luau/CodeGen/src/IrTranslation.cpp

1040 lines
37 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "IrTranslation.h"
#include "Luau/Bytecode.h"
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 19:26:13 +00:00
#include "Luau/IrBuilder.h"
#include "Luau/IrUtils.h"
#include "CustomExecUtils.h"
#include "IrTranslateBuiltins.h"
#include "lobject.h"
#include "ltm.h"
namespace Luau
{
namespace CodeGen
{
// Helper to consistently define a switch to instruction fallback code
struct FallbackStreamScope
{
FallbackStreamScope(IrBuilder& build, IrOp fallback, IrOp next)
: build(build)
, next(next)
{
LUAU_ASSERT(fallback.kind == IrOpKind::Block);
LUAU_ASSERT(next.kind == IrOpKind::Block);
build.inst(IrCmd::JUMP, next);
build.beginBlock(fallback);
}
~FallbackStreamScope()
{
build.beginBlock(next);
}
IrBuilder& build;
IrOp next;
};
void translateInstLoadNil(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNIL));
}
void translateInstLoadB(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
build.inst(IrCmd::STORE_INT, build.vmReg(ra), build.constInt(LUAU_INSN_B(*pc)));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TBOOLEAN));
if (int target = LUAU_INSN_C(*pc))
build.inst(IrCmd::JUMP, build.blockAtInst(pcpos + 1 + target));
}
void translateInstLoadN(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), build.constDouble(double(LUAU_INSN_D(*pc))));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
}
void translateInstLoadK(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
IrOp load = build.inst(IrCmd::LOAD_TVALUE, build.vmConst(LUAU_INSN_D(*pc)));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), load);
}
void translateInstLoadKX(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
uint32_t aux = pc[1];
IrOp load = build.inst(IrCmd::LOAD_TVALUE, build.vmConst(aux));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), load);
}
void translateInstMove(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
IrOp load = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(rb));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), load);
}
void translateInstJump(IrBuilder& build, const Instruction* pc, int pcpos)
{
build.inst(IrCmd::JUMP, build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc)));
}
void translateInstJumpBack(IrBuilder& build, const Instruction* pc, int pcpos)
{
build.inst(IrCmd::INTERRUPT, build.constUint(pcpos));
build.inst(IrCmd::JUMP, build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc)));
}
void translateInstJumpIf(IrBuilder& build, const Instruction* pc, int pcpos, bool not_)
{
int ra = LUAU_INSN_A(*pc);
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 1);
// TODO: falsy/truthy conditions should be deconstructed into more primitive operations
if (not_)
build.inst(IrCmd::JUMP_IF_FALSY, build.vmReg(ra), target, next);
else
build.inst(IrCmd::JUMP_IF_TRUTHY, build.vmReg(ra), target, next);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(next))
build.beginBlock(next);
}
void translateInstJumpIfEq(IrBuilder& build, const Instruction* pc, int pcpos, bool not_)
{
int ra = LUAU_INSN_A(*pc);
int rb = pc[1];
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp numberCheck = build.block(IrBlockKind::Internal);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::JUMP_EQ_TAG, ta, tb, numberCheck, not_ ? target : next);
build.beginBlock(numberCheck);
// fast-path: number
build.inst(IrCmd::CHECK_TAG, ta, build.constTag(LUA_TNUMBER), fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra));
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rb));
build.inst(IrCmd::JUMP_CMP_NUM, va, vb, build.cond(IrCondition::NotEqual), not_ ? target : next, not_ ? next : target);
build.beginBlock(fallback);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::JUMP_CMP_ANY, build.vmReg(ra), build.vmReg(rb), build.cond(not_ ? IrCondition::NotEqual : IrCondition::Equal), target, next);
build.beginBlock(next);
}
void translateInstJumpIfCond(IrBuilder& build, const Instruction* pc, int pcpos, IrCondition cond)
{
int ra = LUAU_INSN_A(*pc);
int rb = pc[1];
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp fallback = build.block(IrBlockKind::Fallback);
// fast-path: number
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::CHECK_TAG, ta, build.constTag(LUA_TNUMBER), fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TNUMBER), fallback);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra));
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rb));
build.inst(IrCmd::JUMP_CMP_NUM, va, vb, build.cond(cond), target, next);
build.beginBlock(fallback);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::JUMP_CMP_ANY, build.vmReg(ra), build.vmReg(rb), build.cond(cond), target, next);
build.beginBlock(next);
}
void translateInstJumpX(IrBuilder& build, const Instruction* pc, int pcpos)
{
build.inst(IrCmd::INTERRUPT, build.constUint(pcpos));
build.inst(IrCmd::JUMP, build.blockAtInst(pcpos + 1 + LUAU_INSN_E(*pc)));
}
void translateInstJumpxEqNil(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
bool not_ = (pc[1] & 0x80000000) != 0;
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::JUMP_EQ_TAG, ta, build.constTag(LUA_TNIL), not_ ? next : target, not_ ? target : next);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(next))
build.beginBlock(next);
}
void translateInstJumpxEqB(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
uint32_t aux = pc[1];
bool not_ = (aux & 0x80000000) != 0;
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp checkValue = build.block(IrBlockKind::Internal);
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::JUMP_EQ_TAG, ta, build.constTag(LUA_TBOOLEAN), checkValue, not_ ? target : next);
build.beginBlock(checkValue);
IrOp va = build.inst(IrCmd::LOAD_INT, build.vmReg(ra));
build.inst(IrCmd::JUMP_EQ_INT, va, build.constInt(aux & 0x1), not_ ? next : target, not_ ? target : next);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(next))
build.beginBlock(next);
}
void translateInstJumpxEqN(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
uint32_t aux = pc[1];
bool not_ = (aux & 0x80000000) != 0;
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp checkValue = build.block(IrBlockKind::Internal);
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::JUMP_EQ_TAG, ta, build.constTag(LUA_TNUMBER), checkValue, not_ ? target : next);
build.beginBlock(checkValue);
IrOp va = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra));
LUAU_ASSERT(build.function.proto);
TValue protok = build.function.proto->k[aux & 0xffffff];
LUAU_ASSERT(protok.tt == LUA_TNUMBER);
IrOp vb = build.constDouble(protok.value.n);
build.inst(IrCmd::JUMP_CMP_NUM, va, vb, build.cond(IrCondition::NotEqual), not_ ? target : next, not_ ? next : target);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(next))
build.beginBlock(next);
}
void translateInstJumpxEqS(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
uint32_t aux = pc[1];
bool not_ = (aux & 0x80000000) != 0;
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp next = build.blockAtInst(pcpos + 2);
IrOp checkValue = build.block(IrBlockKind::Internal);
IrOp ta = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::JUMP_EQ_TAG, ta, build.constTag(LUA_TSTRING), checkValue, not_ ? target : next);
build.beginBlock(checkValue);
IrOp va = build.inst(IrCmd::LOAD_POINTER, build.vmReg(ra));
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmConst(aux & 0xffffff));
build.inst(IrCmd::JUMP_EQ_POINTER, va, vb, not_ ? next : target, not_ ? target : next);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(next))
build.beginBlock(next);
}
static void translateInstBinaryNumeric(IrBuilder& build, int ra, int rb, int rc, IrOp opc, int pcpos, TMS tm)
{
IrOp fallback = build.block(IrBlockKind::Fallback);
// fast-path: number
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TNUMBER), fallback);
if (rc != -1 && rc != rb) // TODO: optimization should handle second check, but we'll test it later
{
IrOp tc = build.inst(IrCmd::LOAD_TAG, build.vmReg(rc));
build.inst(IrCmd::CHECK_TAG, tc, build.constTag(LUA_TNUMBER), fallback);
}
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rb));
IrOp vc;
if (opc.kind == IrOpKind::VmConst)
{
LUAU_ASSERT(build.function.proto);
TValue protok = build.function.proto->k[opc.index];
LUAU_ASSERT(protok.tt == LUA_TNUMBER);
vc = build.constDouble(protok.value.n);
}
else
{
vc = build.inst(IrCmd::LOAD_DOUBLE, opc);
}
IrOp va;
switch (tm)
{
case TM_ADD:
va = build.inst(IrCmd::ADD_NUM, vb, vc);
break;
case TM_SUB:
va = build.inst(IrCmd::SUB_NUM, vb, vc);
break;
case TM_MUL:
va = build.inst(IrCmd::MUL_NUM, vb, vc);
break;
case TM_DIV:
va = build.inst(IrCmd::DIV_NUM, vb, vc);
break;
case TM_MOD:
va = build.inst(IrCmd::MOD_NUM, vb, vc);
break;
case TM_POW:
va = build.inst(IrCmd::POW_NUM, vb, vc);
break;
default:
LUAU_ASSERT(!"unsupported binary op");
}
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), va);
if (ra != rb && ra != rc) // TODO: optimization should handle second check, but we'll test this later
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::DO_ARITH, build.vmReg(ra), build.vmReg(rb), opc, build.constInt(tm));
build.inst(IrCmd::JUMP, next);
}
void translateInstBinary(IrBuilder& build, const Instruction* pc, int pcpos, TMS tm)
{
translateInstBinaryNumeric(build, LUAU_INSN_A(*pc), LUAU_INSN_B(*pc), LUAU_INSN_C(*pc), build.vmReg(LUAU_INSN_C(*pc)), pcpos, tm);
}
void translateInstBinaryK(IrBuilder& build, const Instruction* pc, int pcpos, TMS tm)
{
translateInstBinaryNumeric(build, LUAU_INSN_A(*pc), LUAU_INSN_B(*pc), -1, build.vmConst(LUAU_INSN_C(*pc)), pcpos, tm);
}
void translateInstNot(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
IrOp vb = build.inst(IrCmd::LOAD_INT, build.vmReg(rb));
IrOp va = build.inst(IrCmd::NOT_ANY, tb, vb);
build.inst(IrCmd::STORE_INT, build.vmReg(ra), va);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TBOOLEAN));
}
void translateInstMinus(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TNUMBER), fallback);
// fast-path: number
IrOp vb = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rb));
IrOp va = build.inst(IrCmd::UNM_NUM, vb);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), va);
if (ra != rb)
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::DO_ARITH, build.vmReg(LUAU_INSN_A(*pc)), build.vmReg(LUAU_INSN_B(*pc)), build.vmReg(LUAU_INSN_B(*pc)), build.constInt(TM_UNM));
build.inst(IrCmd::JUMP, next);
}
void translateInstLength(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
// fast-path: table without __len
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
build.inst(IrCmd::CHECK_NO_METATABLE, vb, fallback);
IrOp va = build.inst(IrCmd::TABLE_LEN, vb);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra), va);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNUMBER));
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::DO_LEN, build.vmReg(LUAU_INSN_A(*pc)), build.vmReg(LUAU_INSN_B(*pc)));
build.inst(IrCmd::JUMP, next);
}
void translateInstNewTable(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int b = LUAU_INSN_B(*pc);
uint32_t aux = pc[1];
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
IrOp va = build.inst(IrCmd::NEW_TABLE, build.constUint(aux), build.constUint(b == 0 ? 0 : 1 << (b - 1)));
build.inst(IrCmd::STORE_POINTER, build.vmReg(ra), va);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TTABLE));
build.inst(IrCmd::CHECK_GC);
}
void translateInstDupTable(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int k = LUAU_INSN_D(*pc);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
IrOp table = build.inst(IrCmd::LOAD_POINTER, build.vmConst(k));
IrOp va = build.inst(IrCmd::DUP_TABLE, table);
build.inst(IrCmd::STORE_POINTER, build.vmReg(ra), va);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TTABLE));
build.inst(IrCmd::CHECK_GC);
}
void translateInstGetUpval(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int up = LUAU_INSN_B(*pc);
build.inst(IrCmd::GET_UPVALUE, build.vmReg(ra), build.vmUpvalue(up));
}
void translateInstSetUpval(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int up = LUAU_INSN_B(*pc);
build.inst(IrCmd::SET_UPVALUE, build.vmUpvalue(up), build.vmReg(ra));
}
void translateInstCloseUpvals(IrBuilder& build, const Instruction* pc)
{
int ra = LUAU_INSN_A(*pc);
build.inst(IrCmd::CLOSE_UPVALS, build.vmReg(ra));
}
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
void translateFastCallN(IrBuilder& build, const Instruction* pc, int pcpos, bool customParams, int customParamCount, IrOp customArgs, IrOp next)
{
int bfid = LUAU_INSN_A(*pc);
int skip = LUAU_INSN_C(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
Instruction call = pc[skip + 1];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
int ra = LUAU_INSN_A(call);
int nparams = customParams ? customParamCount : LUAU_INSN_B(call) - 1;
int nresults = LUAU_INSN_C(call) - 1;
int arg = customParams ? LUAU_INSN_B(*pc) : ra + 1;
IrOp args = customParams ? customArgs : build.vmReg(ra + 2);
build.inst(IrCmd::CHECK_SAFE_ENV, fallback);
BuiltinImplResult br = translateBuiltin(build, LuauBuiltinFunction(bfid), ra, arg, args, nparams, nresults, fallback);
if (br.type == BuiltinImplType::UsesFallback)
{
if (nresults == LUA_MULTRET)
build.inst(IrCmd::ADJUST_STACK_TO_REG, build.vmReg(ra), build.constInt(br.actualResultCount));
else if (nparams == LUA_MULTRET)
build.inst(IrCmd::ADJUST_STACK_TO_TOP);
}
else
{
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
// TODO: we can skip saving pc for some well-behaved builtins which we didn't inline
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
IrOp res = build.inst(IrCmd::INVOKE_FASTCALL, build.constUint(bfid), build.vmReg(ra), build.vmReg(arg), args, build.constInt(nparams),
build.constInt(nresults));
build.inst(IrCmd::CHECK_FASTCALL_RES, res, fallback);
if (nresults == LUA_MULTRET)
build.inst(IrCmd::ADJUST_STACK_TO_REG, build.vmReg(ra), res);
else if (nparams == LUA_MULTRET)
build.inst(IrCmd::ADJUST_STACK_TO_TOP);
}
build.inst(IrCmd::JUMP, next);
// this will be filled with IR corresponding to instructions after FASTCALL until skip+1
build.beginBlock(fallback);
}
void translateInstForNPrep(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
IrOp loopStart = build.blockAtInst(pcpos + getOpLength(LuauOpcode(LUAU_INSN_OP(*pc))));
IrOp loopExit = build.blockAtInst(getJumpTarget(*pc, pcpos));
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp nextStep = build.block(IrBlockKind::Internal);
IrOp direct = build.block(IrBlockKind::Internal);
IrOp reverse = build.block(IrBlockKind::Internal);
IrOp tagLimit = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 0));
build.inst(IrCmd::CHECK_TAG, tagLimit, build.constTag(LUA_TNUMBER), fallback);
IrOp tagStep = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 1));
build.inst(IrCmd::CHECK_TAG, tagStep, build.constTag(LUA_TNUMBER), fallback);
IrOp tagIdx = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 2));
build.inst(IrCmd::CHECK_TAG, tagIdx, build.constTag(LUA_TNUMBER), fallback);
build.inst(IrCmd::JUMP, nextStep);
// After successful conversion of arguments to number in a fallback, we return here
build.beginBlock(nextStep);
IrOp zero = build.constDouble(0.0);
IrOp limit = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 0));
IrOp step = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 1));
IrOp idx = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 2));
// step <= 0
build.inst(IrCmd::JUMP_CMP_NUM, step, zero, build.cond(IrCondition::LessEqual), reverse, direct);
// TODO: target branches can probably be arranged better, but we need tests for NaN behavior preservation
// step <= 0 is false, check idx <= limit
build.beginBlock(direct);
build.inst(IrCmd::JUMP_CMP_NUM, idx, limit, build.cond(IrCondition::LessEqual), loopStart, loopExit);
// step <= 0 is true, check limit <= idx
build.beginBlock(reverse);
build.inst(IrCmd::JUMP_CMP_NUM, limit, idx, build.cond(IrCondition::LessEqual), loopStart, loopExit);
// Fallback will try to convert loop variables to numbers or throw an error
build.beginBlock(fallback);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::PREPARE_FORN, build.vmReg(ra + 0), build.vmReg(ra + 1), build.vmReg(ra + 2));
build.inst(IrCmd::JUMP, nextStep);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(loopStart))
build.beginBlock(loopStart);
}
void translateInstForNLoop(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
IrOp loopRepeat = build.blockAtInst(getJumpTarget(*pc, pcpos));
IrOp loopExit = build.blockAtInst(pcpos + getOpLength(LuauOpcode(LUAU_INSN_OP(*pc))));
build.inst(IrCmd::INTERRUPT, build.constUint(pcpos));
IrOp zero = build.constDouble(0.0);
IrOp limit = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 0));
IrOp step = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 1));
IrOp idx = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 2));
idx = build.inst(IrCmd::ADD_NUM, idx, step);
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra + 2), idx);
IrOp direct = build.block(IrBlockKind::Internal);
IrOp reverse = build.block(IrBlockKind::Internal);
// step <= 0
build.inst(IrCmd::JUMP_CMP_NUM, step, zero, build.cond(IrCondition::LessEqual), reverse, direct);
// step <= 0 is false, check idx <= limit
build.beginBlock(direct);
build.inst(IrCmd::JUMP_CMP_NUM, idx, limit, build.cond(IrCondition::LessEqual), loopRepeat, loopExit);
// step <= 0 is true, check limit <= idx
build.beginBlock(reverse);
build.inst(IrCmd::JUMP_CMP_NUM, limit, idx, build.cond(IrCondition::LessEqual), loopRepeat, loopExit);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(loopExit))
build.beginBlock(loopExit);
}
void translateInstForGPrepNext(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp fallback = build.block(IrBlockKind::Fallback);
// fast-path: pairs/next
build.inst(IrCmd::CHECK_SAFE_ENV, fallback);
IrOp tagB = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 1));
build.inst(IrCmd::CHECK_TAG, tagB, build.constTag(LUA_TTABLE), fallback);
IrOp tagC = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 2));
build.inst(IrCmd::CHECK_TAG, tagC, build.constTag(LUA_TNIL), fallback);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNIL));
// setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(ra + 2), build.constInt(0));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra + 2), build.constTag(LUA_TLIGHTUSERDATA));
build.inst(IrCmd::JUMP, target);
build.beginBlock(fallback);
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
build.inst(IrCmd::LOP_FORGPREP_XNEXT_FALLBACK, build.constUint(pcpos), build.vmReg(ra), target);
}
void translateInstForGPrepInext(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
IrOp target = build.blockAtInst(pcpos + 1 + LUAU_INSN_D(*pc));
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp finish = build.block(IrBlockKind::Internal);
// fast-path: ipairs/inext
build.inst(IrCmd::CHECK_SAFE_ENV, fallback);
IrOp tagB = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 1));
build.inst(IrCmd::CHECK_TAG, tagB, build.constTag(LUA_TTABLE), fallback);
IrOp tagC = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra + 2));
build.inst(IrCmd::CHECK_TAG, tagC, build.constTag(LUA_TNUMBER), fallback);
IrOp numC = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(ra + 2));
build.inst(IrCmd::JUMP_CMP_NUM, numC, build.constDouble(0.0), build.cond(IrCondition::NotEqual), fallback, finish);
build.beginBlock(finish);
build.inst(IrCmd::STORE_TAG, build.vmReg(ra), build.constTag(LUA_TNIL));
// setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(0)));
build.inst(IrCmd::STORE_INT, build.vmReg(ra + 2), build.constInt(0));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra + 2), build.constTag(LUA_TLIGHTUSERDATA));
build.inst(IrCmd::JUMP, target);
build.beginBlock(fallback);
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
build.inst(IrCmd::LOP_FORGPREP_XNEXT_FALLBACK, build.constUint(pcpos), build.vmReg(ra), target);
}
void translateInstForGLoopIpairs(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
LUAU_ASSERT(int(pc[1]) < 0);
IrOp loopRepeat = build.blockAtInst(getJumpTarget(*pc, pcpos));
IrOp loopExit = build.blockAtInst(pcpos + getOpLength(LuauOpcode(LUAU_INSN_OP(*pc))));
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp hasElem = build.block(IrBlockKind::Internal);
build.inst(IrCmd::INTERRUPT, build.constUint(pcpos));
// fast-path: builtin table iteration
IrOp tagA = build.inst(IrCmd::LOAD_TAG, build.vmReg(ra));
build.inst(IrCmd::CHECK_TAG, tagA, build.constTag(LUA_TNIL), fallback);
IrOp table = build.inst(IrCmd::LOAD_POINTER, build.vmReg(ra + 1));
IrOp index = build.inst(IrCmd::LOAD_INT, build.vmReg(ra + 2));
IrOp elemPtr = build.inst(IrCmd::GET_ARR_ADDR, table, index);
// Terminate if array has ended
build.inst(IrCmd::CHECK_ARRAY_SIZE, table, index, loopExit);
// Terminate if element is nil
IrOp elemTag = build.inst(IrCmd::LOAD_TAG, elemPtr);
build.inst(IrCmd::JUMP_EQ_TAG, elemTag, build.constTag(LUA_TNIL), loopExit, hasElem);
build.beginBlock(hasElem);
IrOp nextIndex = build.inst(IrCmd::ADD_INT, index, build.constInt(1));
// We update only a dword part of the userdata pointer that's reused in loop iteration as an index
// Upper bits start and remain to be 0
build.inst(IrCmd::STORE_INT, build.vmReg(ra + 2), nextIndex);
// Tag should already be set to lightuserdata
// setnvalue(ra + 3, double(index + 1));
build.inst(IrCmd::STORE_DOUBLE, build.vmReg(ra + 3), build.inst(IrCmd::INT_TO_NUM, nextIndex));
build.inst(IrCmd::STORE_TAG, build.vmReg(ra + 3), build.constTag(LUA_TNUMBER));
// setobj2s(L, ra + 4, e);
IrOp elemTV = build.inst(IrCmd::LOAD_TVALUE, elemPtr);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra + 4), elemTV);
build.inst(IrCmd::JUMP, loopRepeat);
build.beginBlock(fallback);
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-03 20:21:14 +00:00
build.inst(IrCmd::LOP_FORGLOOP_FALLBACK, build.constUint(pcpos), build.vmReg(ra), build.constInt(int(pc[1])), loopRepeat, loopExit);
// Fallthrough in original bytecode is implicit, so we start next internal block here
if (build.isInternalBlock(loopExit))
build.beginBlock(loopExit);
}
void translateInstGetTableN(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int c = LUAU_INSN_C(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
build.inst(IrCmd::CHECK_ARRAY_SIZE, vb, build.constInt(c), fallback);
build.inst(IrCmd::CHECK_NO_METATABLE, vb, fallback);
IrOp arrEl = build.inst(IrCmd::GET_ARR_ADDR, vb, build.constInt(c));
IrOp arrElTval = build.inst(IrCmd::LOAD_TVALUE, arrEl);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), arrElTval);
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::GET_TABLE, build.vmReg(ra), build.vmReg(rb), build.constUint(c + 1));
build.inst(IrCmd::JUMP, next);
}
void translateInstSetTableN(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int c = LUAU_INSN_C(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
build.inst(IrCmd::CHECK_ARRAY_SIZE, vb, build.constInt(c), fallback);
build.inst(IrCmd::CHECK_NO_METATABLE, vb, fallback);
build.inst(IrCmd::CHECK_READONLY, vb, fallback);
IrOp arrEl = build.inst(IrCmd::GET_ARR_ADDR, vb, build.constInt(c));
IrOp tva = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(ra));
build.inst(IrCmd::STORE_TVALUE, arrEl, tva);
build.inst(IrCmd::BARRIER_TABLE_FORWARD, vb, build.vmReg(ra));
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::SET_TABLE, build.vmReg(ra), build.vmReg(rb), build.constUint(c + 1));
build.inst(IrCmd::JUMP, next);
}
void translateInstGetTable(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp tc = build.inst(IrCmd::LOAD_TAG, build.vmReg(rc));
build.inst(IrCmd::CHECK_TAG, tc, build.constTag(LUA_TNUMBER), fallback);
// fast-path: table with a number index
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
IrOp vc = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rc));
IrOp index = build.inst(IrCmd::NUM_TO_INDEX, vc, fallback);
index = build.inst(IrCmd::SUB_INT, index, build.constInt(1));
build.inst(IrCmd::CHECK_ARRAY_SIZE, vb, index, fallback);
build.inst(IrCmd::CHECK_NO_METATABLE, vb, fallback);
IrOp arrEl = build.inst(IrCmd::GET_ARR_ADDR, vb, index);
IrOp arrElTval = build.inst(IrCmd::LOAD_TVALUE, arrEl);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), arrElTval);
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::GET_TABLE, build.vmReg(ra), build.vmReg(rb), build.vmReg(rc));
build.inst(IrCmd::JUMP, next);
}
void translateInstSetTable(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp tc = build.inst(IrCmd::LOAD_TAG, build.vmReg(rc));
build.inst(IrCmd::CHECK_TAG, tc, build.constTag(LUA_TNUMBER), fallback);
// fast-path: table with a number index
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
IrOp vc = build.inst(IrCmd::LOAD_DOUBLE, build.vmReg(rc));
IrOp index = build.inst(IrCmd::NUM_TO_INDEX, vc, fallback);
index = build.inst(IrCmd::SUB_INT, index, build.constInt(1));
build.inst(IrCmd::CHECK_ARRAY_SIZE, vb, index, fallback);
build.inst(IrCmd::CHECK_NO_METATABLE, vb, fallback);
build.inst(IrCmd::CHECK_READONLY, vb, fallback);
IrOp arrEl = build.inst(IrCmd::GET_ARR_ADDR, vb, index);
IrOp tva = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(ra));
build.inst(IrCmd::STORE_TVALUE, arrEl, tva);
build.inst(IrCmd::BARRIER_TABLE_FORWARD, vb, build.vmReg(ra));
IrOp next = build.blockAtInst(pcpos + 1);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::SET_TABLE, build.vmReg(ra), build.vmReg(rb), build.vmReg(rc));
build.inst(IrCmd::JUMP, next);
}
void translateInstGetImport(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int k = LUAU_INSN_D(*pc);
uint32_t aux = pc[1];
IrOp fastPath = build.block(IrBlockKind::Internal);
IrOp fallback = build.block(IrBlockKind::Fallback);
build.inst(IrCmd::CHECK_SAFE_ENV, fallback);
// note: if import failed, k[] is nil; we could check this during codegen, but we instead use runtime fallback
// this allows us to handle ahead-of-time codegen smoothly when an import fails to resolve at runtime
IrOp tk = build.inst(IrCmd::LOAD_TAG, build.vmConst(k));
build.inst(IrCmd::JUMP_EQ_TAG, tk, build.constTag(LUA_TNIL), fallback, fastPath);
build.beginBlock(fastPath);
IrOp tvk = build.inst(IrCmd::LOAD_TVALUE, build.vmConst(k));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), tvk);
IrOp next = build.blockAtInst(pcpos + 2);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::GET_IMPORT, build.vmReg(ra), build.constUint(aux));
build.inst(IrCmd::JUMP, next);
}
void translateInstGetTableKS(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
uint32_t aux = pc[1];
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
IrOp addrSlotEl = build.inst(IrCmd::GET_SLOT_NODE_ADDR, vb, build.constUint(pcpos));
build.inst(IrCmd::CHECK_SLOT_MATCH, addrSlotEl, build.vmConst(aux), fallback);
IrOp tvn = build.inst(IrCmd::LOAD_NODE_VALUE_TV, addrSlotEl);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), tvn);
IrOp next = build.blockAtInst(pcpos + 2);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::FALLBACK_GETTABLEKS, build.constUint(pcpos), build.vmReg(ra), build.vmReg(rb), build.vmConst(aux));
build.inst(IrCmd::JUMP, next);
}
void translateInstSetTableKS(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
uint32_t aux = pc[1];
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp tb = build.inst(IrCmd::LOAD_TAG, build.vmReg(rb));
build.inst(IrCmd::CHECK_TAG, tb, build.constTag(LUA_TTABLE), fallback);
IrOp vb = build.inst(IrCmd::LOAD_POINTER, build.vmReg(rb));
IrOp addrSlotEl = build.inst(IrCmd::GET_SLOT_NODE_ADDR, vb, build.constUint(pcpos));
build.inst(IrCmd::CHECK_SLOT_MATCH, addrSlotEl, build.vmConst(aux), fallback);
build.inst(IrCmd::CHECK_READONLY, vb, fallback);
IrOp tva = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(ra));
build.inst(IrCmd::STORE_NODE_VALUE_TV, addrSlotEl, tva);
build.inst(IrCmd::BARRIER_TABLE_FORWARD, vb, build.vmReg(ra));
IrOp next = build.blockAtInst(pcpos + 2);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::FALLBACK_SETTABLEKS, build.constUint(pcpos), build.vmReg(ra), build.vmReg(rb), build.vmConst(aux));
build.inst(IrCmd::JUMP, next);
}
void translateInstGetGlobal(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
uint32_t aux = pc[1];
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp env = build.inst(IrCmd::LOAD_ENV);
IrOp addrSlotEl = build.inst(IrCmd::GET_SLOT_NODE_ADDR, env, build.constUint(pcpos));
build.inst(IrCmd::CHECK_SLOT_MATCH, addrSlotEl, build.vmConst(aux), fallback);
IrOp tvn = build.inst(IrCmd::LOAD_NODE_VALUE_TV, addrSlotEl);
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), tvn);
IrOp next = build.blockAtInst(pcpos + 2);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::FALLBACK_GETGLOBAL, build.constUint(pcpos), build.vmReg(ra), build.vmConst(aux));
build.inst(IrCmd::JUMP, next);
}
void translateInstSetGlobal(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
uint32_t aux = pc[1];
IrOp fallback = build.block(IrBlockKind::Fallback);
IrOp env = build.inst(IrCmd::LOAD_ENV);
IrOp addrSlotEl = build.inst(IrCmd::GET_SLOT_NODE_ADDR, env, build.constUint(pcpos));
build.inst(IrCmd::CHECK_SLOT_MATCH, addrSlotEl, build.vmConst(aux), fallback);
build.inst(IrCmd::CHECK_READONLY, env, fallback);
IrOp tva = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(ra));
build.inst(IrCmd::STORE_NODE_VALUE_TV, addrSlotEl, tva);
build.inst(IrCmd::BARRIER_TABLE_FORWARD, env, build.vmReg(ra));
IrOp next = build.blockAtInst(pcpos + 2);
FallbackStreamScope scope(build, fallback, next);
build.inst(IrCmd::FALLBACK_SETGLOBAL, build.constUint(pcpos), build.vmReg(ra), build.vmConst(aux));
build.inst(IrCmd::JUMP, next);
}
void translateInstConcat(IrBuilder& build, const Instruction* pc, int pcpos)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
build.inst(IrCmd::SET_SAVEDPC, build.constUint(pcpos + 1));
build.inst(IrCmd::CONCAT, build.vmReg(rb), build.constUint(rc - rb + 1));
IrOp tvb = build.inst(IrCmd::LOAD_TVALUE, build.vmReg(rb));
build.inst(IrCmd::STORE_TVALUE, build.vmReg(ra), tvb);
build.inst(IrCmd::CHECK_GC);
}
void translateInstCapture(IrBuilder& build, const Instruction* pc, int pcpos)
{
int type = LUAU_INSN_A(*pc);
int index = LUAU_INSN_B(*pc);
switch (type)
{
case LCT_VAL:
build.inst(IrCmd::CAPTURE, build.vmReg(index), build.constBool(false));
break;
case LCT_REF:
build.inst(IrCmd::CAPTURE, build.vmReg(index), build.constBool(true));
break;
case LCT_UPVAL:
build.inst(IrCmd::CAPTURE, build.vmUpvalue(index), build.constBool(false));
break;
default:
LUAU_ASSERT(!"Unknown upvalue capture type");
}
}
} // namespace CodeGen
} // namespace Luau