uint32_t location = getCodeSize();
writef64(&data[pos], value);
placeADR("adr", dst, 0b10000);
patchImm19(location, -int(location) - int((data.size() - pos) / 4));
}
void AssemblyBuilderA64::adr(RegisterA64 dst, Label& label)
{
placeADR("adr", dst, 0b10000, label);
}
void AssemblyBuilderA64::fmov(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::d && src.kind == KindA64::d);
placeR1("fmov", dst, src, 0b000'11110'01'1'0000'00'10000);
}
void AssemblyBuilderA64::fabs(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::d && src.kind == KindA64::d);
placeR1("fabs", dst, src, 0b000'11110'01'1'0000'01'10000);
}
void AssemblyBuilderA64::fadd(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2)
{
LUAU_ASSERT(dst.kind == KindA64::d && src1.kind == KindA64::d && src2.kind == KindA64::d);
placeR3("fadd", dst, src1, src2, 0b11110'01'1, 0b0010'10);
}
void AssemblyBuilderA64::fdiv(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2)
{
LUAU_ASSERT(dst.kind == KindA64::d && src1.kind == KindA64::d && src2.kind == KindA64::d);
placeR3("fdiv", dst, src1, src2, 0b11110'01'1, 0b0001'10);
}
void AssemblyBuilderA64::fmul(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2)
{
LUAU_ASSERT(dst.kind == KindA64::d && src1.kind == KindA64::d && src2.kind == KindA64::d);
placeR3("fmul", dst, src1, src2, 0b11110'01'1, 0b0000'10);
}
void AssemblyBuilderA64::fneg(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::d && src.kind == KindA64::d);
placeR1("fneg", dst, src, 0b000'11110'01'1'0000'10'10000);
}
void AssemblyBuilderA64::fsqrt(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::d && src.kind == KindA64::d);
placeR1("fsqrt", dst, src, 0b000'11110'01'1'0000'11'10000);
}
void AssemblyBuilderA64::fsub(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2)
{
LUAU_ASSERT(dst.kind == KindA64::d && src1.kind == KindA64::d && src2.kind == KindA64::d);
placeR3("fsub", dst, src1, src2, 0b11110'01'1, 0b0011'10);
}
void AssemblyBuilderA64::frinta(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::d && src.kind == KindA64::d);
placeR1("frinta", dst, src, 0b000'11110'01'1'001'100'10000);
}
void AssemblyBuilderA64::frintm(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::d && src.kind == KindA64::d);
placeR1("frintm", dst, src, 0b000'11110'01'1'001'010'10000);
}
void AssemblyBuilderA64::frintp(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::d && src.kind == KindA64::d);
placeR1("frintp", dst, src, 0b000'11110'01'1'001'001'10000);
}
void AssemblyBuilderA64::fcvtzs(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::w || dst.kind == KindA64::x);
LUAU_ASSERT(src.kind == KindA64::d);
placeR1("fcvtzs", dst, src, 0b000'11110'01'1'11'000'000000);
}
void AssemblyBuilderA64::fcvtzu(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::w || dst.kind == KindA64::x);
LUAU_ASSERT(src.kind == KindA64::d);
placeR1("fcvtzu", dst, src, 0b000'11110'01'1'11'001'000000);
}
void AssemblyBuilderA64::scvtf(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::d);
LUAU_ASSERT(src.kind == KindA64::w || src.kind == KindA64::x);
placeR1("scvtf", dst, src, 0b000'11110'01'1'00'010'000000);
}
void AssemblyBuilderA64::ucvtf(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::d);
LUAU_ASSERT(src.kind == KindA64::w || src.kind == KindA64::x);
placeR1("ucvtf", dst, src, 0b000'11110'01'1'00'011'000000);
}
void AssemblyBuilderA64::fjcvtzs(RegisterA64 dst, RegisterA64 src)
{
LUAU_ASSERT(dst.kind == KindA64::w);
LUAU_ASSERT(src.kind == KindA64::d);
LUAU_ASSERT(features & Feature_JSCVT);
placeR1("fjcvtzs", dst, src, 0b000'11110'01'1'11'110'000000);
}
void AssemblyBuilderA64::fcmp(RegisterA64 src1, RegisterA64 src2)
{
LUAU_ASSERT(src1.kind == KindA64::d && src2.kind == KindA64::d);
placeFCMP("fcmp", src1, src2, 0b11110'01'1, 0b00);
}
void AssemblyBuilderA64::fcmpz(RegisterA64 src)
{
LUAU_ASSERT(src.kind == KindA64::d);
placeFCMP("fcmp", src, RegisterA64{src.kind, 0}, 0b11110'01'1, 0b01);
}
void AssemblyBuilderA64::fcsel(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, ConditionA64 cond)
{
LUAU_ASSERT(dst.kind == KindA64::d);
placeCS("fcsel", dst, src1, src2, cond, 0b11110'01'1, 0b11);
}
bool AssemblyBuilderA64::finalize()
{
code.resize(codePos - code.data());
// Resolve jump targets
for (Label fixup : pendingLabels)
{
// If this assertion fires, a label was used in jmp without calling setLabel
LUAU_ASSERT(labelLocations[fixup.id - 1] != ~0u);
int value = int(labelLocations[fixup.id - 1]) - int(fixup.location);
patchImm19(fixup.location, value);
}
size_t dataSize = data.size() - dataPos;
// Shrink data
if (dataSize > 0)
memmove(&data[0], &data[dataPos], dataSize);
data.resize(dataSize);
finalized = true;
return !overflowed;
}
Label AssemblyBuilderA64::setLabel()
{
Label label{nextLabel++, getCodeSize()};
labelLocations.push_back(~0u);
if (logText)
log(label);
return label;
}
void AssemblyBuilderA64::setLabel(Label& label)
{
if (label.id == 0)
{
label.id = nextLabel++;
labelLocations.push_back(~0u);
}
label.location = getCodeSize();
labelLocations[label.id - 1] = label.location;
if (logText)
log(label);
}
void AssemblyBuilderA64::logAppend(const char* fmt, ...)
{
char buf[256];
va_list args;
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
text.append(buf);
}
uint32_t AssemblyBuilderA64::getCodeSize() const
{
return uint32_t(codePos - code.data());
}
void AssemblyBuilderA64::place0(const char* name, uint32_t op)
{
if (logText)
log(name);
place(op);
commit();
}
void AssemblyBuilderA64::placeSR3(const char* name, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, uint8_t op, int shift)
{
if (logText)
log(name, dst, src1, src2, shift);
LUAU_ASSERT(dst.kind == KindA64::w || dst.kind == KindA64::x);
LUAU_ASSERT(dst.kind == src1.kind && dst.kind == src2.kind);
LUAU_ASSERT(shift >= 0 && shift < 64); // right shift requires changing some encoding bits
uint32_t sf = (dst.kind == KindA64::x) ? 0x80000000 : 0;
place(dst.index | (src1.index << 5) | (shift << 10) | (src2.index << 16) | (op << 24) | sf);
commit();
}
void AssemblyBuilderA64::placeSR2(const char* name, RegisterA64 dst, RegisterA64 src, uint8_t op, uint8_t op2)
{
if (logText)
log(name, dst, src);
LUAU_ASSERT(dst.kind == KindA64::w || dst.kind == KindA64::x);
LUAU_ASSERT(dst.kind == src.kind);
uint32_t sf = (dst.kind == KindA64::x) ? 0x80000000 : 0;
place(dst.index | (0x1f << 5) | (src.index << 16) | (op2 << 21) | (op << 24) | sf);
commit();
}
void AssemblyBuilderA64::placeR3(const char* name, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, uint8_t op, uint8_t op2)
{
if (logText)
log(name, dst, src1, src2);
LUAU_ASSERT(dst.kind == KindA64::w || dst.kind == KindA64::x || dst.kind == KindA64::d);
LUAU_ASSERT(dst.kind == src1.kind && dst.kind == src2.kind);
uint32_t sf = (dst.kind == KindA64::x) ? 0x80000000 : 0;
place(dst.index | (src1.index << 5) | (op2 << 10) | (src2.index << 16) | (op << 21) | sf);
commit();
}
void AssemblyBuilderA64::placeR1(const char* name, RegisterA64 dst, RegisterA64 src, uint32_t op)
{
if (logText)
log(name, dst, src);
uint32_t sf = (dst.kind == KindA64::x || src.kind == KindA64::x) ? 0x80000000 : 0;
place(dst.index | (src.index << 5) | (op << 10) | sf);
commit();
}
void AssemblyBuilderA64::placeI12(const char* name, RegisterA64 dst, RegisterA64 src1, int src2, uint8_t op)
{
if (logText)
log(name, dst, src1, src2);
LUAU_ASSERT(dst.kind == KindA64::w || dst.kind == KindA64::x || dst == sp);
LUAU_ASSERT(dst.kind == src1.kind || (dst.kind == KindA64::x && src1 == sp) || (dst == sp && src1.kind == KindA64::x));
LUAU_ASSERT(src2 >= 0 && src2 < (1 << 12));
uint32_t sf = (dst.kind != KindA64::w) ? 0x80000000 : 0;
place(dst.index | (src1.index << 5) | (src2 << 10) | (op << 24) | sf);
commit();
}
void AssemblyBuilderA64::placeI16(const char* name, RegisterA64 dst, int src, uint8_t op, int shift)
{
if (logText)
log(name, dst, src, shift);
LUAU_ASSERT(dst.kind == KindA64::w || dst.kind == KindA64::x);
LUAU_ASSERT(src >= 0 && src <= 0xffff);
LUAU_ASSERT(shift == 0 || shift == 16 || shift == 32 || shift == 48);
uint32_t sf = (dst.kind == KindA64::x) ? 0x80000000 : 0;
place(dst.index | (src << 5) | ((shift >> 4) << 21) | (op << 23) | sf);
commit();
}
void AssemblyBuilderA64::placeA(const char* name, RegisterA64 dst, AddressA64 src, uint8_t op, uint8_t size, int sizelog)
{
if (logText)
log(name, dst, src);
switch (src.kind)
{
case AddressKindA64::imm:
if (src.data >= 0 && (src.data >> sizelog) < 1024 && (src.data & ((1 << sizelog) - 1)) == 0)
place(dst.index | (src.base.index << 5) | ((src.data >> sizelog) << 10) | (op << 22) | (1 << 24) | (size << 30));
else if (src.data >= -256 && src.data <= 255)
place(dst.index | (src.base.index << 5) | ((src.data & ((1 << 9) - 1)) << 12) | (op << 22) | (size << 30));
else
LUAU_ASSERT(!"Unable to encode large immediate offset");
break;
case AddressKindA64::reg:
place(dst.index | (src.base.index << 5) | (0b10 << 10) | (0b011 << 13) | (src.offset.index << 16) | (1 << 21) | (op << 22) | (size << 30));
break;
}
commit();
}
void AssemblyBuilderA64::placeBC(const char* name, Label& label, uint8_t op, uint8_t cond)
{
place(cond | (op << 24));
commit();
patchLabel(label);
if (logText)
log(name, label);
}
void AssemblyBuilderA64::placeBCR(const char* name, Label& label, uint8_t op, RegisterA64 cond)
{
LUAU_ASSERT(cond.kind == KindA64::w || cond.kind == KindA64::x);
uint32_t sf = (cond.kind == KindA64::x) ? 0x80000000 : 0;
place(cond.index | (op << 24) | sf);
commit();
patchLabel(label);
if (logText)
log(name, cond, label);
}
void AssemblyBuilderA64::placeBR(const char* name, RegisterA64 src, uint32_t op)
{
if (logText)
log(name, src);
LUAU_ASSERT(src.kind == KindA64::x);
place((src.index << 5) | (op << 10));
commit();
}
void AssemblyBuilderA64::placeADR(const char* name, RegisterA64 dst, uint8_t op)
{
if (logText)
log(name, dst);
LUAU_ASSERT(dst.kind == KindA64::x);
place(dst.index | (op << 24));
commit();
}
void AssemblyBuilderA64::placeADR(const char* name, RegisterA64 dst, uint8_t op, Label& label)
{
LUAU_ASSERT(dst.kind == KindA64::x);
place(dst.index | (op << 24));
commit();
patchLabel(label);
if (logText)
log(name, dst, label);
}
void AssemblyBuilderA64::placeP(const char* name, RegisterA64 src1, RegisterA64 src2, AddressA64 dst, uint8_t op, uint8_t opc, int sizelog)
{
if (logText)
log(name, src1, src2, dst);
LUAU_ASSERT(dst.kind == AddressKindA64::imm);
LUAU_ASSERT(dst.data >= -128 * (1 << sizelog) && dst.data <= 127 * (1 << sizelog));
LUAU_ASSERT(dst.data % (1 << sizelog) == 0);
place(src1.index | (dst.base.index << 5) | (src2.index << 10) | (((dst.data >> sizelog) & 127) << 15) | (op << 22) | (opc << 30));
commit();
}
void AssemblyBuilderA64::placeCS(const char* name, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, ConditionA64 cond, uint8_t op, uint8_t opc)
{
if (logText)
log(name, dst, src1, src2, cond);
LUAU_ASSERT(dst.kind == src1.kind && dst.kind == src2.kind);
uint32_t sf = (dst.kind == KindA64::x) ? 0x80000000 : 0;
place(dst.index | (src1.index << 5) | (opc << 10) | (codeForCondition[int(cond)] << 12) | (src2.index << 16) | (op << 21) | sf);
commit();
}
void AssemblyBuilderA64::placeFCMP(const char* name, RegisterA64 src1, RegisterA64 src2, uint8_t op, uint8_t opc)
{
if (logText)
{
if (opc)
log(name, src1, 0);
else
log(name, src1, src2);
}
LUAU_ASSERT(src1.kind == src2.kind);
place((opc << 3) | (src1.index << 5) | (0b1000 << 10) | (src2.index << 16) | (op << 21));
commit();
}
void AssemblyBuilderA64::place(uint32_t word)
{
LUAU_ASSERT(codePos < codeEnd);
*codePos++ = word;
}
void AssemblyBuilderA64::patchLabel(Label& label)
{
uint32_t location = getCodeSize() - 1;
if (label.location == ~0u)
{
if (label.id == 0)
{
label.id = nextLabel++;
labelLocations.push_back(~0u);
}
pendingLabels.push_back({label.id, location});
}
else
{
int value = int(label.location) - int(location);
patchImm19(location, value);
}
}
void AssemblyBuilderA64::patchImm19(uint32_t location, int value)
{
// imm19 encoding word offset, at bit offset 5
// note that 18 bits of word offsets = 20 bits of byte offsets = +-1MB
if (value > -(1 << 18) && value < (1 << 18))
code[location] |= (value & ((1 << 19) - 1)) << 5;
else
overflowed = true;
}
void AssemblyBuilderA64::commit()
{
LUAU_ASSERT(codePos <= codeEnd);
if (codeEnd == codePos)
extend();
}
void AssemblyBuilderA64::extend()
{
uint32_t count = getCodeSize();
code.resize(code.size() * 2);
codePos = code.data() + count;
codeEnd = code.data() + code.size();
}
size_t AssemblyBuilderA64::allocateData(size_t size, size_t align)
{
LUAU_ASSERT(align > 0 && align <= kMaxAlign && (align & (align - 1)) == 0);
if (dataPos < size)
{
size_t oldSize = data.size();
data.resize(data.size() * 2);
memcpy(&data[oldSize], &data[0], oldSize);
memset(&data[0], 0, oldSize);
dataPos += oldSize;
}
dataPos = (dataPos - size) & ~(align - 1);
return dataPos;
}
void AssemblyBuilderA64::log(const char* opcode)
{
logAppend(" %s\n", opcode);
}
void AssemblyBuilderA64::log(const char* opcode, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, int shift)
{
logAppend(" %-12s", opcode);
if (dst != xzr && dst != wzr)
{
log(dst);
text.append(",");
}
log(src1);
text.append(",");
log(src2);
if (shift > 0)
logAppend(" LSL #%d", shift);
text.append("\n");
}
void AssemblyBuilderA64::log(const char* opcode, RegisterA64 dst, RegisterA64 src1, int src2)
{
logAppend(" %-12s", opcode);
if (dst != xzr && dst != wzr)
{
log(dst);
text.append(",");
}
log(src1);
text.append(",");
logAppend("#%d", src2);
text.append("\n");
}
void AssemblyBuilderA64::log(const char* opcode, RegisterA64 dst, AddressA64 src)
{
logAppend(" %-12s", opcode);
log(dst);
text.append(",");
log(src);
text.append("\n");
}
void AssemblyBuilderA64::log(const char* opcode, RegisterA64 dst1, RegisterA64 dst2, AddressA64 src)
{
logAppend(" %-12s", opcode);
log(dst1);
text.append(",");
log(dst2);
text.append(",");
log(src);
text.append("\n");
}
void AssemblyBuilderA64::log(const char* opcode, RegisterA64 dst, RegisterA64 src)
{
logAppend(" %-12s", opcode);
log(dst);
text.append(",");
log(src);
text.append("\n");
}
void AssemblyBuilderA64::log(const char* opcode, RegisterA64 dst, int src, int shift)
{
logAppend(" %-12s", opcode);
log(dst);
text.append(",");
logAppend("#%d", src);
if (shift > 0)
logAppend(" LSL #%d", shift);
text.append("\n");
}
void AssemblyBuilderA64::log(const char* opcode, RegisterA64 src, Label label)
{
logAppend(" %-12s", opcode);
log(src);
text.append(",");
logAppend(".L%d\n", label.id);
}
void AssemblyBuilderA64::log(const char* opcode, RegisterA64 src)
{
logAppend(" %-12s", opcode);
log(src);
text.append("\n");
}
void AssemblyBuilderA64::log(const char* opcode, Label label)
{
logAppend(" %-12s.L%d\n", opcode, label.id);
}
void AssemblyBuilderA64::log(const char* opcode, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, ConditionA64 cond)
{
logAppend(" %-12s", opcode);
log(dst);
text.append(",");
log(src1);
text.append(",");
log(src2);
text.append(",");
text.append(textForCondition[int(cond)] + 2); // skip b.
text.append("\n");
}
void AssemblyBuilderA64::log(Label label)
{
logAppend(".L%d:\n", label.id);
}
void AssemblyBuilderA64::log(RegisterA64 reg)
{
switch (reg.kind)
{
case KindA64::w:
if (reg.index == 31)
text.append("wzr");
else
logAppend("w%d", reg.index);
break;
case KindA64::x:
if (reg.index == 31)
text.append("xzr");
else
logAppend("x%d", reg.index);
break;
case KindA64::d:
logAppend("d%d", reg.index);
break;
case KindA64::q:
logAppend("q%d", reg.index);
break;
case KindA64::none:
if (reg.index == 31)
text.append("sp");
else
LUAU_ASSERT(!"Unexpected register kind");
break;
}
}
void AssemblyBuilderA64::log(AddressA64 addr)
{
text.append("[");
switch (addr.kind)
{
case AddressKindA64::imm:
log(addr.base);
if (addr.data != 0)
logAppend(",#%d", addr.data);
break;
case AddressKindA64::reg:
log(addr.base);
text.append(",");
log(addr.offset);
if (addr.data != 0)
logAppend(" LSL #%d", addr.data);
break;
}
text.append("]");
}
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
} // namespace A64
} // namespace CodeGen
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
} // namespace Luau