luau/CodeGen/src/IrAnalysis.cpp

817 lines
25 KiB
C++
Raw Normal View History

2023-01-27 21:28:45 +00:00
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
2023-02-03 12:34:12 +00:00
#include "Luau/IrAnalysis.h"
2023-01-27 21:28:45 +00:00
2023-03-03 13:45:38 +00:00
#include "Luau/DenseHash.h"
2023-02-03 12:34:12 +00:00
#include "Luau/IrData.h"
#include "Luau/IrUtils.h"
2023-09-22 19:10:49 +01:00
#include "Luau/IrVisitUseDef.h"
2023-01-27 21:28:45 +00:00
2023-03-10 19:20:04 +00:00
#include "lobject.h"
#include <bitset>
2023-01-27 21:28:45 +00:00
#include <stddef.h>
namespace Luau
{
namespace CodeGen
{
2023-02-10 18:50:54 +00:00
void updateUseCounts(IrFunction& function)
2023-01-27 21:28:45 +00:00
{
2023-02-10 18:50:54 +00:00
std::vector<IrBlock>& blocks = function.blocks;
std::vector<IrInst>& instructions = function.instructions;
for (IrBlock& block : blocks)
block.useCount = 0;
for (IrInst& inst : instructions)
inst.useCount = 0;
2023-01-27 21:28:45 +00:00
2023-02-10 18:50:54 +00:00
auto checkOp = [&](IrOp op) {
if (op.kind == IrOpKind::Inst)
{
IrInst& target = instructions[op.index];
LUAU_ASSERT(target.useCount < 0xffff);
target.useCount++;
}
else if (op.kind == IrOpKind::Block)
{
IrBlock& target = blocks[op.index];
LUAU_ASSERT(target.useCount < 0xffff);
target.useCount++;
}
};
for (IrInst& inst : instructions)
{
checkOp(inst.a);
checkOp(inst.b);
checkOp(inst.c);
checkOp(inst.d);
checkOp(inst.e);
2023-02-24 18:24:22 +00:00
checkOp(inst.f);
2023-02-10 18:50:54 +00:00
}
2023-01-27 21:28:45 +00:00
}
2023-10-13 20:38:31 +01:00
void updateLastUseLocations(IrFunction& function, const std::vector<uint32_t>& sortedBlocks)
2023-01-27 21:28:45 +00:00
{
std::vector<IrInst>& instructions = function.instructions;
2023-10-13 20:38:31 +01:00
#if defined(LUAU_ASSERTENABLED)
// Last use assignements should be called only once
2023-01-27 21:28:45 +00:00
for (IrInst& inst : instructions)
2023-10-13 20:38:31 +01:00
LUAU_ASSERT(inst.lastUse == 0);
#endif
2023-01-27 21:28:45 +00:00
2023-10-13 20:38:31 +01:00
for (size_t i = 0; i < sortedBlocks.size(); ++i)
2023-01-27 21:28:45 +00:00
{
2023-10-13 20:38:31 +01:00
uint32_t blockIndex = sortedBlocks[i];
IrBlock& block = function.blocks[blockIndex];
2023-01-27 21:28:45 +00:00
2023-10-13 20:38:31 +01:00
if (block.kind == IrBlockKind::Dead)
2023-04-07 20:56:27 +01:00
continue;
2023-10-13 20:38:31 +01:00
LUAU_ASSERT(block.start != ~0u);
LUAU_ASSERT(block.finish != ~0u);
for (uint32_t instIdx = block.start; instIdx <= block.finish; instIdx++)
{
LUAU_ASSERT(instIdx < function.instructions.size());
IrInst& inst = instructions[instIdx];
auto checkOp = [&](IrOp op) {
if (op.kind == IrOpKind::Inst)
instructions[op.index].lastUse = uint32_t(instIdx);
};
if (isPseudo(inst.cmd))
continue;
checkOp(inst.a);
checkOp(inst.b);
checkOp(inst.c);
checkOp(inst.d);
checkOp(inst.e);
checkOp(inst.f);
}
2023-01-27 21:28:45 +00:00
}
}
2023-04-07 20:56:27 +01:00
uint32_t getNextInstUse(IrFunction& function, uint32_t targetInstIdx, uint32_t startInstIdx)
{
LUAU_ASSERT(startInstIdx < function.instructions.size());
IrInst& targetInst = function.instructions[targetInstIdx];
for (uint32_t i = startInstIdx; i <= targetInst.lastUse; i++)
{
IrInst& inst = function.instructions[i];
if (isPseudo(inst.cmd))
continue;
if (inst.a.kind == IrOpKind::Inst && inst.a.index == targetInstIdx)
return i;
if (inst.b.kind == IrOpKind::Inst && inst.b.index == targetInstIdx)
return i;
if (inst.c.kind == IrOpKind::Inst && inst.c.index == targetInstIdx)
return i;
if (inst.d.kind == IrOpKind::Inst && inst.d.index == targetInstIdx)
return i;
if (inst.e.kind == IrOpKind::Inst && inst.e.index == targetInstIdx)
return i;
if (inst.f.kind == IrOpKind::Inst && inst.f.index == targetInstIdx)
return i;
}
// There must be a next use since there is the last use location
2023-05-25 21:46:51 +01:00
LUAU_ASSERT(!"Failed to find next use");
2023-04-07 20:56:27 +01:00
return targetInst.lastUse;
}
2023-03-03 13:45:38 +00:00
std::pair<uint32_t, uint32_t> getLiveInOutValueCount(IrFunction& function, IrBlock& block)
{
uint32_t liveIns = 0;
uint32_t liveOuts = 0;
auto checkOp = [&](IrOp op) {
if (op.kind == IrOpKind::Inst)
{
if (op.index >= block.start && op.index <= block.finish)
liveOuts--;
else
liveIns++;
}
};
for (uint32_t instIdx = block.start; instIdx <= block.finish; instIdx++)
{
IrInst& inst = function.instructions[instIdx];
2023-04-07 20:56:27 +01:00
if (isPseudo(inst.cmd))
continue;
2023-03-03 13:45:38 +00:00
liveOuts += inst.useCount;
checkOp(inst.a);
checkOp(inst.b);
checkOp(inst.c);
checkOp(inst.d);
checkOp(inst.e);
checkOp(inst.f);
}
return std::make_pair(liveIns, liveOuts);
}
uint32_t getLiveInValueCount(IrFunction& function, IrBlock& block)
{
return getLiveInOutValueCount(function, block).first;
}
uint32_t getLiveOutValueCount(IrFunction& function, IrBlock& block)
{
return getLiveInOutValueCount(function, block).second;
}
2023-05-05 20:57:12 +01:00
void requireVariadicSequence(RegisterSet& sourceRs, const RegisterSet& defRs, uint8_t varargStart)
2023-03-10 19:20:04 +00:00
{
if (!defRs.varargSeq)
{
2023-03-17 14:59:30 +00:00
// Peel away registers from variadic sequence that we define
while (defRs.regs.test(varargStart))
varargStart++;
2023-03-10 19:20:04 +00:00
LUAU_ASSERT(!sourceRs.varargSeq || sourceRs.varargStart == varargStart);
sourceRs.varargSeq = true;
sourceRs.varargStart = varargStart;
}
else
{
// Variadic use sequence might include registers before def sequence
for (int i = varargStart; i < defRs.varargStart; i++)
{
if (!defRs.regs.test(i))
sourceRs.regs.set(i);
}
}
}
2023-08-11 13:55:30 +01:00
struct BlockVmRegLiveInComputation
{
BlockVmRegLiveInComputation(RegisterSet& defRs, std::bitset<256>& capturedRegs)
: defRs(defRs)
, capturedRegs(capturedRegs)
{
}
2023-03-10 19:20:04 +00:00
2023-08-11 13:55:30 +01:00
RegisterSet& defRs;
std::bitset<256>& capturedRegs;
RegisterSet inRs;
void def(IrOp op, int offset = 0)
{
defRs.regs.set(vmRegOp(op) + offset, true);
}
void use(IrOp op, int offset = 0)
{
if (!defRs.regs.test(vmRegOp(op) + offset))
inRs.regs.set(vmRegOp(op) + offset, true);
}
void maybeDef(IrOp op)
{
if (op.kind == IrOpKind::VmReg)
defRs.regs.set(vmRegOp(op), true);
}
void maybeUse(IrOp op)
{
if (op.kind == IrOpKind::VmReg)
{
if (!defRs.regs.test(vmRegOp(op)))
inRs.regs.set(vmRegOp(op), true);
}
}
void defVarargs(uint8_t varargStart)
{
defRs.varargSeq = true;
defRs.varargStart = varargStart;
}
void useVarargs(uint8_t varargStart)
{
requireVariadicSequence(inRs, defRs, varargStart);
// Variadic sequence has been consumed
defRs.varargSeq = false;
defRs.varargStart = 0;
}
void defRange(int start, int count)
{
if (count == -1)
{
defVarargs(start);
}
else
{
for (int i = start; i < start + count; i++)
defRs.regs.set(i, true);
}
}
void useRange(int start, int count)
{
if (count == -1)
{
useVarargs(start);
}
else
{
for (int i = start; i < start + count; i++)
{
if (!defRs.regs.test(i))
inRs.regs.set(i, true);
}
}
}
void capture(int reg)
{
capturedRegs.set(reg, true);
}
};
static RegisterSet computeBlockLiveInRegSet(IrFunction& function, const IrBlock& block, RegisterSet& defRs, std::bitset<256>& capturedRegs)
{
BlockVmRegLiveInComputation visitor(defRs, capturedRegs);
visitVmRegDefsUses(visitor, function, block);
return visitor.inRs;
2023-03-10 19:20:04 +00:00
}
// The algorithm used here is commonly known as backwards data-flow analysis.
// For each block, we track 'upward-exposed' (live-in) uses of registers - a use of a register that hasn't been defined in the block yet.
// We also track the set of registers that were defined in the block.
// When initial live-in sets of registers are computed, propagation of those uses upwards through predecessors is performed.
// If predecessor doesn't define the register, we have to add it to the live-in set.
// Extending the set of live-in registers of a block requires re-checking of that block.
// Propagation runs iteratively, using a worklist of blocks to visit until a fixed point is reached.
// This algorithm can be easily extended to cover phi instructions, but we don't use those yet.
static void computeCfgLiveInOutRegSets(IrFunction& function)
{
CfgInfo& info = function.cfg;
2023-03-17 14:59:30 +00:00
// Clear existing data
// 'in' and 'captured' data is not cleared because it will be overwritten below
info.def.clear();
info.out.clear();
2023-03-10 19:20:04 +00:00
// Try to compute Luau VM register use-def info
info.in.resize(function.blocks.size());
2023-03-17 14:59:30 +00:00
info.def.resize(function.blocks.size());
2023-03-10 19:20:04 +00:00
info.out.resize(function.blocks.size());
// Captured registers are tracked for the whole function
// It should be possible to have a more precise analysis for them in the future
std::bitset<256> capturedRegs;
// First we compute live-in set of each block
for (size_t blockIdx = 0; blockIdx < function.blocks.size(); blockIdx++)
{
const IrBlock& block = function.blocks[blockIdx];
if (block.kind == IrBlockKind::Dead)
continue;
2023-03-17 14:59:30 +00:00
info.in[blockIdx] = computeBlockLiveInRegSet(function, block, info.def[blockIdx], capturedRegs);
2023-03-10 19:20:04 +00:00
}
info.captured.regs = capturedRegs;
// With live-in sets ready, we can arrive at a fixed point for both in/out registers by requesting required registers from predecessors
std::vector<uint32_t> worklist;
std::vector<uint8_t> inWorklist;
inWorklist.resize(function.blocks.size(), false);
// We will have to visit each block at least once, so we add all of them to the worklist immediately
for (size_t blockIdx = 0; blockIdx < function.blocks.size(); blockIdx++)
{
const IrBlock& block = function.blocks[blockIdx];
if (block.kind == IrBlockKind::Dead)
continue;
worklist.push_back(uint32_t(blockIdx));
inWorklist[blockIdx] = true;
}
while (!worklist.empty())
{
uint32_t blockIdx = worklist.back();
worklist.pop_back();
inWorklist[blockIdx] = false;
IrBlock& curr = function.blocks[blockIdx];
RegisterSet& inRs = info.in[blockIdx];
2023-03-17 14:59:30 +00:00
RegisterSet& defRs = info.def[blockIdx];
2023-03-10 19:20:04 +00:00
RegisterSet& outRs = info.out[blockIdx];
// Current block has to provide all registers in successor blocks
2023-04-28 12:55:55 +01:00
BlockIteratorWrapper successorsIt = successors(info, blockIdx);
for (uint32_t succIdx : successorsIt)
2023-03-10 19:20:04 +00:00
{
IrBlock& succ = function.blocks[succIdx];
// This is a step away from the usual definition of live range flow through CFG
// Exit from a regular block to a fallback block is not considered a block terminator
// This is because fallback blocks define an alternative implementation of the same operations
// This can cause the current block to define more registers that actually were available at fallback entry
if (curr.kind != IrBlockKind::Fallback && succ.kind == IrBlockKind::Fallback)
2023-04-28 12:55:55 +01:00
{
// If this is the only successor, this skip will not be valid
LUAU_ASSERT(successorsIt.size() != 1);
2023-03-10 19:20:04 +00:00
continue;
2023-04-28 12:55:55 +01:00
}
2023-03-10 19:20:04 +00:00
const RegisterSet& succRs = info.in[succIdx];
outRs.regs |= succRs.regs;
if (succRs.varargSeq)
{
LUAU_ASSERT(!outRs.varargSeq || outRs.varargStart == succRs.varargStart);
outRs.varargSeq = true;
outRs.varargStart = succRs.varargStart;
}
}
RegisterSet oldInRs = inRs;
// If current block didn't define a live-out, it has to be live-in
inRs.regs |= outRs.regs & ~defRs.regs;
if (outRs.varargSeq)
requireVariadicSequence(inRs, defRs, outRs.varargStart);
// If we have new live-ins, we have to notify all predecessors
// We don't allow changes to the start of the variadic sequence, so we skip checking that member
if (inRs.regs != oldInRs.regs || inRs.varargSeq != oldInRs.varargSeq)
{
for (uint32_t predIdx : predecessors(info, blockIdx))
{
if (!inWorklist[predIdx])
{
worklist.push_back(predIdx);
inWorklist[predIdx] = true;
}
}
}
}
// If Proto data is available, validate that entry block arguments match required registers
if (function.proto)
{
RegisterSet& entryIn = info.in[0];
LUAU_ASSERT(!entryIn.varargSeq);
for (size_t i = 0; i < entryIn.regs.size(); i++)
LUAU_ASSERT(!entryIn.regs.test(i) || i < function.proto->numparams);
}
}
static void computeCfgBlockEdges(IrFunction& function)
{
CfgInfo& info = function.cfg;
2023-03-17 14:59:30 +00:00
// Clear existing data
info.predecessorsOffsets.clear();
info.successorsOffsets.clear();
2023-03-10 19:20:04 +00:00
// Compute predecessors block edges
info.predecessorsOffsets.reserve(function.blocks.size());
info.successorsOffsets.reserve(function.blocks.size());
int edgeCount = 0;
for (const IrBlock& block : function.blocks)
{
info.predecessorsOffsets.push_back(edgeCount);
edgeCount += block.useCount;
}
info.predecessors.resize(edgeCount);
info.successors.resize(edgeCount);
edgeCount = 0;
for (size_t blockIdx = 0; blockIdx < function.blocks.size(); blockIdx++)
{
const IrBlock& block = function.blocks[blockIdx];
info.successorsOffsets.push_back(edgeCount);
if (block.kind == IrBlockKind::Dead)
continue;
for (uint32_t instIdx = block.start; instIdx <= block.finish; instIdx++)
{
const IrInst& inst = function.instructions[instIdx];
auto checkOp = [&](IrOp op) {
if (op.kind == IrOpKind::Block)
{
// We use a trick here, where we use the starting offset of the predecessor list as the position where to write next predecessor
// The values will be adjusted back in a separate loop later
info.predecessors[info.predecessorsOffsets[op.index]++] = uint32_t(blockIdx);
info.successors[edgeCount++] = op.index;
}
};
checkOp(inst.a);
checkOp(inst.b);
checkOp(inst.c);
checkOp(inst.d);
checkOp(inst.e);
checkOp(inst.f);
}
}
// Offsets into the predecessor list were used as iterators in the previous loop
// To adjust them back, block use count is subtracted (predecessor count is equal to how many uses block has)
for (size_t blockIdx = 0; blockIdx < function.blocks.size(); blockIdx++)
{
const IrBlock& block = function.blocks[blockIdx];
info.predecessorsOffsets[blockIdx] -= block.useCount;
}
}
2023-06-09 13:20:36 +01:00
// Assign tree depth and pre- and post- DFS visit order of the tree/graph nodes
// Optionally, collect required node order into a vector
template<auto childIt>
void computeBlockOrdering(
IrFunction& function, std::vector<BlockOrdering>& ordering, std::vector<uint32_t>* preOrder, std::vector<uint32_t>* postOrder)
{
CfgInfo& info = function.cfg;
LUAU_ASSERT(info.idoms.size() == function.blocks.size());
ordering.clear();
ordering.resize(function.blocks.size());
// Get depth-first post-order using manual stack instead of recursion
struct StackItem
{
uint32_t blockIdx;
uint32_t itPos;
};
std::vector<StackItem> stack;
if (preOrder)
preOrder->reserve(function.blocks.size());
if (postOrder)
postOrder->reserve(function.blocks.size());
uint32_t nextPreOrder = 0;
uint32_t nextPostOrder = 0;
stack.push_back({0, 0});
ordering[0].visited = true;
ordering[0].preOrder = nextPreOrder++;
while (!stack.empty())
{
StackItem& item = stack.back();
BlockIteratorWrapper children = childIt(info, item.blockIdx);
if (item.itPos < children.size())
{
uint32_t childIdx = children[item.itPos++];
BlockOrdering& childOrdering = ordering[childIdx];
if (!childOrdering.visited)
{
childOrdering.visited = true;
childOrdering.depth = uint32_t(stack.size());
childOrdering.preOrder = nextPreOrder++;
if (preOrder)
preOrder->push_back(item.blockIdx);
stack.push_back({childIdx, 0});
}
}
else
{
ordering[item.blockIdx].postOrder = nextPostOrder++;
if (postOrder)
postOrder->push_back(item.blockIdx);
stack.pop_back();
}
}
}
// Dominance tree construction based on 'A Simple, Fast Dominance Algorithm' [Keith D. Cooper, et al]
// This solution has quadratic complexity in the worst case.
// It is possible to switch to SEMI-NCA algorithm (also quadratic) mentioned in 'Linear-Time Algorithms for Dominators and Related Problems' [Loukas
// Georgiadis]
// Find block that is common between blocks 'a' and 'b' on the path towards the entry
static uint32_t findCommonDominator(const std::vector<uint32_t>& idoms, const std::vector<BlockOrdering>& data, uint32_t a, uint32_t b)
{
while (a != b)
{
while (data[a].postOrder < data[b].postOrder)
{
a = idoms[a];
LUAU_ASSERT(a != ~0u);
}
while (data[b].postOrder < data[a].postOrder)
{
b = idoms[b];
LUAU_ASSERT(b != ~0u);
}
}
return a;
}
void computeCfgImmediateDominators(IrFunction& function)
{
CfgInfo& info = function.cfg;
// Clear existing data
info.idoms.clear();
info.idoms.resize(function.blocks.size(), ~0u);
std::vector<BlockOrdering> ordering;
std::vector<uint32_t> blocksInPostOrder;
computeBlockOrdering<successors>(function, ordering, /* preOrder */ nullptr, &blocksInPostOrder);
// Entry node is temporarily marked to be an idom of itself to make algorithm work
info.idoms[0] = 0;
// Iteratively compute immediate dominators
bool updated = true;
while (updated)
{
updated = false;
// Go over blocks in reverse post-order of CFG
// '- 2' skips the root node which is last in post-order traversal
for (int i = int(blocksInPostOrder.size() - 2); i >= 0; i--)
{
uint32_t blockIdx = blocksInPostOrder[i];
uint32_t newIdom = ~0u;
for (uint32_t predIdx : predecessors(info, blockIdx))
{
if (uint32_t predIdom = info.idoms[predIdx]; predIdom != ~0u)
{
if (newIdom == ~0u)
newIdom = predIdx;
else
newIdom = findCommonDominator(info.idoms, ordering, newIdom, predIdx);
}
}
if (newIdom != info.idoms[blockIdx])
{
info.idoms[blockIdx] = newIdom;
// Run until a fixed point is reached
updated = true;
}
}
}
// Entry node doesn't have an immediate dominator
info.idoms[0] = ~0u;
}
void computeCfgDominanceTreeChildren(IrFunction& function)
{
CfgInfo& info = function.cfg;
// Clear existing data
info.domChildren.clear();
info.domChildrenOffsets.clear();
info.domChildrenOffsets.resize(function.blocks.size());
// First we need to know children count of each node in the dominance tree
// We use offset array for to hold this data, counts will be readjusted to offsets later
for (size_t blockIdx = 0; blockIdx < function.blocks.size(); blockIdx++)
{
uint32_t domParent = info.idoms[blockIdx];
if (domParent != ~0u)
info.domChildrenOffsets[domParent]++;
}
// Convert counds to offsets using prefix sum
uint32_t total = 0;
for (size_t blockIdx = 0; blockIdx < function.blocks.size(); blockIdx++)
{
uint32_t& offset = info.domChildrenOffsets[blockIdx];
uint32_t count = offset;
offset = total;
total += count;
}
info.domChildren.resize(total);
for (size_t blockIdx = 0; blockIdx < function.blocks.size(); blockIdx++)
{
// We use a trick here, where we use the starting offset of the dominance children list as the position where to write next child
// The values will be adjusted back in a separate loop later
uint32_t domParent = info.idoms[blockIdx];
if (domParent != ~0u)
info.domChildren[info.domChildrenOffsets[domParent]++] = uint32_t(blockIdx);
}
// Offsets into the dominance children list were used as iterators in the previous loop
// That process basically moved the values in the array 1 step towards the start
// Here we move them one step towards the end and restore 0 for first offset
for (int blockIdx = int(function.blocks.size() - 1); blockIdx > 0; blockIdx--)
info.domChildrenOffsets[blockIdx] = info.domChildrenOffsets[blockIdx - 1];
info.domChildrenOffsets[0] = 0;
computeBlockOrdering<domChildren>(function, info.domOrdering, /* preOrder */ nullptr, /* postOrder */ nullptr);
}
2023-08-18 18:06:29 +01:00
// This algorithm is based on 'A Linear Time Algorithm for Placing Phi-Nodes' [Vugranam C.Sreedhar]
// It uses the optimized form from LLVM that relies an implicit DJ-graph (join edges are edges of the CFG that are not part of the dominance tree)
void computeIteratedDominanceFrontierForDefs(
IdfContext& ctx, const IrFunction& function, const std::vector<uint32_t>& defBlocks, const std::vector<uint32_t>& liveInBlocks)
{
LUAU_ASSERT(!function.cfg.domOrdering.empty());
LUAU_ASSERT(ctx.queue.empty());
LUAU_ASSERT(ctx.worklist.empty());
ctx.idf.clear();
ctx.visits.clear();
ctx.visits.resize(function.blocks.size());
for (uint32_t defBlock : defBlocks)
{
const BlockOrdering& ordering = function.cfg.domOrdering[defBlock];
ctx.queue.push({defBlock, ordering});
}
while (!ctx.queue.empty())
{
IdfContext::BlockAndOrdering root = ctx.queue.top();
ctx.queue.pop();
LUAU_ASSERT(ctx.worklist.empty());
ctx.worklist.push_back(root.blockIdx);
ctx.visits[root.blockIdx].seenInWorklist = true;
while (!ctx.worklist.empty())
{
uint32_t blockIdx = ctx.worklist.back();
ctx.worklist.pop_back();
// Check if successor node is the node where dominance of the current root ends, making it a part of dominance frontier set
for (uint32_t succIdx : successors(function.cfg, blockIdx))
{
const BlockOrdering& succOrdering = function.cfg.domOrdering[succIdx];
// Nodes in the DF of root always have a level that is less than or equal to the level of root
if (succOrdering.depth > root.ordering.depth)
continue;
if (ctx.visits[succIdx].seenInQueue)
continue;
ctx.visits[succIdx].seenInQueue = true;
// Skip successor block if it doesn't have our variable as a live in there
if (std::find(liveInBlocks.begin(), liveInBlocks.end(), succIdx) == liveInBlocks.end())
continue;
ctx.idf.push_back(succIdx);
// If block doesn't have its own definition of the variable, add it to the queue
if (std::find(defBlocks.begin(), defBlocks.end(), succIdx) == defBlocks.end())
ctx.queue.push({succIdx, succOrdering});
}
// Add dominance tree children that haven't been processed yet to the worklist
for (uint32_t domChildIdx : domChildren(function.cfg, blockIdx))
{
if (ctx.visits[domChildIdx].seenInWorklist)
continue;
ctx.visits[domChildIdx].seenInWorklist = true;
ctx.worklist.push_back(domChildIdx);
}
}
}
}
2023-03-10 19:20:04 +00:00
void computeCfgInfo(IrFunction& function)
{
computeCfgBlockEdges(function);
2023-06-09 13:20:36 +01:00
computeCfgImmediateDominators(function);
computeCfgDominanceTreeChildren(function);
2023-03-10 19:20:04 +00:00
computeCfgLiveInOutRegSets(function);
}
2023-03-24 17:34:14 +00:00
BlockIteratorWrapper predecessors(const CfgInfo& cfg, uint32_t blockIdx)
2023-03-10 19:20:04 +00:00
{
LUAU_ASSERT(blockIdx < cfg.predecessorsOffsets.size());
uint32_t start = cfg.predecessorsOffsets[blockIdx];
uint32_t end = blockIdx + 1 < cfg.predecessorsOffsets.size() ? cfg.predecessorsOffsets[blockIdx + 1] : uint32_t(cfg.predecessors.size());
return BlockIteratorWrapper{cfg.predecessors.data() + start, cfg.predecessors.data() + end};
}
2023-03-24 17:34:14 +00:00
BlockIteratorWrapper successors(const CfgInfo& cfg, uint32_t blockIdx)
2023-03-10 19:20:04 +00:00
{
LUAU_ASSERT(blockIdx < cfg.successorsOffsets.size());
uint32_t start = cfg.successorsOffsets[blockIdx];
uint32_t end = blockIdx + 1 < cfg.successorsOffsets.size() ? cfg.successorsOffsets[blockIdx + 1] : uint32_t(cfg.successors.size());
return BlockIteratorWrapper{cfg.successors.data() + start, cfg.successors.data() + end};
}
2023-06-09 13:20:36 +01:00
BlockIteratorWrapper domChildren(const CfgInfo& cfg, uint32_t blockIdx)
{
LUAU_ASSERT(blockIdx < cfg.domChildrenOffsets.size());
uint32_t start = cfg.domChildrenOffsets[blockIdx];
uint32_t end = blockIdx + 1 < cfg.domChildrenOffsets.size() ? cfg.domChildrenOffsets[blockIdx + 1] : uint32_t(cfg.domChildren.size());
return BlockIteratorWrapper{cfg.domChildren.data() + start, cfg.domChildren.data() + end};
}
2023-01-27 21:28:45 +00:00
} // namespace CodeGen
} // namespace Luau