luau-unzip/lib/inflate.luau

388 lines
9.9 KiB
Text

-- Tree class for storing Huffman trees used in DEFLATE decompression
local Tree = {}
export type Tree = typeof(setmetatable({} :: TreeInner, { __index = Tree }))
type TreeInner = {
table: { number }, -- Length of 16, stores code length counts
trans: { number }, -- Length of 288, stores code to symbol translations
}
--- Creates a new Tree instance with initialized tables
function Tree.new(): Tree
return setmetatable(
{
table = table.create(16, 0),
trans = table.create(288, 0),
} :: TreeInner,
{ __index = Tree }
)
end
-- Data class for managing compression state and buffers
local Data = {}
export type Data = typeof(setmetatable({} :: DataInner, { __index = Data }))
-- stylua: ignore
export type DataInner = {
source: buffer, -- Input buffer containing compressed data
sourceIndex: number, -- Current position in source buffer
tag: number, -- Bit buffer for reading compressed data
bitcount: number, -- Number of valid bits in tag
dest: buffer, -- Output buffer for decompressed data
destLen: number, -- Current length of decompressed data
ltree: Tree, -- Length/literal tree for current block
dtree: Tree, -- Distance tree for current block
}
--- Creates a new Data instance with initialized compression state
function Data.new(source: buffer, dest: buffer): Data
return setmetatable(
{
source = source,
sourceIndex = 0,
tag = 0,
bitcount = 0,
dest = dest,
destLen = 0,
ltree = Tree.new(),
dtree = Tree.new(),
} :: DataInner,
{ __index = Data }
)
end
-- Static Huffman trees used for fixed block types
local staticLengthTree = Tree.new()
local staticDistTree = Tree.new()
-- Tables for storing extra bits and base values for length/distance codes
local lengthBits = table.create(30, 0)
local lengthBase = table.create(30, 0)
local distBits = table.create(30, 0)
local distBase = table.create(30, 0)
-- Special ordering of code length codes used in dynamic Huffman trees
-- stylua: ignore
local clcIndex = {
16, 17, 18, 0, 8, 7, 9, 6,
10, 5, 11, 4, 12, 3, 13, 2,
14, 1, 15
}
-- Tree used for decoding code lengths in dynamic blocks
local codeTree = Tree.new()
local lengths = table.create(288 + 32, 0)
--- Builds the extra bits and base tables for length and distance codes
local function buildBitsBase(bits: { number }, base: { number }, delta: number, first: number)
local sum = first
-- Initialize the bits table with appropriate bit lengths
for i = 0, delta - 1 do
bits[i] = 0
end
for i = 0, 29 - delta do
bits[i + delta] = math.floor(i / delta)
end
-- Build the base value table using bit lengths
for i = 0, 29 do
base[i] = sum
sum += bit32.lshift(1, bits[i])
end
end
--- Constructs the fixed Huffman trees used in DEFLATE format
local function buildFixedTrees(lengthTree: Tree, distTree: Tree)
-- Build the fixed length tree according to DEFLATE specification
for i = 0, 6 do
lengthTree.table[i] = 0
end
lengthTree.table[7] = 24
lengthTree.table[8] = 152
lengthTree.table[9] = 112
-- Populate the translation table for length codes
for i = 0, 23 do
lengthTree.trans[i] = 256 + i
end
for i = 0, 143 do
lengthTree.trans[24 + i] = i
end
for i = 0, 7 do
lengthTree.trans[24 + 144 + i] = 280 + i
end
for i = 0, 111 do
lengthTree.trans[24 + 144 + 8 + i] = 144 + i
end
-- Build the fixed distance tree (simpler than length tree)
for i = 0, 4 do
distTree.table[i] = 0
end
distTree.table[5] = 32
for i = 0, 31 do
distTree.trans[i] = i
end
end
--- Temporary array for building trees
local offs = table.create(16, 0)
--- Builds a Huffman tree from a list of code lengths
local function buildTree(t: Tree, lengths: { number }, off: number, num: number)
-- Initialize the code length count table
for i = 0, 15 do
t.table[i] = 0
end
-- Count the frequency of each code length
for i = 0, num - 1 do
t.table[lengths[off + i]] += 1
end
t.table[0] = 0
-- Calculate offsets for distribution sort
local sum = 0
for i = 0, 15 do
offs[i] = sum
sum += t.table[i]
end
-- Create the translation table mapping codes to symbols
for i = 0, num - 1 do
local len = lengths[off + i]
if len > 0 then
t.trans[offs[len]] = i
offs[len] += 1
end
end
end
--- Reads a single bit from the input stream
local function getBit(d: Data): number
if d.bitcount <= 0 then
d.tag = buffer.readu8(d.source, d.sourceIndex)
d.sourceIndex += 1
d.bitcount = 8
end
local bit = bit32.band(d.tag, 1)
d.tag = bit32.rshift(d.tag, 1)
d.bitcount -= 1
return bit
end
--- Reads multiple bits from the input stream with a base value
local function readBits(d: Data, num: number?, base: number): number
if not num then
return base
end
-- Ensure we have enough bits in the buffer
while d.bitcount < 24 and d.sourceIndex < buffer.len(d.source) do
d.tag = bit32.bor(d.tag, bit32.lshift(buffer.readu8(d.source, d.sourceIndex), d.bitcount))
d.sourceIndex += 1
d.bitcount += 8
end
local val = bit32.band(d.tag, bit32.rshift(0xffff, 16 - num))
d.tag = bit32.rshift(d.tag, num)
d.bitcount -= num
return val + base
end
--- Decodes a symbol using a Huffman tree
local function decodeSymbol(d: Data, t: Tree): number
while d.bitcount < 24 and d.sourceIndex < buffer.len(d.source) do
d.tag = bit32.bor(d.tag, bit32.lshift(buffer.readu8(d.source, d.sourceIndex), d.bitcount))
d.sourceIndex += 1
d.bitcount += 8
end
local sum, cur, len = 0, 0, 0
local tag = d.tag
-- Traverse the Huffman tree to find the symbol
repeat
cur = 2 * cur + bit32.band(tag, 1)
tag = bit32.rshift(tag, 1)
len += 1
sum += t.table[len]
cur -= t.table[len]
until cur < 0
d.tag = tag
d.bitcount -= len
return t.trans[sum + cur]
end
--- Decodes the dynamic Huffman trees for a block
local function decodeTrees(d: Data, lengthTree: Tree, distTree: Tree)
local hlit = readBits(d, 5, 257) -- Number of literal/length codes
local hdist = readBits(d, 5, 1) -- Number of distance codes
local hclen = readBits(d, 4, 4) -- Number of code length codes
-- Initialize code lengths array
for i = 0, 18 do
lengths[i] = 0
end
-- Read code lengths for the code length alphabet
for i = 0, hclen - 1 do
lengths[clcIndex[i + 1]] = readBits(d, 3, 0)
end
-- Build the code lengths tree
buildTree(codeTree, lengths, 0, 19)
-- Decode length/distance tree code lengths
local num = 0
while num < hlit + hdist do
local sym = decodeSymbol(d, codeTree)
if sym == 16 then
-- Copy previous code length 3-6 times
local prev = lengths[num - 1]
for _ = 1, readBits(d, 2, 3) do
lengths[num] = prev
num += 1
end
elseif sym == 17 then
-- Repeat zero 3-10 times
for _ = 1, readBits(d, 3, 3) do
lengths[num] = 0
num += 1
end
elseif sym == 18 then
-- Repeat zero 11-138 times
for _ = 1, readBits(d, 7, 11) do
lengths[num] = 0
num += 1
end
else
-- Regular code length 0-15
lengths[num] = sym
num += 1
end
end
-- Build the literal/length and distance trees
buildTree(lengthTree, lengths, 0, hlit)
buildTree(distTree, lengths, hlit, hdist)
end
--- Inflates a block of data using Huffman trees
local function inflateBlockData(d: Data, lengthTree: Tree, distTree: Tree)
while true do
local sym = decodeSymbol(d, lengthTree)
if sym == 256 then
-- End of block
return
end
if sym < 256 then
-- Literal byte
buffer.writeu8(d.dest, d.destLen, sym)
d.destLen += 1
else
-- Length/distance pair for copying
sym -= 257
local length = readBits(d, lengthBits[sym], lengthBase[sym])
local dist = decodeSymbol(d, distTree)
local offs = d.destLen - readBits(d, distBits[dist], distBase[dist])
-- Copy bytes from back reference
for i = offs, offs + length - 1 do
buffer.writeu8(d.dest, d.destLen, buffer.readu8(d.dest, i))
d.destLen += 1
end
end
end
end
--- Processes an uncompressed block
local function inflateUncompressedBlock(d: Data)
-- Align to byte boundary
local bytesToMove = d.bitcount // 8
d.sourceIndex -= bytesToMove
d.bitcount = 0
d.tag = 0
-- Read block length and its complement
local length = buffer.readu8(d.source, d.sourceIndex + 1)
length = 256 * length + buffer.readu8(d.source, d.sourceIndex)
local invlength = buffer.readu8(d.source, d.sourceIndex + 3)
invlength = 256 * invlength + buffer.readu8(d.source, d.sourceIndex + 2)
-- Verify block length using ones complement
if length ~= bit32.bxor(invlength, 0xffff) then
error("Invalid block length")
end
d.sourceIndex += 4
-- Copy uncompressed data to output
for _ = 1, length do
buffer.writeu8(d.dest, d.destLen, buffer.readu8(d.source, d.sourceIndex))
d.destLen += 1
d.sourceIndex += 1
end
d.bitcount = 0
end
--- Main decompression function that processes DEFLATE compressed data
local function uncompress(source: buffer, uncompressedSize: number?): buffer
local dest = buffer.create(
-- If the uncompressed size is known, we use that, otherwise we use a default
-- size that is a 7 times more than the compressed size; this factor works
-- well for most cases other than those with a very high compression ratio
uncompressedSize or buffer.len(source) * 7
)
local d = Data.new(source, dest)
repeat
local bfinal = getBit(d) -- Last block flag
local btype = readBits(d, 2, 0) -- Block type (0=uncompressed, 1=fixed, 2=dynamic)
if btype == 0 then
inflateUncompressedBlock(d)
elseif btype == 1 then
inflateBlockData(d, staticLengthTree, staticDistTree)
elseif btype == 2 then
decodeTrees(d, d.ltree, d.dtree)
inflateBlockData(d, d.ltree, d.dtree)
else
error("Invalid block type")
end
until bfinal == 1
-- Trim output buffer to actual size if needed
if d.destLen < buffer.len(dest) then
local result = buffer.create(d.destLen)
buffer.copy(result, 0, dest, 0, d.destLen)
return result
end
return dest
end
-- Initialize static trees and lookup tables for DEFLATE format
buildFixedTrees(staticLengthTree, staticDistTree)
buildBitsBase(lengthBits, lengthBase, 4, 3)
buildBitsBase(distBits, distBase, 2, 1)
lengthBits[28] = 0
lengthBase[28] = 258
return uncompress