--[=[ @class FFI Built-in library for foreign function interface. ### Example usage lib.c: ```c int add(int a, int b) { return a + b; } ``` init.luau: ```lua local ffi = require("@lune/ffi") -- Create function signature local addSignature = ffi.c.fn({ ffi.c.int, ffi.c.int }, ffi.c.int) -- Load library local lib = ffi.open("./lib.so") -- Get symbol from library local addSymbol = lib:find("add") -- Create CallableData local add = addSignature:callable(addSymbol) -- Create result box and arguments local result = ffi.box(ffi.c.int.size) local a = ffi.c.int:box(1) local b = ffi.c.int:box(2) -- Call external function add(result, a:ref(), b:ref()) -- Get number from result print(ffi.c.int:readData(result)) ``` ]=] local ffi = {} --[=[ @class C @within FFI Namespace for compile time sized c types. ]=] local c = {} ffi.c = c --#region Data -- --[=[ @class RefData A user manageable memory reference. ]=] export type RefData = { --[=[ @within RefData @tag Method @method deref Get a RefData by dereference this reference. @return A dereferenced `RefData` ]=] deref: (self: RefData) -> RefData, --[=[ @within RefData @tag Method @method offset Create a reference with specific offset from this reference. @param offset Create a reference at the given offset @return A offseted reference ]=] offset: (self: RefData, offset: number) -> RefData, --[=[ @within RefData @tag Method @method ref Create a reference of this reference. The created reference keeps the box from being garbage collected until the reference itself is collected. @return A reference of this reference ]=] ref: (self: RefData) -> RefData, --[=[ @within RefData @tag Method @method leak Create a reference of this reference after leaking it. GC doesn't manage destruction after this action. You must free it later. @return A reference of this reference ]=] leak: (self: RefData) -> RefData, --[=[ @within RefData @tag Method @method isNull Check reference is null or not. @return Whether reference is null or not ]=] isNull: (self: RefData) -> boolean, --[=[ @within RefData @tag Method @method copyFrom Copy content from another data. @param src The source data @param len The amount of data to copy, in bytes @param dst_offset The offset in the destination where the data will be pasted @param src_offset The offset in the source data from where the data will be copied ]=] copyFrom: (self: RefData, src: (BoxData|RefData), length: number, dst_offset: number, src_offset: number)->(); } --[=[ @class BoxData A user manageable heap memory. ]=] export type BoxData = { --[=[ @within BoxData @tag Field @field size The size of the box. ]=] size: number, --[=[ @within BoxData @tag Method @method zero Fill the box with zero. @return `Box` itself for convenience ]=] zero: (self: BoxData) -> BoxData, --[=[ @within BoxData @tag Method @method leak Create a reference of the box after leaking it. GC doesn't manage destruction after this action. You must free it later. @param offset Create a reference at the given offset @return A reference of the box ]=] leak: (self: BoxData, offset: number?) -> RefData, --[=[ @within BoxData @tag Method @method ref Create a reference of the box. The created reference keeps the box from being garbage collected until the reference itself is collected. @param offset Create a reference at the given offset @return A reference of the box ]=] ref: (self: BoxData, offset: number?) -> RefData, --[=[ @within BoxData @tag Method @method copyFrom Copy content from another data. @param src The source data @param len The amount of data to copy, in bytes @param dst_offset The offset in the destination where the data will be pasted @param src_offset The offset in the source data from where the data will be copied ]=] copyFrom: (self: BoxData, src: (BoxData|RefData), length: number, dst_offset: number, src_offset: number)->(); } --[=[ @class LibData A dynamic opened library handle. ]=] export type LibData = { --[=[ @within LibData @tag Method @method find Find a symbol from the dynamic library. @param sym The name of the symbol @return A `Ref` of the found symbol ]=] find: (self: LibData, sym: string) -> RefData, } -- export type AppliedCallable = ()->() --[=[ @class CallableData A callable external function. To call external function, you should provide memory for the return value and references for the arguments. If return type is `void`, pass `nil`. ]=] export type CallableData = (ret: (RefData|BoxData)?, ...RefData)->() & { -- apply: (self: Callable, args: Args)->AppliedCallable, } --[=[ @class ClosureData A lua function wrapper for the function pointer. To return some data, write value into ret reference. ]=] export type ClosureData = { --[=[ @within ClosureData @tag Method @method ref Create a reference of the closure. usually can be used for passing function pointer as argument. The created reference keeps the closure from being garbage collected until the reference itself is collected. @return A reference of the closure ]=] ref: (self: ClosureData)->RefData, } --#endregion Data -- --#region C ABI Type Infos -- -- NOTE: T is a unique identifier for the `CType` and R is the closest Lua type. export type CTypeInfo = { --[=[ @within CTypeInfo @tag Field @field size The size of the type in bytes. ]=] size: number, --[=[ @within CTypeInfo @tag Field @field signedness The signedness of the type. ]=] signedness: boolean, -- subtype ptr: (self: CTypeInfo) -> CPtrInfo>, arr: (self: CTypeInfo, len: number) -> CArrInfo, R>, -- realize box: (self: CTypeInfo, val: R) -> BoxData, readData: (self: CTypeInfo, target: (RefData|BoxData), offset: number?) -> R, writeData: (self: CTypeInfo, target: (RefData|BoxData), value: R, offset: number?) -> (), stringifyData: (self: CTypeInfo, target: (RefData|BoxData), offset: number?) -> string, -- FIXME: recursive types; 'intoType' should be CTypes cast: (self: CTypeInfo, intoType: any, fromData: (RefData|BoxData), intoData: (RefData|BoxData)) -> (), } & { ["__phantom"]: T } type NumCType = CTypeInfo export type CPtrInfo = { --[=[ @within CPtrInfo @tag Field @field size The size of a pointer. should be the same for all pointers. Equivalent to `ffi.c.usize.size`. ]=] size: number, --[=[ @within CPtrInfo @tag Field @field inner The inner type of the pointer. ]=] inner: T, -- subtype -- FIXME: recursive types; result 'any' should be CArrInfo> arr: (self: CPtrInfo, len: number) -> any, -- FIXME: recursive types; result 'any' should be CPtrInfo> ptr: (self: CPtrInfo) -> any, readRef: (self: CPtrInfo, target: (RefData|BoxData), offset: number?) -> RefData, writeRef: (self: CPtrInfo, target: (RefData|BoxData), value: (RefData|BoxData), offset: number?) -> (), } --[=[ @class CArrInfo A c sized array type information. ]=] export type CArrInfo = { --[=[ @within CArrInfo @tag Field @field size The total size of the array in bytes. ]=] size: number, --[=[ @within CArrInfo @tag Field @field length The length of the array. ]=] length: number, --[=[ @within CArrInfo @tag Field @field inner The inner element type of the array. ]=] inner: T, -- subtype ptr: (self: CArrInfo) -> CPtrInfo>, -- realize box: (self: CArrInfo, table: { T }) -> BoxData, readData: (self: CArrInfo, target: (RefData|BoxData), offset: number?) -> { T }, writeData: (self: CArrInfo, target: (RefData|BoxData), value: { R }, target_offset: number?) -> (), copyData: (self: CArrInfo, dst: (RefData|BoxData), src: (RefData|BoxData), dst_offset: number?, src_offset: number?) -> (), offset: (self: CArrInfo, index: number) -> number, } --[=[ @class CFnInfo A c function signature type information. ]=] export type CFnInfo = { --[=[ @within CFnInfo @tag Method @method callable Create a callable from reference. @return Struct array type ]=] callable: (self: CFnInfo, functionRef: RefData) -> CallableData, --[=[ @within CFnInfo @tag Method @method closure Create a closure from lua function. @return A closure. ]=] closure: (self: CFnInfo, (ret: RefData, ...RefData)->()) -> ClosureData, } --[=[ @class CStructInfo A c struct type information. ]=] export type CStructInfo = { size: number, --[=[ @within CSturctInfo @tag Method @method arr Create a struct array type. @param len The length of the array @return A struct array type ]=] arr: (self: CStructInfo, len: number) -> CArrInfo, --[=[ @within CSturctInfo @tag Method @method ptr Create a struct pointer type. @return A struct pointer type ]=] ptr: (self: CStructInfo) -> CPtrInfo, box: (self: CStructInfo, table: { any }) -> BoxData, readData: (self: CStructInfo, target: (RefData|BoxData), offset: number?) -> { any }, writeData: (self: CStructInfo, target: (RefData|BoxData), table: { any }, offset: number?) -> (), copyData: (self: CStructInfo, dst: (RefData|BoxData), src: (RefData|BoxData), dst_offset: number?, src_offset: number?) -> (), offset: (self: CStructInfo, index: number) -> number, field: (self: CStructInfo, index: number) -> CTypes, } --[=[ @class CVoidInfo A type that represents c void. can only be used for the function return type. ]=] export type CVoidInfo = { --[=[ @within CVoidInfo @tag Method @method ptr Create a generic pointer type. @return Generic pointer type, equivalent to `*void` in C. ]=] ptr: (self: CVoidInfo) -> CPtrInfo, } c.void = {} :: CVoidInfo --#endregion C ABI Type Infos -- --#region Fixed size Rust-style types -- --[=[ @class u8 @within FFI A 8-bit sized unsigned integer, Equivalent to `uint8_t` in `stdint`. ]=] ffi.u8 = {} :: u8 export type u8 = NumCType<"u8"> --[=[ @class u16 @within FFI A 16-bit sized unsigned integer, Equivalent to `uint16_t` in `stdint`. ]=] ffi.u16 = {} :: u16 export type u16 = NumCType<"u16"> --[=[ @class u32 @within FFI A 32-bit sized unsigned integer, Equivalent to `uint32_t` in `stdint`. ]=] ffi.u32 = {} :: u32 export type u32 = NumCType<"u32"> --[=[ @class u64 @within FFI A 64-bit sized unsigned integer, Equivalent to `uint64_t` in `stdint`. ]=] ffi.u64 = {} :: u64 export type u64 = NumCType<"u64"> --[=[ @class u128 @within FFI A 128-bit sized unsigned integer, Equivalent to `uint128_t` in `stdint`. ]=] ffi.u128 = {} :: u128 export type u128 = NumCType<"u128"> --[=[ @class i8 @within FFI A 8-bit sized signed integer, Equivalent to `int8_t` in `stdint`. ]=] ffi.i8 = {} :: i8 export type i8 = NumCType<"i8"> --[=[ @class i16 @within FFI A 16-bit sized signed integer, Equivalent to `int16_t` in `stdint`. ]=] ffi.i16 = {} :: i16 export type i16 = NumCType<"i16"> --[=[ @class i32 @within FFI A 32-bit sized signed integer, Equivalent to `int32_t` in `stdint`. ]=] ffi.i32 = {} :: i32 export type i32 = NumCType<"i32"> --[=[ @class i64 @within FFI A 64-bit sized signed integer, Equivalent to `int64_t` in `stdint`. ]=] ffi.i64 = {} :: i64 export type i64 = NumCType<"i64"> --[=[ @class i128 @within FFI A 128-bit sized signed integer, Equivalent to `int128_t` in `stdint`. ]=] ffi.i128 = {} :: i128 export type i128 = NumCType<"i128"> --[=[ @class f32 @within FFI A single-precision 32-bit sized floating-point, Almost always equivalent to `float` in C. ]=] ffi.f32 = {} :: f32 export type f32 = NumCType<"f32"> --[=[ @class f64 @within FFI A double-precision 64-bit sized floating-point, Almost always equivalent to `double` in C. ]=] ffi.f64 = {} :: f64 export type f64 = NumCType<"f64"> --[=[ @class usize @within FFI A machine specific pointer sized unsigned integer. ]=] ffi.usize = {} :: usize export type usize = NumCType<"usize"> --[=[ @class isize @within FFI A machine specific pointer sized signed integer. ]=] ffi.isize = {} :: isize export type isize = NumCType<"isize"> --#endregion Fixed size Rust-style types -- --#region Variable size C-style types -- --[=[ @class char @within C Compiler defined C `char` type. The signedness may differ depending on the compiler and platform. You can get signedness by `signedness` field. ]=] c.char = {} :: char export type char = NumCType<"char"> -- c.float = {} :: float -- export type float = NumCType<"float"> -- c.double = {} :: double -- export type double = NumCType<"double"> --[=[ @class uchar @within C Compiler defined C `unsigned char` type. Mostly equivalent to `u8`. ]=] c.uchar = {} :: uchar export type uchar = NumCType<"uchar"> --[=[ @class schar @within C Compiler defined C `signed char` type. ]=] c.schar = {} :: schar export type schar = NumCType<"schar"> --[=[ @class short @within C Compiler defined C `short` type. ]=] c.short = {} :: short export type short = NumCType<"short"> --[=[ @class ushort @within C Compiler defined C `unsigned short` type. ]=] c.ushort = {} :: ushort export type ushort = NumCType<"ushort"> --[=[ @class int @within C Compiler defined C `int` type. The side may differ depending on the compiler and platform. ]=] c.int = {} :: int export type int = NumCType<"int"> --[=[ @class uint @within C Compiler defined C `unsigned int` type. The side may differ depending on the compiler and platform. ]=] c.uint = {} :: uint export type uint = NumCType<"uint"> --[=[ @class long @within C Compiler defined C `long` type. The side may differ depending on the compiler and platform. ]=] c.long = {} :: long export type long = NumCType<"long"> --[=[ @class ulong @within C Compiler defined C `unsigned long` type. The side may differ depending on the compiler and platform. ]=] c.ulong = {} :: ulong export type ulong = NumCType<"ulong"> --[=[ @class longlong @within C Compiler defined C `unsigned longlong` type. ]=] c.longlong = {} :: longlong export type longlong = NumCType<"longlong"> --[=[ @class longlong @within C Compiler defined C `unsigned longlong` type. ]=] c.ulonglong = {} :: ulonglong export type ulonglong = NumCType<"ulonglong"> --#endregion Variable size C-style types -- --[=[ @class CTypes All possible C types. ]=] export type CTypes = | u8 | u16 | u32 | u64 | u128 | i8 | i16 | i32 | i64 | i128 | f32 | f64 | usize | isize | char -- | float -- | double | uchar | schar | short | ushort | int | uint | long | ulong | longlong | ulonglong | CArrInfo | CPtrInfo | CFnInfo | CStructInfo | CVoidInfo --[=[ @within C Create a function signature type information. @param args An array of CTypes represents the arguments of the function @param ret The return type of the function @return A function signature type information ]=] function c.fn(args: { CTypes }, ret: CTypes): CFnInfo return nil :: any end --[=[ @within C Create a struct type information. @param fields An array of CTypes represents the fields of the struct @return A struct type information ]=] function c.struct(fields: { CTypes }): CStructInfo return nil :: any end --[=[ @within FFI Create a `Ref` with address 0. Can be used for receive a pointer from external function or pass it as an argument. @return A zero initialized Ref ]=] function ffi.nullRef(): RefData return nil :: any end --[=[ @within FFI Create a `Box` with specific size. @param size The size of the new box @return A allocated box ]=] function ffi.box(size: number): BoxData return nil :: any end --[=[ @within FFI Open a dynamic library. @param name The name of the target library @return A dynamic library handle ]=] function ffi.open(name: string): LibData return nil :: any end --[=[ @within FFI Return `true` if the second argument is an integer (i32). @param val A lua value to check @return Whether val is an integer or not ]=] function ffi.isInteger(val: T): boolean return nil :: any end return ffi