luau/Analysis/src/ConstraintSolver.cpp

875 lines
27 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
2022-08-04 23:35:33 +01:00
#include "Luau/ApplyTypeFunction.h"
#include "Luau/ConstraintSolver.h"
#include "Luau/Instantiation.h"
2022-06-24 02:56:00 +01:00
#include "Luau/Location.h"
#include "Luau/Quantify.h"
#include "Luau/ToString.h"
#include "Luau/Unifier.h"
2022-08-04 23:35:33 +01:00
#include "Luau/VisitTypeVar.h"
LUAU_FASTFLAGVARIABLE(DebugLuauLogSolver, false);
2022-06-17 02:05:14 +01:00
LUAU_FASTFLAGVARIABLE(DebugLuauLogSolverToJson, false);
LUAU_FASTFLAG(LuauFixNameMaps)
namespace Luau
{
2022-07-29 05:24:07 +01:00
[[maybe_unused]] static void dumpBindings(NotNull<Scope> scope, ToStringOptions& opts)
{
for (const auto& [k, v] : scope->bindings)
{
if (FFlag::LuauFixNameMaps)
{
auto d = toString(v.typeId, opts);
printf("\t%s : %s\n", k.c_str(), d.c_str());
}
else
{
auto d = toStringDetailed(v.typeId, opts);
opts.DEPRECATED_nameMap = d.DEPRECATED_nameMap;
printf("\t%s : %s\n", k.c_str(), d.name.c_str());
}
}
2022-07-29 05:24:07 +01:00
for (NotNull<Scope> child : scope->children)
dumpBindings(child, opts);
}
2022-07-29 05:24:07 +01:00
static void dumpConstraints(NotNull<Scope> scope, ToStringOptions& opts)
{
for (const ConstraintPtr& c : scope->constraints)
{
printf("\t%s\n", toString(*c, opts).c_str());
}
2022-07-29 05:24:07 +01:00
for (NotNull<Scope> child : scope->children)
dumpConstraints(child, opts);
}
2022-08-04 23:35:33 +01:00
static std::pair<std::vector<TypeId>, std::vector<TypePackId>> saturateArguments(
const TypeFun& fn, const std::vector<TypeId>& rawTypeArguments, const std::vector<TypePackId>& rawPackArguments, TypeArena* arena)
{
std::vector<TypeId> saturatedTypeArguments;
std::vector<TypeId> extraTypes;
std::vector<TypePackId> saturatedPackArguments;
for (size_t i = 0; i < rawTypeArguments.size(); ++i)
{
TypeId ty = rawTypeArguments[i];
if (i < fn.typeParams.size())
saturatedTypeArguments.push_back(ty);
else
extraTypes.push_back(ty);
}
// If we collected extra types, put them in a type pack now. This case is
// mutually exclusive with the type pack -> type conversion we do below:
// extraTypes will only have elements in it if we have more types than we
// have parameter slots for them to go into.
if (!extraTypes.empty())
{
saturatedPackArguments.push_back(arena->addTypePack(extraTypes));
}
for (size_t i = 0; i < rawPackArguments.size(); ++i)
{
TypePackId tp = rawPackArguments[i];
// If we are short on regular type saturatedTypeArguments and we have a single
// element type pack, we can decompose that to the type it contains and
// use that as a type parameter.
if (saturatedTypeArguments.size() < fn.typeParams.size() && size(tp) == 1 && finite(tp) && first(tp) && saturatedPackArguments.empty())
{
saturatedTypeArguments.push_back(*first(tp));
}
else
{
saturatedPackArguments.push_back(tp);
}
}
size_t typesProvided = saturatedTypeArguments.size();
size_t typesRequired = fn.typeParams.size();
size_t packsProvided = saturatedPackArguments.size();
size_t packsRequired = fn.typePackParams.size();
// Extra types should be accumulated in extraTypes, not saturatedTypeArguments. Extra
// packs will be accumulated in saturatedPackArguments, so we don't have an
// assertion for that.
LUAU_ASSERT(typesProvided <= typesRequired);
// If we didn't provide enough types, but we did provide a type pack, we
// don't want to use defaults. The rationale for this is that if the user
// provides a pack but doesn't provide enough types, we want to report an
// error, rather than simply using the default saturatedTypeArguments, if they exist. If
// they did provide enough types, but not enough packs, we of course want to
// use the default packs.
bool needsDefaults = (typesProvided < typesRequired && packsProvided == 0) || (typesProvided == typesRequired && packsProvided < packsRequired);
if (needsDefaults)
{
// Default types can reference earlier types. It's legal to write
// something like
// type T<A, B = A> = (A, B) -> number
// and we need to respect that. We use an ApplyTypeFunction for this.
ApplyTypeFunction atf{arena};
for (size_t i = 0; i < typesProvided; ++i)
atf.typeArguments[fn.typeParams[i].ty] = saturatedTypeArguments[i];
for (size_t i = typesProvided; i < typesRequired; ++i)
{
TypeId defaultTy = fn.typeParams[i].defaultValue.value_or(nullptr);
// We will fill this in with the error type later.
if (!defaultTy)
break;
TypeId instantiatedDefault = atf.substitute(defaultTy).value_or(getSingletonTypes().errorRecoveryType());
atf.typeArguments[fn.typeParams[i].ty] = instantiatedDefault;
saturatedTypeArguments.push_back(instantiatedDefault);
}
for (size_t i = 0; i < packsProvided; ++i)
{
atf.typePackArguments[fn.typePackParams[i].tp] = saturatedPackArguments[i];
}
for (size_t i = packsProvided; i < packsRequired; ++i)
{
TypePackId defaultTp = fn.typePackParams[i].defaultValue.value_or(nullptr);
// We will fill this in with the error type pack later.
if (!defaultTp)
break;
TypePackId instantiatedDefault = atf.substitute(defaultTp).value_or(getSingletonTypes().errorRecoveryTypePack());
atf.typePackArguments[fn.typePackParams[i].tp] = instantiatedDefault;
saturatedPackArguments.push_back(instantiatedDefault);
}
}
// If we didn't create an extra type pack from overflowing parameter packs,
// and we're still missing a type pack, plug in an empty type pack as the
// value of the empty packs.
if (extraTypes.empty() && saturatedPackArguments.size() + 1 == fn.typePackParams.size())
{
saturatedPackArguments.push_back(arena->addTypePack({}));
}
// We need to have _something_ when we substitute the generic saturatedTypeArguments,
// even if they're missing, so we use the error type as a filler.
for (size_t i = saturatedTypeArguments.size(); i < typesRequired; ++i)
{
saturatedTypeArguments.push_back(getSingletonTypes().errorRecoveryType());
}
for (size_t i = saturatedPackArguments.size(); i < packsRequired; ++i)
{
saturatedPackArguments.push_back(getSingletonTypes().errorRecoveryTypePack());
}
// At this point, these two conditions should be true. If they aren't we
// will run into access violations.
LUAU_ASSERT(saturatedTypeArguments.size() == fn.typeParams.size());
LUAU_ASSERT(saturatedPackArguments.size() == fn.typePackParams.size());
return {saturatedTypeArguments, saturatedPackArguments};
}
bool InstantiationSignature::operator==(const InstantiationSignature& rhs) const
{
return fn == rhs.fn && arguments == rhs.arguments && packArguments == rhs.packArguments;
}
size_t HashInstantiationSignature::operator()(const InstantiationSignature& signature) const
{
size_t hash = std::hash<TypeId>{}(signature.fn.type);
for (const GenericTypeDefinition& p : signature.fn.typeParams)
{
hash ^= (std::hash<TypeId>{}(p.ty) << 1);
}
for (const GenericTypePackDefinition& p : signature.fn.typePackParams)
{
hash ^= (std::hash<TypePackId>{}(p.tp) << 1);
}
for (const TypeId a : signature.arguments)
{
hash ^= (std::hash<TypeId>{}(a) << 1);
}
for (const TypePackId a : signature.packArguments)
{
hash ^= (std::hash<TypePackId>{}(a) << 1);
}
return hash;
}
2022-07-29 05:24:07 +01:00
void dump(NotNull<Scope> rootScope, ToStringOptions& opts)
{
printf("constraints:\n");
dumpConstraints(rootScope, opts);
}
void dump(ConstraintSolver* cs, ToStringOptions& opts)
{
printf("constraints:\n");
for (NotNull<const Constraint> c : cs->unsolvedConstraints)
{
auto it = cs->blockedConstraints.find(c);
int blockCount = it == cs->blockedConstraints.end() ? 0 : int(it->second);
printf("\t%d\t%s\n", blockCount, toString(*c, opts).c_str());
for (NotNull<Constraint> dep : c->dependencies)
{
auto unsolvedIter = std::find(begin(cs->unsolvedConstraints), end(cs->unsolvedConstraints), dep);
if (unsolvedIter == cs->unsolvedConstraints.end())
continue;
auto it = cs->blockedConstraints.find(dep);
int blockCount = it == cs->blockedConstraints.end() ? 0 : int(it->second);
printf("\t%d\t\t%s\n", blockCount, toString(*dep, opts).c_str());
}
}
}
2022-07-29 05:24:07 +01:00
ConstraintSolver::ConstraintSolver(TypeArena* arena, NotNull<Scope> rootScope)
: arena(arena)
, constraints(collectConstraints(rootScope))
, rootScope(rootScope)
{
2022-06-17 02:05:14 +01:00
for (NotNull<Constraint> c : constraints)
{
2022-06-17 02:05:14 +01:00
unsolvedConstraints.push_back(c);
2022-06-17 02:05:14 +01:00
for (NotNull<const Constraint> dep : c->dependencies)
{
block(dep, c);
}
}
}
void ConstraintSolver::run()
{
if (done())
return;
ToStringOptions opts;
2022-08-04 23:35:33 +01:00
opts.exhaustive = true;
if (FFlag::DebugLuauLogSolver)
{
printf("Starting solver\n");
dump(this, opts);
}
2022-06-17 02:05:14 +01:00
if (FFlag::DebugLuauLogSolverToJson)
{
2022-06-17 02:05:14 +01:00
logger.captureBoundarySnapshot(rootScope, unsolvedConstraints);
}
2022-06-17 02:05:14 +01:00
auto runSolverPass = [&](bool force) {
bool progress = false;
2022-06-17 02:05:14 +01:00
size_t i = 0;
while (i < unsolvedConstraints.size())
{
2022-06-17 02:05:14 +01:00
NotNull<const Constraint> c = unsolvedConstraints[i];
if (!force && isBlocked(c))
{
2022-06-17 02:05:14 +01:00
++i;
continue;
}
2022-06-17 02:05:14 +01:00
std::string saveMe = FFlag::DebugLuauLogSolver ? toString(*c, opts) : std::string{};
2022-06-17 02:05:14 +01:00
if (FFlag::DebugLuauLogSolverToJson)
{
logger.prepareStepSnapshot(rootScope, c, unsolvedConstraints, force);
2022-06-17 02:05:14 +01:00
}
bool success = tryDispatch(c, force);
progress |= success;
if (success)
{
unblock(c);
2022-06-17 02:05:14 +01:00
unsolvedConstraints.erase(unsolvedConstraints.begin() + i);
if (FFlag::DebugLuauLogSolverToJson)
{
logger.commitPreparedStepSnapshot();
}
if (FFlag::DebugLuauLogSolver)
{
2022-06-17 02:05:14 +01:00
if (force)
printf("Force ");
printf("Dispatched\n\t%s\n", saveMe.c_str());
dump(this, opts);
}
}
2022-06-17 02:05:14 +01:00
else
++i;
if (force && success)
return true;
}
2022-06-17 02:05:14 +01:00
return progress;
};
bool progress = false;
do
{
progress = runSolverPass(false);
if (!progress)
progress |= runSolverPass(true);
} while (progress);
if (FFlag::DebugLuauLogSolver)
2022-06-17 02:05:14 +01:00
{
dumpBindings(rootScope, opts);
2022-06-17 02:05:14 +01:00
}
2022-06-17 02:05:14 +01:00
if (FFlag::DebugLuauLogSolverToJson)
{
logger.captureBoundarySnapshot(rootScope, unsolvedConstraints);
printf("Logger output:\n%s\n", logger.compileOutput().c_str());
}
}
bool ConstraintSolver::done()
{
return unsolvedConstraints.empty();
}
2022-06-17 02:05:14 +01:00
bool ConstraintSolver::tryDispatch(NotNull<const Constraint> constraint, bool force)
{
2022-06-17 02:05:14 +01:00
if (!force && isBlocked(constraint))
return false;
bool success = false;
if (auto sc = get<SubtypeConstraint>(*constraint))
2022-06-17 02:05:14 +01:00
success = tryDispatch(*sc, constraint, force);
else if (auto psc = get<PackSubtypeConstraint>(*constraint))
2022-06-17 02:05:14 +01:00
success = tryDispatch(*psc, constraint, force);
else if (auto gc = get<GeneralizationConstraint>(*constraint))
2022-06-17 02:05:14 +01:00
success = tryDispatch(*gc, constraint, force);
else if (auto ic = get<InstantiationConstraint>(*constraint))
2022-06-17 02:05:14 +01:00
success = tryDispatch(*ic, constraint, force);
2022-07-01 00:52:43 +01:00
else if (auto uc = get<UnaryConstraint>(*constraint))
success = tryDispatch(*uc, constraint, force);
else if (auto bc = get<BinaryConstraint>(*constraint))
success = tryDispatch(*bc, constraint, force);
2022-06-24 02:56:00 +01:00
else if (auto nc = get<NameConstraint>(*constraint))
success = tryDispatch(*nc, constraint);
2022-08-04 23:35:33 +01:00
else if (auto taec = get<TypeAliasExpansionConstraint>(*constraint))
success = tryDispatch(*taec, constraint);
else
LUAU_ASSERT(0);
if (success)
{
unblock(constraint);
}
return success;
}
2022-06-17 02:05:14 +01:00
bool ConstraintSolver::tryDispatch(const SubtypeConstraint& c, NotNull<const Constraint> constraint, bool force)
{
2022-06-17 02:05:14 +01:00
if (isBlocked(c.subType))
return block(c.subType, constraint);
else if (isBlocked(c.superType))
return block(c.superType, constraint);
unify(c.subType, c.superType, constraint->scope);
2022-06-17 02:05:14 +01:00
return true;
}
2022-06-17 02:05:14 +01:00
bool ConstraintSolver::tryDispatch(const PackSubtypeConstraint& c, NotNull<const Constraint> constraint, bool force)
{
unify(c.subPack, c.superPack, constraint->scope);
return true;
}
2022-06-17 02:05:14 +01:00
bool ConstraintSolver::tryDispatch(const GeneralizationConstraint& c, NotNull<const Constraint> constraint, bool force)
{
2022-06-17 02:05:14 +01:00
if (isBlocked(c.sourceType))
return block(c.sourceType, constraint);
TypeId generalized = quantify(arena, c.sourceType, constraint->scope);
2022-06-17 02:05:14 +01:00
if (isBlocked(c.generalizedType))
asMutable(c.generalizedType)->ty.emplace<BoundTypeVar>(generalized);
2022-06-17 02:05:14 +01:00
else
unify(c.generalizedType, generalized, constraint->scope);
2022-06-17 02:05:14 +01:00
unblock(c.generalizedType);
unblock(c.sourceType);
return true;
}
2022-06-17 02:05:14 +01:00
bool ConstraintSolver::tryDispatch(const InstantiationConstraint& c, NotNull<const Constraint> constraint, bool force)
{
2022-06-17 02:05:14 +01:00
if (isBlocked(c.superType))
return block(c.superType, constraint);
Instantiation inst(TxnLog::empty(), arena, TypeLevel{});
std::optional<TypeId> instantiated = inst.substitute(c.superType);
LUAU_ASSERT(instantiated); // TODO FIXME HANDLE THIS
2022-07-01 00:52:43 +01:00
if (isBlocked(c.subType))
asMutable(c.subType)->ty.emplace<BoundTypeVar>(*instantiated);
else
unify(c.subType, *instantiated, constraint->scope);
2022-07-01 00:52:43 +01:00
unblock(c.subType);
return true;
}
2022-07-01 00:52:43 +01:00
bool ConstraintSolver::tryDispatch(const UnaryConstraint& c, NotNull<const Constraint> constraint, bool force)
{
TypeId operandType = follow(c.operandType);
if (isBlocked(operandType))
return block(operandType, constraint);
if (get<FreeTypeVar>(operandType))
return block(operandType, constraint);
LUAU_ASSERT(get<BlockedTypeVar>(c.resultType));
if (isNumber(operandType) || get<AnyTypeVar>(operandType) || get<ErrorTypeVar>(operandType))
{
asMutable(c.resultType)->ty.emplace<BoundTypeVar>(c.operandType);
return true;
}
LUAU_ASSERT(0); // TODO metatable handling
return false;
}
bool ConstraintSolver::tryDispatch(const BinaryConstraint& c, NotNull<const Constraint> constraint, bool force)
{
TypeId leftType = follow(c.leftType);
TypeId rightType = follow(c.rightType);
TypeId resultType = follow(c.resultType);
2022-07-01 00:52:43 +01:00
if (isBlocked(leftType) || isBlocked(rightType))
{
/* Compound assignments create constraints of the form
*
* A <: Binary<op, A, B>
*
* This constraint is the one that is meant to unblock A, so it doesn't
* make any sense to stop and wait for someone else to do it.
*/
if (leftType != resultType && rightType != resultType)
{
block(c.leftType, constraint);
block(c.rightType, constraint);
return false;
}
2022-07-01 00:52:43 +01:00
}
if (isNumber(leftType))
{
unify(leftType, rightType, constraint->scope);
asMutable(resultType)->ty.emplace<BoundTypeVar>(leftType);
2022-07-01 00:52:43 +01:00
return true;
}
if (!force)
{
if (get<FreeTypeVar>(leftType))
return block(leftType, constraint);
}
if (isBlocked(leftType))
{
asMutable(resultType)->ty.emplace<BoundTypeVar>(getSingletonTypes().errorRecoveryType());
// reportError(constraint->location, CannotInferBinaryOperation{c.op, std::nullopt, CannotInferBinaryOperation::Operation});
return true;
}
2022-07-01 00:52:43 +01:00
// TODO metatables, classes
return true;
}
2022-06-24 02:56:00 +01:00
bool ConstraintSolver::tryDispatch(const NameConstraint& c, NotNull<const Constraint> constraint)
{
if (isBlocked(c.namedType))
return block(c.namedType, constraint);
TypeId target = follow(c.namedType);
if (target->persistent)
return true;
2022-06-24 02:56:00 +01:00
if (TableTypeVar* ttv = getMutable<TableTypeVar>(target))
ttv->name = c.name;
else if (MetatableTypeVar* mtv = getMutable<MetatableTypeVar>(target))
mtv->syntheticName = c.name;
else
return block(c.namedType, constraint);
return true;
}
2022-08-04 23:35:33 +01:00
struct InfiniteTypeFinder : TypeVarOnceVisitor
{
ConstraintSolver* solver;
const InstantiationSignature& signature;
bool foundInfiniteType = false;
explicit InfiniteTypeFinder(ConstraintSolver* solver, const InstantiationSignature& signature)
: solver(solver)
, signature(signature)
{
}
bool visit(TypeId ty, const PendingExpansionTypeVar& petv) override
{
auto [typeArguments, packArguments] = saturateArguments(petv.fn, petv.typeArguments, petv.packArguments, solver->arena);
if (follow(petv.fn.type) == follow(signature.fn.type) && (signature.arguments != typeArguments || signature.packArguments != packArguments))
{
foundInfiniteType = true;
return false;
}
return true;
}
};
struct InstantiationQueuer : TypeVarOnceVisitor
{
ConstraintSolver* solver;
const InstantiationSignature& signature;
NotNull<Scope> scope;
2022-08-04 23:35:33 +01:00
explicit InstantiationQueuer(ConstraintSolver* solver, const InstantiationSignature& signature, NotNull<Scope> scope)
2022-08-04 23:35:33 +01:00
: solver(solver)
, signature(signature)
, scope(scope)
2022-08-04 23:35:33 +01:00
{
}
bool visit(TypeId ty, const PendingExpansionTypeVar& petv) override
{
solver->pushConstraint(TypeAliasExpansionConstraint{ty}, scope);
2022-08-04 23:35:33 +01:00
return false;
}
};
bool ConstraintSolver::tryDispatch(const TypeAliasExpansionConstraint& c, NotNull<const Constraint> constraint)
{
const PendingExpansionTypeVar* petv = get<PendingExpansionTypeVar>(follow(c.target));
if (!petv)
{
unblock(c.target);
return true;
}
auto bindResult = [this, &c](TypeId result) {
asMutable(c.target)->ty.emplace<BoundTypeVar>(result);
unblock(c.target);
};
// If there are no parameters to the type function we can just use the type
// directly.
if (petv->fn.typeParams.empty() && petv->fn.typePackParams.empty())
{
bindResult(petv->fn.type);
return true;
}
auto [typeArguments, packArguments] = saturateArguments(petv->fn, petv->typeArguments, petv->packArguments, arena);
bool sameTypes =
std::equal(typeArguments.begin(), typeArguments.end(), petv->fn.typeParams.begin(), petv->fn.typeParams.end(), [](auto&& itp, auto&& p) {
return itp == p.ty;
});
bool samePacks = std::equal(
packArguments.begin(), packArguments.end(), petv->fn.typePackParams.begin(), petv->fn.typePackParams.end(), [](auto&& itp, auto&& p) {
return itp == p.tp;
});
// If we're instantiating the type with its generic saturatedTypeArguments we are
// performing the identity substitution. We can just short-circuit and bind
// to the TypeFun's type.
if (sameTypes && samePacks)
{
bindResult(petv->fn.type);
return true;
}
InstantiationSignature signature{
petv->fn,
typeArguments,
packArguments,
};
// If we use the same signature, we don't need to bother trying to
// instantiate the alias again, since the instantiation should be
// deterministic.
if (TypeId* cached = instantiatedAliases.find(signature))
{
bindResult(*cached);
return true;
}
// In order to prevent infinite types from being expanded and causing us to
// cycle infinitely, we need to scan the type function for cases where we
// expand the same alias with different type saturatedTypeArguments. See
// https://github.com/Roblox/luau/pull/68 for the RFC responsible for this.
// This is a little nicer than using a recursion limit because we can catch
// the infinite expansion before actually trying to expand it.
InfiniteTypeFinder itf{this, signature};
itf.traverse(petv->fn.type);
if (itf.foundInfiniteType)
{
// TODO (CLI-56761): Report an error.
bindResult(getSingletonTypes().errorRecoveryType());
return true;
}
ApplyTypeFunction applyTypeFunction{arena};
for (size_t i = 0; i < typeArguments.size(); ++i)
{
applyTypeFunction.typeArguments[petv->fn.typeParams[i].ty] = typeArguments[i];
}
for (size_t i = 0; i < packArguments.size(); ++i)
{
applyTypeFunction.typePackArguments[petv->fn.typePackParams[i].tp] = packArguments[i];
}
std::optional<TypeId> maybeInstantiated = applyTypeFunction.substitute(petv->fn.type);
// Note that ApplyTypeFunction::encounteredForwardedType is never set in
// DCR, because we do not use free types for forward-declared generic
// aliases.
if (!maybeInstantiated.has_value())
{
// TODO (CLI-56761): Report an error.
bindResult(getSingletonTypes().errorRecoveryType());
return true;
}
TypeId instantiated = *maybeInstantiated;
TypeId target = follow(instantiated);
if (target->persistent)
return true;
2022-08-04 23:35:33 +01:00
// Type function application will happily give us the exact same type if
// there are e.g. generic saturatedTypeArguments that go unused.
bool needsClone = follow(petv->fn.type) == target;
// Only tables have the properties we're trying to set.
TableTypeVar* ttv = getMutableTableType(target);
if (ttv)
{
if (needsClone)
{
// Substitution::clone is a shallow clone. If this is a
// metatable type, we want to mutate its table, so we need to
// explicitly clone that table as well. If we don't, we will
// mutate another module's type surface and cause a
// use-after-free.
if (get<MetatableTypeVar>(target))
{
instantiated = applyTypeFunction.clone(target);
MetatableTypeVar* mtv = getMutable<MetatableTypeVar>(instantiated);
mtv->table = applyTypeFunction.clone(mtv->table);
ttv = getMutable<TableTypeVar>(mtv->table);
}
else if (get<TableTypeVar>(target))
{
instantiated = applyTypeFunction.clone(target);
ttv = getMutable<TableTypeVar>(instantiated);
}
target = follow(instantiated);
}
ttv->instantiatedTypeParams = typeArguments;
ttv->instantiatedTypePackParams = packArguments;
// TODO: Fill in definitionModuleName.
}
bindResult(target);
// The application is not recursive, so we need to queue up application of
// any child type function instantiations within the result in order for it
// to be complete.
InstantiationQueuer queuer{this, signature, constraint->scope};
2022-08-04 23:35:33 +01:00
queuer.traverse(target);
instantiatedAliases[signature] = target;
return true;
}
2022-06-17 02:05:14 +01:00
void ConstraintSolver::block_(BlockedConstraintId target, NotNull<const Constraint> constraint)
{
blocked[target].push_back(constraint);
auto& count = blockedConstraints[constraint];
count += 1;
}
2022-06-17 02:05:14 +01:00
void ConstraintSolver::block(NotNull<const Constraint> target, NotNull<const Constraint> constraint)
{
if (FFlag::DebugLuauLogSolver)
printf("block Constraint %s on\t%s\n", toString(*target).c_str(), toString(*constraint).c_str());
block_(target, constraint);
}
2022-06-17 02:05:14 +01:00
bool ConstraintSolver::block(TypeId target, NotNull<const Constraint> constraint)
{
if (FFlag::DebugLuauLogSolver)
printf("block TypeId %s on\t%s\n", toString(target).c_str(), toString(*constraint).c_str());
block_(target, constraint);
2022-06-17 02:05:14 +01:00
return false;
}
2022-06-17 02:05:14 +01:00
bool ConstraintSolver::block(TypePackId target, NotNull<const Constraint> constraint)
{
if (FFlag::DebugLuauLogSolver)
printf("block TypeId %s on\t%s\n", toString(target).c_str(), toString(*constraint).c_str());
block_(target, constraint);
2022-06-17 02:05:14 +01:00
return false;
}
void ConstraintSolver::unblock_(BlockedConstraintId progressed)
{
auto it = blocked.find(progressed);
if (it == blocked.end())
return;
// unblocked should contain a value always, because of the above check
2022-06-17 02:05:14 +01:00
for (NotNull<const Constraint> unblockedConstraint : it->second)
{
auto& count = blockedConstraints[unblockedConstraint];
if (FFlag::DebugLuauLogSolver)
printf("Unblocking count=%d\t%s\n", int(count), toString(*unblockedConstraint).c_str());
// This assertion being hit indicates that `blocked` and
// `blockedConstraints` desynchronized at some point. This is problematic
// because we rely on this count being correct to skip over blocked
// constraints.
LUAU_ASSERT(count > 0);
count -= 1;
}
blocked.erase(it);
}
2022-06-17 02:05:14 +01:00
void ConstraintSolver::unblock(NotNull<const Constraint> progressed)
{
return unblock_(progressed);
}
void ConstraintSolver::unblock(TypeId progressed)
{
return unblock_(progressed);
}
void ConstraintSolver::unblock(TypePackId progressed)
{
return unblock_(progressed);
}
void ConstraintSolver::unblock(const std::vector<TypeId>& types)
{
for (TypeId t : types)
unblock(t);
}
void ConstraintSolver::unblock(const std::vector<TypePackId>& packs)
{
for (TypePackId t : packs)
unblock(t);
}
2022-06-17 02:05:14 +01:00
bool ConstraintSolver::isBlocked(TypeId ty)
{
2022-08-04 23:35:33 +01:00
return nullptr != get<BlockedTypeVar>(follow(ty)) || nullptr != get<PendingExpansionTypeVar>(follow(ty));
}
2022-06-17 02:05:14 +01:00
bool ConstraintSolver::isBlocked(NotNull<const Constraint> constraint)
{
2022-06-17 02:05:14 +01:00
auto blockedIt = blockedConstraints.find(constraint);
return blockedIt != blockedConstraints.end() && blockedIt->second > 0;
}
void ConstraintSolver::unify(TypeId subType, TypeId superType, NotNull<Scope> scope)
{
UnifierSharedState sharedState{&iceReporter};
Unifier u{arena, Mode::Strict, scope, Location{}, Covariant, sharedState};
u.tryUnify(subType, superType);
const auto [changedTypes, changedPacks] = u.log.getChanges();
u.log.commit();
unblock(changedTypes);
unblock(changedPacks);
}
void ConstraintSolver::unify(TypePackId subPack, TypePackId superPack, NotNull<Scope> scope)
{
UnifierSharedState sharedState{&iceReporter};
Unifier u{arena, Mode::Strict, scope, Location{}, Covariant, sharedState};
u.tryUnify(subPack, superPack);
const auto [changedTypes, changedPacks] = u.log.getChanges();
u.log.commit();
unblock(changedTypes);
unblock(changedPacks);
}
void ConstraintSolver::pushConstraint(ConstraintV cv, NotNull<Scope> scope)
2022-08-04 23:35:33 +01:00
{
std::unique_ptr<Constraint> c = std::make_unique<Constraint>(std::move(cv), scope);
2022-08-04 23:35:33 +01:00
NotNull<Constraint> borrow = NotNull(c.get());
solverConstraints.push_back(std::move(c));
unsolvedConstraints.push_back(borrow);
}
void ConstraintSolver::reportError(TypeErrorData&& data, const Location& location)
{
errors.emplace_back(location, std::move(data));
}
void ConstraintSolver::reportError(TypeError e)
{
errors.emplace_back(std::move(e));
}
} // namespace Luau