mirror of
https://github.com/luau-lang/luau.git
synced 2025-01-22 18:58:06 +00:00
186 lines
6.3 KiB
Python
186 lines
6.3 KiB
Python
|
#!/usr/bin/python3
|
||
|
# This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
|
||
|
|
||
|
# NOTE: This script is experimental. This script uses a linear regression to construct a model for predicting native
|
||
|
# code size from bytecode. Some initial work has been done to analyze a large corpus of Luau scripts, and while for
|
||
|
# most functions the model predicts the native code size quite well (+/-25%), there are many cases where the predicted
|
||
|
# size is off by as much as 13x. Notably, the predicted size is generally better for smaller functions and worse for
|
||
|
# larger functions. Therefore, in its current form this analysis is probably not suitable for use as a basis for
|
||
|
# compilation heuristics. A nonlinear model may produce better results. The script here exists as a foundation for
|
||
|
# further exploration.
|
||
|
|
||
|
|
||
|
import json
|
||
|
import glob
|
||
|
from pathlib import Path
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
from sklearn.linear_model import LinearRegression
|
||
|
import matplotlib.pyplot as plt
|
||
|
import argparse
|
||
|
|
||
|
|
||
|
def readStats(statsFileGlob):
|
||
|
'''Reads files matching the supplied glob.
|
||
|
Files should be generated by the Compile.cpp CLI'''
|
||
|
|
||
|
statsFiles = glob.glob(statsFileGlob, recursive=True)
|
||
|
|
||
|
print("Reading %s files." % len(statsFiles))
|
||
|
|
||
|
df_dict = {
|
||
|
"statsFile": [],
|
||
|
"script": [],
|
||
|
"name": [],
|
||
|
"line": [],
|
||
|
"bcodeCount": [],
|
||
|
"irCount": [],
|
||
|
"asmCount": [],
|
||
|
"bytecodeSummary": []
|
||
|
}
|
||
|
|
||
|
for statsFile in statsFiles:
|
||
|
stats = json.loads(Path(statsFile).read_text())
|
||
|
for script, filestats in stats.items():
|
||
|
for funstats in filestats["lowerStats"]["functions"]:
|
||
|
df_dict["statsFile"].append(statsFile)
|
||
|
df_dict["script"].append(script)
|
||
|
df_dict["name"].append(funstats["name"])
|
||
|
df_dict["line"].append(funstats["line"])
|
||
|
df_dict["bcodeCount"].append(funstats["bcodeCount"])
|
||
|
df_dict["irCount"].append(funstats["irCount"])
|
||
|
df_dict["asmCount"].append(funstats["asmCount"])
|
||
|
df_dict["bytecodeSummary"].append(
|
||
|
tuple(funstats["bytecodeSummary"][0]))
|
||
|
|
||
|
return pd.DataFrame.from_dict(df_dict)
|
||
|
|
||
|
|
||
|
def addFunctionCount(df):
|
||
|
df2 = df.drop_duplicates(subset=['asmCount', 'bytecodeSummary'], ignore_index=True).groupby(
|
||
|
['bytecodeSummary']).size().reset_index(name='functionCount')
|
||
|
return df.merge(df2, on='bytecodeSummary', how='left')
|
||
|
|
||
|
# def deduplicateDf(df):
|
||
|
# return df.drop_duplicates(subset=['bcodeCount', 'asmCount', 'bytecodeSummary'], ignore_index=True)
|
||
|
|
||
|
|
||
|
def randomizeDf(df):
|
||
|
return df.sample(frac=1)
|
||
|
|
||
|
|
||
|
def splitSeq(seq):
|
||
|
n = len(seq) // 2
|
||
|
return (seq[:n], seq[n:])
|
||
|
|
||
|
|
||
|
def trainAsmSizePredictor(df):
|
||
|
XTrain, XValidate = splitSeq(
|
||
|
np.array([list(seq) for seq in df.bytecodeSummary]))
|
||
|
YTrain, YValidate = splitSeq(np.array(df.asmCount))
|
||
|
|
||
|
reg = LinearRegression(
|
||
|
positive=True, fit_intercept=False).fit(XTrain, YTrain)
|
||
|
YPredict1 = reg.predict(XTrain)
|
||
|
YPredict2 = reg.predict(XValidate)
|
||
|
|
||
|
trainRmse = np.sqrt(np.mean((np.array(YPredict1) - np.array(YTrain))**2))
|
||
|
predictRmse = np.sqrt(
|
||
|
np.mean((np.array(YPredict2) - np.array(YValidate))**2))
|
||
|
|
||
|
print(f"Score: {reg.score(XTrain, YTrain)}")
|
||
|
print(f"Training RMSE: {trainRmse}")
|
||
|
print(f"Prediction RMSE: {predictRmse}")
|
||
|
print(f"Model Intercept: {reg.intercept_}")
|
||
|
print(f"Model Coefficients:\n{reg.coef_}")
|
||
|
|
||
|
df.loc[:, 'asmCountPredicted'] = np.concatenate(
|
||
|
(YPredict1, YPredict2)).round().astype(int)
|
||
|
df['usedForTraining'] = np.concatenate(
|
||
|
(np.repeat(True, YPredict1.size), np.repeat(False, YPredict2.size)))
|
||
|
df['diff'] = df['asmCountPredicted'] - df['asmCount']
|
||
|
df['diffPerc'] = (100 * df['diff']) / df['asmCount']
|
||
|
df.loc[(df["diffPerc"] == np.inf), 'diffPerc'] = 0.0
|
||
|
df['diffPerc'] = df['diffPerc'].round()
|
||
|
|
||
|
return (reg, df)
|
||
|
|
||
|
|
||
|
def saveModel(reg, file):
|
||
|
f = open(file, "w")
|
||
|
f.write(f"Intercept: {reg.intercept_}\n")
|
||
|
f.write(f"Coefficients: \n{reg.coef_}\n")
|
||
|
f.close()
|
||
|
|
||
|
|
||
|
def bcodeVsAsmPlot(df, plotFile=None, minBcodeCount=None, maxBcodeCount=None):
|
||
|
if minBcodeCount is None:
|
||
|
minBcodeCount = df.bcodeCount.min()
|
||
|
if maxBcodeCount is None:
|
||
|
maxBcodeCount = df.bcodeCount.max()
|
||
|
|
||
|
subDf = df[(df.bcodeCount <= maxBcodeCount) &
|
||
|
(df.bcodeCount >= minBcodeCount)]
|
||
|
|
||
|
plt.scatter(subDf.bcodeCount, subDf.asmCount)
|
||
|
plt.title("ASM variation by Bytecode")
|
||
|
plt.xlabel("Bytecode Instruction Count")
|
||
|
plt.ylabel("ASM Instruction Count")
|
||
|
|
||
|
if plotFile is not None:
|
||
|
plt.savefig(plotFile)
|
||
|
|
||
|
return plt
|
||
|
|
||
|
|
||
|
def predictionErrorPlot(df, plotFile=None, minPerc=None, maxPerc=None, bins=200):
|
||
|
if minPerc is None:
|
||
|
minPerc = df['diffPerc'].min()
|
||
|
if maxPerc is None:
|
||
|
maxPerc = df['diffPerc'].max()
|
||
|
|
||
|
plotDf = df[(df["usedForTraining"] == False) & (
|
||
|
df["diffPerc"] >= minPerc) & (df["diffPerc"] <= maxPerc)]
|
||
|
|
||
|
plt.hist(plotDf["diffPerc"], bins=bins)
|
||
|
plt.title("Prediction Error Distribution")
|
||
|
plt.xlabel("Prediction Error %")
|
||
|
plt.ylabel("Function Count")
|
||
|
|
||
|
if plotFile is not None:
|
||
|
plt.savefig(plotFile)
|
||
|
|
||
|
return plt
|
||
|
|
||
|
|
||
|
def parseArgs():
|
||
|
parser = argparse.ArgumentParser(
|
||
|
prog='codesizeprediction.py',
|
||
|
description='Constructs a linear regression model to predict native instruction count from bytecode opcode distribution')
|
||
|
parser.add_argument("fileglob",
|
||
|
help="glob pattern for stats files to be used for training")
|
||
|
parser.add_argument("modelfile",
|
||
|
help="text file to save model details")
|
||
|
parser.add_argument("--nativesizefig",
|
||
|
help="path for saving the plot showing the variation of native code size with bytecode")
|
||
|
parser.add_argument("--predictionerrorfig",
|
||
|
help="path for saving the plot showing the distribution of prediction error")
|
||
|
return parser.parse_args()
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
args = parseArgs()
|
||
|
|
||
|
df0 = readStats(args.fileglob)
|
||
|
df1 = addFunctionCount(df0)
|
||
|
df2 = randomizeDf(df1)
|
||
|
|
||
|
plt = bcodeVsAsmPlot(df2, args.nativesizefig, 0, 100)
|
||
|
plt.show()
|
||
|
|
||
|
(reg, df4) = trainAsmSizePredictor(df2)
|
||
|
saveModel(reg, args.modelfile)
|
||
|
|
||
|
plt = predictionErrorPlot(df4, args.predictionerrorfig, -200, 200)
|
||
|
plt.show()
|