luau/Common/include/Luau/VecDeque.h

443 lines
14 KiB
C
Raw Normal View History

2024-01-12 05:28:14 +00:00
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Common.h"
#include "Luau/Common.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <new>
#include <stdexcept>
namespace Luau
{
// `VecDeque` is a general double-ended implementation designed as a drop-in replacement for the
// standard library `std::deque`. It's backed by a growable ring buffer, rather than using the
// segmented queue design of `std::deque` which can degrade into a linked list in the worst case.
// The motivation for `VecDeque` as a replacement is to maintain the asymptotic complexity of
// `std::deque` while reducing overall allocations and promoting better usage of the cache. Its API
// is intended to be compatible with `std::deque` and `std::vector` as appropriate, and as such
// provides corresponding method definitions and supports the use of custom allocators.
//
// `VecDeque` offers pushing and popping from both ends with an amortized O(1) complexity. It also
// supports `std::vector`-style random-access in O(1). The implementation of buffer resizing uses
// a growth factor of 1.5x to enable better memory reuse after resizing, and reduce overall memory
// fragmentation when using the queue.
//
// Since `VecDeque` is a ring buffer, its elements are not necessarily contiguous in memory. To
// describe this, we refer to the two portions of the buffer as the `head` and the `tail`. The
// `head` is the initial portion of the queue that is on the range `[head, capacity)` and the tail
// is the (optionally) remaining portion on the range `[0, head + size - capacity)` whenever the
// `head + size` exceeds the capacity of the buffer.
//
// `VecDeque` does not currently support iteration since its primary focus is on providing
// double-ended queue functionality specifically, but it can be reasonably expanded to provide
// an iterator if we have a use-case for one in the future.
template<typename T, class Allocator = std::allocator<T>>
class VecDeque : Allocator
{
private:
static_assert(std::is_nothrow_move_constructible_v<T>);
static_assert(std::is_nothrow_move_assignable_v<T>);
T* buffer = nullptr; // the existing allocation we have backing this queue
size_t buffer_capacity = 0; // the size of our allocation
size_t head = 0; // the index of the head of the queue
size_t queue_size = 0; // the size of the queue
void destroyElements() noexcept
{
size_t head_size =
std::min(queue_size, capacity() - head); // how many elements are in the head portion (i.e. from the head to the end of the buffer)
size_t tail_size = queue_size - head_size; // how many elements are in the tail portion (i.e. any portion that wrapped to the front)
// we have to destroy every element in the head portion
for (size_t index = head; index < head_size; index++)
buffer[index].~T();
// and any in the tail portion, if one exists
for (size_t index = 0; index < tail_size; index++)
buffer[index].~T();
}
bool is_full()
{
return queue_size == capacity();
}
void grow()
{
size_t old_capacity = capacity();
// we use a growth factor of 1.5x (plus a constant) here in order to enable the
// previous memory to be reused after a certain number of calls to grow.
// see: https://github.com/facebook/folly/blob/main/folly/docs/FBVector.md#memory-handling
size_t new_capacity = (old_capacity > 0) ? old_capacity * 3 / 2 + 1 : 4;
// check that it's a legal allocation
if (new_capacity > max_size())
throw std::bad_array_new_length();
// allocate a new backing buffer
T* new_buffer = this->allocate(new_capacity);
// we should not be growing if the capacity is not the current size
LUAU_ASSERT(old_capacity == queue_size);
size_t head_size =
std::min(queue_size, old_capacity - head); // how many elements are in the head portion (i.e. from the head to the end of the buffer)
size_t tail_size = queue_size - head_size; // how many elements are in the tail portion (i.e. any portion that wrapped to the front)
// move the head into the new buffer
std::uninitialized_move(buffer + head, buffer + head + head_size, new_buffer);
// move the tail into the new buffer immediately after
if (head_size < queue_size)
std::uninitialized_move(buffer, buffer + tail_size, new_buffer + head_size);
// destroy the old elements
destroyElements();
// deallocate the old buffer
this->deallocate(buffer, old_capacity);
// set up the queue to be backed by the new buffer
buffer = new_buffer;
buffer_capacity = new_capacity;
head = 0;
}
size_t logicalToPhysical(size_t pos)
{
return (head + pos) % capacity();
}
public:
VecDeque() = default;
explicit VecDeque(const Allocator& alloc) noexcept
: Allocator{alloc}
{
}
VecDeque(const VecDeque& other)
: buffer(this->allocate(other.buffer_capacity))
, buffer_capacity(other.buffer_capacity)
, head(other.head)
, queue_size(other.queue_size)
{
// copy the contents of the other buffer to this one
std::uninitialized_copy(other.buffer, other.buffer + other.buffer_capacity, buffer);
}
VecDeque(const VecDeque& other, const Allocator& alloc)
: Allocator{alloc}
, buffer(this->allocate(other.buffer_capacity))
, buffer_capacity(other.buffer_capacity)
, head(other.head)
, queue_size(other.queue_size)
{
// copy the contents of the other buffer to this one
std::uninitialized_copy(other.buffer, other.buffer + other.buffer_capacity, buffer);
}
VecDeque(VecDeque&& other) noexcept
: buffer(std::exchange(other.buffer, nullptr))
, buffer_capacity(std::exchange(other.buffer_capacity, 0))
, head(std::exchange(other.head, 0))
, queue_size(std::exchange(other.queue_size, 0))
{
}
VecDeque(VecDeque&& other, const Allocator& alloc) noexcept
: Allocator{alloc}
, buffer(std::exchange(other.buffer, nullptr))
, buffer_capacity(std::exchange(other.buffer_capacity, 0))
, head(std::exchange(other.head, 0))
, queue_size(std::exchange(other.queue_size, 0))
{
}
VecDeque(std::initializer_list<T> init, const Allocator& alloc = Allocator())
: Allocator{alloc}
{
buffer = this->allocate(init.size());
buffer_capacity = init.size();
queue_size = init.size();
std::uninitialized_copy(init.begin(), init.end(), buffer);
}
~VecDeque() noexcept
{
// destroy any elements that exist
destroyElements();
// free the allocated buffer
this->deallocate(buffer, buffer_capacity);
}
VecDeque& operator=(const VecDeque& other)
{
if (this == &other)
return *this;
// destroy all of the existing elements
destroyElements();
if (buffer_capacity < other.size())
{
// free the current buffer
this->deallocate(buffer, buffer_capacity);
buffer = this->allocate(other.buffer_capacity);
buffer_capacity = other.buffer_capacity;
}
size_t head_size = other.capacity() - other.head; // how many elements are in the head portion (i.e. from the head to the end of the buffer)
size_t tail_size = other.size() - head_size; // how many elements are in the tail portion (i.e. any portion that wrapped to the front)
// copy the contents of the other buffer's head into place
std::uninitialized_copy(other.buffer + other.head, other.buffer + head + head_size, buffer);
// copy the contents of the other buffer's tail into place immediately after
std::uninitialized_copy(other.buffer, other.buffer + tail_size, buffer + head_size);
return *this;
}
VecDeque& operator=(VecDeque&& other)
{
if (this == &other)
return *this;
// destroy all of the existing elements
destroyElements();
// free the current buffer
this->deallocate(buffer, buffer_capacity);
buffer = std::exchange(other.buffer, nullptr);
buffer_capacity = std::exchange(other.buffer_capacity, 0);
head = std::exchange(other.head, 0);
queue_size = std::exchange(other.queue_size, 0);
return *this;
}
Allocator get_allocator() const noexcept
{
return this;
}
// element access
T& at(size_t pos)
{
if (pos >= queue_size)
throw std::out_of_range("VecDeque");
return buffer[logicalToPhysical(pos)];
}
const T& at(size_t pos) const
{
if (pos >= queue_size)
throw std::out_of_range("VecDeque");
return buffer[logicalToPhysical(pos)];
}
[[nodiscard]] T& operator[](size_t pos) noexcept
{
LUAU_ASSERT(pos < queue_size);
return buffer[logicalToPhysical(pos)];
}
[[nodiscard]] const T& operator[](size_t pos) const noexcept
{
LUAU_ASSERT(pos < queue_size);
return buffer[logicalToPhysical(pos)];
}
T& front() {
LUAU_ASSERT(!empty());
return buffer[head];
}
const T& front() const {
LUAU_ASSERT(!empty());
return buffer[head];
}
T& back() {
LUAU_ASSERT(!empty());
size_t back = logicalToPhysical(queue_size - 1);
return buffer[back];
}
const T& back() const {
LUAU_ASSERT(!empty());
size_t back = logicalToPhysical(queue_size - 1);
return buffer[back];
}
// capacity
bool empty() const noexcept
{
return queue_size == 0;
}
size_t size() const noexcept
{
return queue_size;
}
size_t max_size() const noexcept
{
return std::numeric_limits<size_t>::max() / sizeof(T);
}
void reserve(size_t new_capacity)
{
// error if this allocation would be illegal
if (new_capacity > max_size())
throw std::length_error("too large");
size_t old_capacity = capacity();
// do nothing if we're requesting a capacity that would not cause growth
if (new_capacity <= old_capacity)
return;
size_t head_size =
std::min(queue_size, old_capacity - head); // how many elements are in the head portion (i.e. from the head to the end of the buffer)
size_t tail_size = queue_size - head_size; // how many elements are in the tail portion (i.e. any portion that wrapped to the front)
// allocate a new backing buffer
T* new_buffer = this->allocate(new_capacity);
// move the head into the new buffer
std::uninitialized_move(buffer + head, buffer + head + head_size, new_buffer);
// move the tail into the new buffer immediately after, if we have one
if (head_size < queue_size)
std::uninitialized_move(buffer, buffer + tail_size, new_buffer + head_size);
// move the tail into the new buffer immediately after
std::uninitialized_move(buffer, buffer + tail_size, new_buffer + head_size);
// destroy all the existing elements before freeing the old buffer
destroyElements();
// deallocate the old buffer
this->deallocate(buffer, old_capacity);
// set up the queue to be backed by the new buffer
buffer = new_buffer;
buffer_capacity = new_capacity;
head = 0;
}
size_t capacity() const noexcept
{
return buffer_capacity;
}
void shrink_to_fit() {
size_t old_capacity = capacity();
size_t new_capacity = queue_size;
if (old_capacity == new_capacity)
return;
size_t head_size =
std::min(queue_size, old_capacity - head); // how many elements are in the head portion (i.e. from the head to the end of the buffer)
size_t tail_size = queue_size - head_size; // how many elements are in the tail portion (i.e. any portion that wrapped to the front)
// allocate a new backing buffer
T* new_buffer = this->allocate(new_capacity);
// move the head into the new buffer
std::uninitialized_move(buffer + head, buffer + head + head_size, new_buffer);
// move the tail into the new buffer immediately after, if we have one
if (head_size < queue_size)
std::uninitialized_move(buffer, buffer + tail_size, new_buffer + head_size);
// destroy all the existing elements before freeing the old buffer
destroyElements();
// deallocate the old buffer
this->deallocate(buffer, old_capacity);
// set up the queue to be backed by the new buffer
buffer = new_buffer;
buffer_capacity = new_capacity;
head = 0;
}
[[nodiscard]] bool is_contiguous() const noexcept
{
// this is an overflow-safe alternative to writing `head + size <= capacity`.
return head <= capacity() - queue_size;
}
// modifiers
void clear() noexcept
{
destroyElements();
head = 0;
queue_size = 0;
}
void push_back(const T& value)
{
if (is_full())
grow();
size_t next_back = logicalToPhysical(queue_size);
new (buffer + next_back)T(value);
queue_size++;
}
void pop_back()
{
LUAU_ASSERT(!empty());
queue_size--;
size_t next_back = logicalToPhysical(queue_size);
buffer[next_back].~T();
}
void push_front(const T& value)
{
if (is_full())
grow();
head = (head == 0) ? capacity() - 1 : head - 1;
new (buffer + head)T(value);
queue_size++;
}
void pop_front()
{
LUAU_ASSERT(!empty());
buffer[head].~T();
head++;
queue_size--;
if (head == capacity())
head = 0;
}
};
} // namespace Luau