luau/CodeGen/src/CodeGen.cpp

798 lines
23 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/CodeGen.h"
#include "Luau/AssemblyBuilderX64.h"
#include "Luau/Common.h"
#include "Luau/CodeAllocator.h"
#include "Luau/CodeBlockUnwind.h"
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-03 19:26:13 +00:00
#include "Luau/IrAnalysis.h"
#include "Luau/IrBuilder.h"
#include "Luau/UnwindBuilder.h"
#include "Luau/UnwindBuilderDwarf2.h"
#include "Luau/UnwindBuilderWin.h"
#include "CustomExecUtils.h"
#include "CodeGenX64.h"
#include "EmitCommonX64.h"
#include "EmitInstructionX64.h"
#include "IrLoweringX64.h"
#include "NativeState.h"
#include "lapi.h"
#include <memory>
#if defined(__x86_64__) || defined(_M_X64)
#ifdef _MSC_VER
#include <intrin.h> // __cpuid
#else
#include <cpuid.h> // __cpuid
#endif
#endif
LUAU_FASTFLAGVARIABLE(DebugUseOldCodegen, false)
namespace Luau
{
namespace CodeGen
{
constexpr uint32_t kFunctionAlignment = 32;
struct InstructionOutline
{
int pcpos;
int length;
};
static void assembleHelpers(AssemblyBuilderX64& build, ModuleHelpers& helpers)
{
if (build.logText)
build.logAppend("; exitContinueVm\n");
helpers.exitContinueVm = build.setLabel();
emitExit(build, /* continueInVm */ true);
if (build.logText)
build.logAppend("; exitNoContinueVm\n");
helpers.exitNoContinueVm = build.setLabel();
emitExit(build, /* continueInVm */ false);
if (build.logText)
build.logAppend("; continueCallInVm\n");
helpers.continueCallInVm = build.setLabel();
emitContinueCallInVm(build);
}
static int emitInst(AssemblyBuilderX64& build, NativeState& data, ModuleHelpers& helpers, Proto* proto, LuauOpcode op, const Instruction* pc, int i,
Label* labelarr, Label& next, Label& fallback)
{
int skip = 0;
switch (op)
{
case LOP_NOP:
break;
case LOP_LOADNIL:
emitInstLoadNil(build, pc);
break;
case LOP_LOADB:
emitInstLoadB(build, pc, i, labelarr);
break;
case LOP_LOADN:
emitInstLoadN(build, pc);
break;
case LOP_LOADK:
emitInstLoadK(build, pc);
break;
case LOP_LOADKX:
emitInstLoadKX(build, pc);
break;
case LOP_MOVE:
emitInstMove(build, pc);
break;
case LOP_GETGLOBAL:
emitInstGetGlobal(build, pc, i, fallback);
break;
case LOP_SETGLOBAL:
emitInstSetGlobal(build, pc, i, next, fallback);
break;
case LOP_NAMECALL:
emitInstNameCall(build, pc, i, proto->k, next, fallback);
break;
case LOP_CALL:
emitInstCall(build, helpers, pc, i);
break;
case LOP_RETURN:
emitInstReturn(build, helpers, pc, i);
break;
case LOP_GETTABLE:
emitInstGetTable(build, pc, fallback);
break;
case LOP_SETTABLE:
emitInstSetTable(build, pc, next, fallback);
break;
case LOP_GETTABLEKS:
emitInstGetTableKS(build, pc, i, fallback);
break;
case LOP_SETTABLEKS:
emitInstSetTableKS(build, pc, i, next, fallback);
break;
case LOP_GETTABLEN:
emitInstGetTableN(build, pc, fallback);
break;
case LOP_SETTABLEN:
emitInstSetTableN(build, pc, next, fallback);
break;
case LOP_JUMP:
emitInstJump(build, pc, i, labelarr);
break;
case LOP_JUMPBACK:
emitInstJumpBack(build, pc, i, labelarr);
break;
case LOP_JUMPIF:
emitInstJumpIf(build, pc, i, labelarr, /* not_ */ false);
break;
case LOP_JUMPIFNOT:
emitInstJumpIf(build, pc, i, labelarr, /* not_ */ true);
break;
case LOP_JUMPIFEQ:
emitInstJumpIfEq(build, pc, i, labelarr, /* not_ */ false, fallback);
break;
case LOP_JUMPIFLE:
emitInstJumpIfCond(build, pc, i, labelarr, ConditionX64::LessEqual, fallback);
break;
case LOP_JUMPIFLT:
emitInstJumpIfCond(build, pc, i, labelarr, ConditionX64::Less, fallback);
break;
case LOP_JUMPIFNOTEQ:
emitInstJumpIfEq(build, pc, i, labelarr, /* not_ */ true, fallback);
break;
case LOP_JUMPIFNOTLE:
emitInstJumpIfCond(build, pc, i, labelarr, ConditionX64::NotLessEqual, fallback);
break;
case LOP_JUMPIFNOTLT:
emitInstJumpIfCond(build, pc, i, labelarr, ConditionX64::NotLess, fallback);
break;
case LOP_JUMPX:
emitInstJumpX(build, pc, i, labelarr);
break;
case LOP_JUMPXEQKNIL:
emitInstJumpxEqNil(build, pc, i, labelarr);
break;
case LOP_JUMPXEQKB:
emitInstJumpxEqB(build, pc, i, labelarr);
break;
case LOP_JUMPXEQKN:
emitInstJumpxEqN(build, pc, proto->k, i, labelarr);
break;
case LOP_JUMPXEQKS:
emitInstJumpxEqS(build, pc, i, labelarr);
break;
case LOP_ADD:
emitInstBinary(build, pc, TM_ADD, fallback);
break;
case LOP_SUB:
emitInstBinary(build, pc, TM_SUB, fallback);
break;
case LOP_MUL:
emitInstBinary(build, pc, TM_MUL, fallback);
break;
case LOP_DIV:
emitInstBinary(build, pc, TM_DIV, fallback);
break;
case LOP_MOD:
emitInstBinary(build, pc, TM_MOD, fallback);
break;
case LOP_POW:
emitInstBinary(build, pc, TM_POW, fallback);
break;
case LOP_ADDK:
emitInstBinaryK(build, pc, TM_ADD, fallback);
break;
case LOP_SUBK:
emitInstBinaryK(build, pc, TM_SUB, fallback);
break;
case LOP_MULK:
emitInstBinaryK(build, pc, TM_MUL, fallback);
break;
case LOP_DIVK:
emitInstBinaryK(build, pc, TM_DIV, fallback);
break;
case LOP_MODK:
emitInstBinaryK(build, pc, TM_MOD, fallback);
break;
case LOP_POWK:
emitInstPowK(build, pc, proto->k, fallback);
break;
case LOP_NOT:
emitInstNot(build, pc);
break;
case LOP_MINUS:
emitInstMinus(build, pc, fallback);
break;
case LOP_LENGTH:
emitInstLength(build, pc, fallback);
break;
case LOP_NEWTABLE:
emitInstNewTable(build, pc, i, next);
break;
case LOP_DUPTABLE:
emitInstDupTable(build, pc, i, next);
break;
case LOP_SETLIST:
emitInstSetList(build, pc, next);
break;
case LOP_GETUPVAL:
emitInstGetUpval(build, pc);
break;
case LOP_SETUPVAL:
emitInstSetUpval(build, pc, next);
break;
case LOP_CLOSEUPVALS:
emitInstCloseUpvals(build, pc, next);
break;
case LOP_FASTCALL:
// We want to lower next instruction at skip+2, but this instruction is only 1 long, so we need to add 1
skip = emitInstFastCall(build, pc, i, next) + 1;
break;
case LOP_FASTCALL1:
// We want to lower next instruction at skip+2, but this instruction is only 1 long, so we need to add 1
skip = emitInstFastCall1(build, pc, i, next) + 1;
break;
case LOP_FASTCALL2:
skip = emitInstFastCall2(build, pc, i, next);
break;
case LOP_FASTCALL2K:
skip = emitInstFastCall2K(build, pc, i, next);
break;
case LOP_FORNPREP:
emitInstForNPrep(build, pc, i, next, labelarr[i + 1 + LUAU_INSN_D(*pc)]);
break;
case LOP_FORNLOOP:
emitInstForNLoop(build, pc, i, labelarr[i + 1 + LUAU_INSN_D(*pc)], next);
break;
case LOP_FORGLOOP:
emitinstForGLoop(build, pc, i, labelarr[i + 1 + LUAU_INSN_D(*pc)], next, fallback);
break;
case LOP_FORGPREP_NEXT:
emitInstForGPrepNext(build, pc, labelarr[i + 1 + LUAU_INSN_D(*pc)], fallback);
break;
case LOP_FORGPREP_INEXT:
emitInstForGPrepInext(build, pc, labelarr[i + 1 + LUAU_INSN_D(*pc)], fallback);
break;
case LOP_AND:
emitInstAnd(build, pc);
break;
case LOP_ANDK:
emitInstAndK(build, pc);
break;
case LOP_OR:
emitInstOr(build, pc);
break;
case LOP_ORK:
emitInstOrK(build, pc);
break;
case LOP_GETIMPORT:
emitInstGetImport(build, pc, fallback);
break;
case LOP_CONCAT:
emitInstConcat(build, pc, i, next);
break;
case LOP_COVERAGE:
emitInstCoverage(build, i);
break;
default:
emitFallback(build, data, op, i);
break;
}
return skip;
}
static void emitInstFallback(AssemblyBuilderX64& build, NativeState& data, LuauOpcode op, const Instruction* pc, int i, Label* labelarr)
{
switch (op)
{
case LOP_GETIMPORT:
emitSetSavedPc(build, i + 1);
emitInstGetImportFallback(build, LUAU_INSN_A(*pc), pc[1]);
break;
case LOP_GETTABLE:
emitInstGetTableFallback(build, pc, i);
break;
case LOP_SETTABLE:
emitInstSetTableFallback(build, pc, i);
break;
case LOP_GETTABLEN:
emitInstGetTableNFallback(build, pc, i);
break;
case LOP_SETTABLEN:
emitInstSetTableNFallback(build, pc, i);
break;
case LOP_NAMECALL:
// TODO: fast-paths that we've handled can be removed from the fallback
emitFallback(build, data, op, i);
break;
case LOP_JUMPIFEQ:
emitInstJumpIfEqFallback(build, pc, i, labelarr, /* not_ */ false);
break;
case LOP_JUMPIFLE:
emitInstJumpIfCondFallback(build, pc, i, labelarr, ConditionX64::LessEqual);
break;
case LOP_JUMPIFLT:
emitInstJumpIfCondFallback(build, pc, i, labelarr, ConditionX64::Less);
break;
case LOP_JUMPIFNOTEQ:
emitInstJumpIfEqFallback(build, pc, i, labelarr, /* not_ */ true);
break;
case LOP_JUMPIFNOTLE:
emitInstJumpIfCondFallback(build, pc, i, labelarr, ConditionX64::NotLessEqual);
break;
case LOP_JUMPIFNOTLT:
emitInstJumpIfCondFallback(build, pc, i, labelarr, ConditionX64::NotLess);
break;
case LOP_ADD:
emitInstBinaryFallback(build, pc, i, TM_ADD);
break;
case LOP_SUB:
emitInstBinaryFallback(build, pc, i, TM_SUB);
break;
case LOP_MUL:
emitInstBinaryFallback(build, pc, i, TM_MUL);
break;
case LOP_DIV:
emitInstBinaryFallback(build, pc, i, TM_DIV);
break;
case LOP_MOD:
emitInstBinaryFallback(build, pc, i, TM_MOD);
break;
case LOP_POW:
emitInstBinaryFallback(build, pc, i, TM_POW);
break;
case LOP_ADDK:
emitInstBinaryKFallback(build, pc, i, TM_ADD);
break;
case LOP_SUBK:
emitInstBinaryKFallback(build, pc, i, TM_SUB);
break;
case LOP_MULK:
emitInstBinaryKFallback(build, pc, i, TM_MUL);
break;
case LOP_DIVK:
emitInstBinaryKFallback(build, pc, i, TM_DIV);
break;
case LOP_MODK:
emitInstBinaryKFallback(build, pc, i, TM_MOD);
break;
case LOP_POWK:
emitInstBinaryKFallback(build, pc, i, TM_POW);
break;
case LOP_MINUS:
emitInstMinusFallback(build, pc, i);
break;
case LOP_LENGTH:
emitInstLengthFallback(build, pc, i);
break;
case LOP_FORGLOOP:
emitinstForGLoopFallback(build, pc, i, labelarr[i + 1 + LUAU_INSN_D(*pc)]);
break;
case LOP_FORGPREP_NEXT:
case LOP_FORGPREP_INEXT:
emitInstForGPrepXnextFallback(build, pc, i, labelarr[i + 1 + LUAU_INSN_D(*pc)]);
break;
case LOP_GETGLOBAL:
// TODO: luaV_gettable + cachedslot update instead of full fallback
emitFallback(build, data, op, i);
break;
case LOP_SETGLOBAL:
// TODO: luaV_settable + cachedslot update instead of full fallback
emitFallback(build, data, op, i);
break;
case LOP_GETTABLEKS:
// Full fallback required for LOP_GETTABLEKS because 'luaV_gettable' doesn't handle builtin vector field access
// It is also required to perform cached slot update
// TODO: extra fast-paths could be lowered before the full fallback
emitFallback(build, data, op, i);
break;
case LOP_SETTABLEKS:
// TODO: luaV_settable + cachedslot update instead of full fallback
emitFallback(build, data, op, i);
break;
default:
LUAU_ASSERT(!"Expected fallback for instruction");
}
}
static NativeProto* assembleFunction(AssemblyBuilderX64& build, NativeState& data, ModuleHelpers& helpers, Proto* proto, AssemblyOptions options)
{
NativeProto* result = new NativeProto();
result->proto = proto;
if (options.includeAssembly || options.includeIr)
{
if (proto->debugname)
build.logAppend("; function %s()", getstr(proto->debugname));
else
build.logAppend("; function()");
if (proto->linedefined >= 0)
build.logAppend(" line %d\n", proto->linedefined);
else
build.logAppend("\n");
}
if (!FFlag::DebugUseOldCodegen)
{
build.align(kFunctionAlignment, AlignmentDataX64::Ud2);
Label start = build.setLabel();
IrBuilder builder;
builder.buildFunctionIr(proto);
updateUseInfo(builder.function);
IrLoweringX64 lowering(build, helpers, data, proto, builder.function);
lowering.lower(options);
result->instTargets = new uintptr_t[proto->sizecode];
for (int i = 0; i < proto->sizecode; i++)
{
auto [irLocation, asmLocation] = builder.function.bcMapping[i];
result->instTargets[i] = irLocation == ~0u ? 0 : asmLocation - start.location;
}
result->location = start.location;
if (build.logText)
build.logAppend("\n");
return result;
}
std::vector<Label> instLabels;
instLabels.resize(proto->sizecode);
std::vector<Label> instFallbacks;
instFallbacks.resize(proto->sizecode);
std::vector<InstructionOutline> instOutlines;
instOutlines.reserve(64);
build.align(kFunctionAlignment, AlignmentDataX64::Ud2);
Label start = build.setLabel();
for (int i = 0; i < proto->sizecode;)
{
const Instruction* pc = &proto->code[i];
LuauOpcode op = LuauOpcode(LUAU_INSN_OP(*pc));
int nexti = i + getOpLength(op);
LUAU_ASSERT(nexti <= proto->sizecode);
build.setLabel(instLabels[i]);
if (options.annotator)
options.annotator(options.annotatorContext, build.text, proto->bytecodeid, i);
Label& next = nexti < proto->sizecode ? instLabels[nexti] : start; // Last instruction can't use 'next' label
int skip = emitInst(build, data, helpers, proto, op, pc, i, instLabels.data(), next, instFallbacks[i]);
if (skip != 0)
instOutlines.push_back({nexti, skip});
i = nexti + skip;
LUAU_ASSERT(i <= proto->sizecode);
}
size_t textSize = build.text.size();
uint32_t codeSize = build.getCodeSize();
if (options.annotator && options.includeOutlinedCode)
build.logAppend("; outlined instructions\n");
for (auto [pcpos, length] : instOutlines)
{
int i = pcpos;
while (i < pcpos + length)
{
const Instruction* pc = &proto->code[i];
LuauOpcode op = LuauOpcode(LUAU_INSN_OP(*pc));
int nexti = i + getOpLength(op);
LUAU_ASSERT(nexti <= proto->sizecode);
build.setLabel(instLabels[i]);
if (options.annotator && options.includeOutlinedCode)
options.annotator(options.annotatorContext, build.text, proto->bytecodeid, i);
Label& next = nexti < proto->sizecode ? instLabels[nexti] : start; // Last instruction can't use 'next' label
int skip = emitInst(build, data, helpers, proto, op, pc, i, instLabels.data(), next, instFallbacks[i]);
LUAU_ASSERT(skip == 0);
i = nexti;
}
if (i < proto->sizecode)
build.jmp(instLabels[i]);
}
if (options.annotator && options.includeOutlinedCode)
build.logAppend("; outlined code\n");
for (int i = 0, instid = 0; i < proto->sizecode; ++instid)
{
const Instruction* pc = &proto->code[i];
LuauOpcode op = LuauOpcode(LUAU_INSN_OP(*pc));
int nexti = i + getOpLength(op);
LUAU_ASSERT(nexti <= proto->sizecode);
if (instFallbacks[i].id == 0)
{
i = nexti;
continue;
}
if (options.annotator && options.includeOutlinedCode)
options.annotator(options.annotatorContext, build.text, proto->bytecodeid, instid);
build.setLabel(instFallbacks[i]);
emitInstFallback(build, data, op, pc, i, instLabels.data());
// Jump back to the next instruction handler
if (nexti < proto->sizecode)
build.jmp(instLabels[nexti]);
i = nexti;
}
// Truncate assembly output if we don't care for outlined code part
if (!options.includeOutlinedCode)
{
build.text.resize(textSize);
build.logAppend("; skipping %u bytes of outlined code\n", build.getCodeSize() - codeSize);
}
result->instTargets = new uintptr_t[proto->sizecode];
for (int i = 0; i < proto->sizecode; i++)
result->instTargets[i] = instLabels[i].location - start.location;
result->location = start.location;
if (build.logText)
build.logAppend("\n");
return result;
}
static void destroyNativeProto(NativeProto* nativeProto)
{
delete[] nativeProto->instTargets;
delete nativeProto;
}
static void onCloseState(lua_State* L)
{
destroyNativeState(L);
}
static void onDestroyFunction(lua_State* L, Proto* proto)
{
NativeProto* nativeProto = getProtoExecData(proto);
LUAU_ASSERT(nativeProto->proto == proto);
setProtoExecData(proto, nullptr);
destroyNativeProto(nativeProto);
}
static int onEnter(lua_State* L, Proto* proto)
{
if (L->singlestep)
return 1;
NativeState* data = getNativeState(L);
if (!L->ci->savedpc)
L->ci->savedpc = proto->code;
// We will jump into native code through a gateway
bool (*gate)(lua_State*, Proto*, uintptr_t, NativeContext*) = (bool (*)(lua_State*, Proto*, uintptr_t, NativeContext*))data->context.gateEntry;
NativeProto* nativeProto = getProtoExecData(proto);
uintptr_t target = nativeProto->instTargets[L->ci->savedpc - proto->code];
// Returns 1 to finish the function in the VM
return gate(L, proto, target, &data->context);
}
static void onSetBreakpoint(lua_State* L, Proto* proto, int instruction)
{
if (!getProtoExecData(proto))
return;
LUAU_ASSERT(!"native breakpoints are not implemented");
}
bool isSupported()
{
#if !LUA_CUSTOM_EXECUTION
return false;
#elif defined(__x86_64__) || defined(_M_X64)
if (LUA_EXTRA_SIZE != 1)
return false;
if (sizeof(TValue) != 16)
return false;
if (sizeof(LuaNode) != 32)
return false;
int cpuinfo[4] = {};
#ifdef _MSC_VER
__cpuid(cpuinfo, 1);
#else
__cpuid(1, cpuinfo[0], cpuinfo[1], cpuinfo[2], cpuinfo[3]);
#endif
// We require AVX1 support for VEX encoded XMM operations
// We also requre SSE4.1 support for ROUNDSD but the AVX check below covers it
// https://en.wikipedia.org/wiki/CPUID#EAX=1:_Processor_Info_and_Feature_Bits
if ((cpuinfo[2] & (1 << 28)) == 0)
return false;
return true;
#else
return false;
#endif
}
void create(lua_State* L)
{
LUAU_ASSERT(isSupported());
NativeState& data = *createNativeState(L);
#if defined(_WIN32)
data.unwindBuilder = std::make_unique<UnwindBuilderWin>();
#else
data.unwindBuilder = std::make_unique<UnwindBuilderDwarf2>();
#endif
data.codeAllocator.context = data.unwindBuilder.get();
data.codeAllocator.createBlockUnwindInfo = createBlockUnwindInfo;
data.codeAllocator.destroyBlockUnwindInfo = destroyBlockUnwindInfo;
initFallbackTable(data);
initHelperFunctions(data);
if (!x64::initEntryFunction(data))
{
destroyNativeState(L);
return;
}
lua_ExecutionCallbacks* ecb = getExecutionCallbacks(L);
ecb->close = onCloseState;
ecb->destroy = onDestroyFunction;
ecb->enter = onEnter;
ecb->setbreakpoint = onSetBreakpoint;
}
static void gatherFunctions(std::vector<Proto*>& results, Proto* proto)
{
if (results.size() <= size_t(proto->bytecodeid))
results.resize(proto->bytecodeid + 1);
// Skip protos that we've already compiled in this run: this happens because at -O2, inlined functions get their protos reused
if (results[proto->bytecodeid])
return;
results[proto->bytecodeid] = proto;
for (int i = 0; i < proto->sizep; i++)
gatherFunctions(results, proto->p[i]);
}
void compile(lua_State* L, int idx)
{
LUAU_ASSERT(lua_isLfunction(L, idx));
const TValue* func = luaA_toobject(L, idx);
// If initialization has failed, do not compile any functions
if (!getNativeState(L))
return;
AssemblyBuilderX64 build(/* logText= */ false);
NativeState* data = getNativeState(L);
std::vector<Proto*> protos;
gatherFunctions(protos, clvalue(func)->l.p);
ModuleHelpers helpers;
assembleHelpers(build, helpers);
std::vector<NativeProto*> results;
results.reserve(protos.size());
// Skip protos that have been compiled during previous invocations of CodeGen::compile
for (Proto* p : protos)
if (p && getProtoExecData(p) == nullptr)
results.push_back(assembleFunction(build, *data, helpers, p, {}));
build.finalize();
uint8_t* nativeData = nullptr;
size_t sizeNativeData = 0;
uint8_t* codeStart = nullptr;
if (!data->codeAllocator.allocate(
build.data.data(), int(build.data.size()), build.code.data(), int(build.code.size()), nativeData, sizeNativeData, codeStart))
{
for (NativeProto* result : results)
destroyNativeProto(result);
return;
}
// Relocate instruction offsets
for (NativeProto* result : results)
{
for (int i = 0; i < result->proto->sizecode; i++)
result->instTargets[i] += uintptr_t(codeStart + result->location);
LUAU_ASSERT(result->proto->sizecode);
result->entryTarget = result->instTargets[0];
}
// Link native proto objects to Proto; the memory is now managed by VM and will be freed via onDestroyFunction
for (NativeProto* result : results)
setProtoExecData(result->proto, result);
}
std::string getAssembly(lua_State* L, int idx, AssemblyOptions options)
{
LUAU_ASSERT(lua_isLfunction(L, idx));
const TValue* func = luaA_toobject(L, idx);
AssemblyBuilderX64 build(/* logText= */ options.includeAssembly);
NativeState data;
initFallbackTable(data);
std::vector<Proto*> protos;
gatherFunctions(protos, clvalue(func)->l.p);
ModuleHelpers helpers;
assembleHelpers(build, helpers);
for (Proto* p : protos)
if (p)
{
NativeProto* nativeProto = assembleFunction(build, data, helpers, p, options);
destroyNativeProto(nativeProto);
}
build.finalize();
if (options.outputBinary)
return std::string(build.code.begin(), build.code.end()) + std::string(build.data.begin(), build.data.end());
else
return build.text;
}
} // namespace CodeGen
} // namespace Luau