luau/CodeGen/include/Luau/IrAnalysis.h
Andy Friesen e25b0a6275
Sync to upstream/release/591 (#1012)
* Fix a use-after-free bug in the new type cloning algorithm
* Tighten up the type of `coroutine.wrap`. It is now `<A..., R...>(f:
(A...) -> R...) -> ((A...) -> R...)`
* Break `.luaurc` out into a separate library target `Luau.Config`. This
makes it easier for applications to reason about config files without
also depending on the type inference engine.
* Move typechecking limits into `FrontendOptions`. This allows embedders
more finely-grained control over autocomplete's internal time limits.
* Fix stability issue with debugger onprotectederror callback allowing
break in non-yieldable contexts

New solver:

* Initial work toward [Local Type
Inference](0e1082108f/rfcs/local-type-inference.md)
* Introduce a new subtyping test. This will be much nicer than the old
test because it is completely separate both from actual type inference
and from error reporting.

Native code generation:

* Added function to compute iterated dominance frontier
* Optimize barriers in SET_UPVALUE when tag is known
* Cache lua_State::global in a register on A64
* Optimize constant stores in A64 lowering
* Track table array size state to optimize array size checks
* Add split tag/value store into a VM register
* Check that spills can outlive the block only in specific conditions

---------

Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-08-18 11:15:41 -07:00

180 lines
5.7 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Common.h"
#include <bitset>
#include <queue>
#include <utility>
#include <vector>
#include <stdint.h>
namespace Luau
{
namespace CodeGen
{
struct IrBlock;
struct IrFunction;
void updateUseCounts(IrFunction& function);
void updateLastUseLocations(IrFunction& function);
uint32_t getNextInstUse(IrFunction& function, uint32_t targetInstIdx, uint32_t startInstIdx);
// Returns how many values are coming into the block (live in) and how many are coming out of the block (live out)
std::pair<uint32_t, uint32_t> getLiveInOutValueCount(IrFunction& function, IrBlock& block);
uint32_t getLiveInValueCount(IrFunction& function, IrBlock& block);
uint32_t getLiveOutValueCount(IrFunction& function, IrBlock& block);
struct RegisterSet
{
std::bitset<256> regs;
// If variadic sequence is active, we track register from which it starts
bool varargSeq = false;
uint8_t varargStart = 0;
};
void requireVariadicSequence(RegisterSet& sourceRs, const RegisterSet& defRs, uint8_t varargStart);
struct BlockOrdering
{
uint32_t depth = 0;
uint32_t preOrder = ~0u;
uint32_t postOrder = ~0u;
bool visited = false;
};
struct CfgInfo
{
std::vector<uint32_t> predecessors;
std::vector<uint32_t> predecessorsOffsets;
std::vector<uint32_t> successors;
std::vector<uint32_t> successorsOffsets;
// Immediate dominators (unique parent in the dominator tree)
std::vector<uint32_t> idoms;
// Children in the dominator tree
std::vector<uint32_t> domChildren;
std::vector<uint32_t> domChildrenOffsets;
std::vector<BlockOrdering> domOrdering;
// VM registers that are live when the block is entered
// Additionally, an active variadic sequence can exist at the entry of the block
std::vector<RegisterSet> in;
// VM registers that are defined inside the block
// It can also contain a variadic sequence definition if that hasn't been consumed inside the block
// Note that this means that checking 'def' set might not be enough to say that register has not been written to
std::vector<RegisterSet> def;
// VM registers that are coming out from the block
// These might be registers that are defined inside the block or have been defined at the entry of the block
// Additionally, an active variadic sequence can exist at the exit of the block
std::vector<RegisterSet> out;
// VM registers captured by nested closures
// This set can never have an active variadic sequence
RegisterSet captured;
};
// A quick refresher on dominance and dominator trees:
// * If A is a dominator of B (A dom B), you can never execute B without executing A first
// * A is a strict dominator of B (A sdom B) is similar to previous one but A != B
// * Immediate dominator node N (idom N) is a unique node T so that T sdom N,
// but T does not strictly dominate any other node that dominates N.
// * Dominance frontier is a set of nodes where dominance of a node X ends.
// In practice this is where values established by node X might no longer hold because of join edges from other nodes coming in.
// This is also where PHI instructions in SSA are placed.
void computeCfgImmediateDominators(IrFunction& function);
void computeCfgDominanceTreeChildren(IrFunction& function);
struct IdfContext
{
struct BlockAndOrdering
{
uint32_t blockIdx;
BlockOrdering ordering;
bool operator<(const BlockAndOrdering& rhs) const
{
if (ordering.depth != rhs.ordering.depth)
return ordering.depth < rhs.ordering.depth;
return ordering.preOrder < rhs.ordering.preOrder;
}
};
// Using priority queue to work on nodes in the order from the bottom of the dominator tree to the top
// If the depth of keys is equal, DFS order is used to provide strong ordering
std::priority_queue<BlockAndOrdering> queue;
std::vector<uint32_t> worklist;
struct IdfVisitMarks
{
bool seenInQueue = false;
bool seenInWorklist = false;
};
std::vector<IdfVisitMarks> visits;
std::vector<uint32_t> idf;
};
// Compute iterated dominance frontier (IDF or DF+) for a variable, given the set of blocks where that variable is defined
// Providing a set of blocks where the variable is a live-in at the entry helps produce a pruned SSA form (inserted phi nodes will not be dead)
//
// 'Iterated' comes from the definition where we recompute the IDFn+1 = DF(S) while adding IDFn to S until a fixed point is reached
// Iterated dominance frontier has been shown to be equal to the set of nodes where phi instructions have to be inserted
void computeIteratedDominanceFrontierForDefs(
IdfContext& ctx, const IrFunction& function, const std::vector<uint32_t>& defBlocks, const std::vector<uint32_t>& liveInBlocks);
// Function used to update all CFG data
void computeCfgInfo(IrFunction& function);
struct BlockIteratorWrapper
{
const uint32_t* itBegin = nullptr;
const uint32_t* itEnd = nullptr;
bool empty() const
{
return itBegin == itEnd;
}
size_t size() const
{
return size_t(itEnd - itBegin);
}
const uint32_t* begin() const
{
return itBegin;
}
const uint32_t* end() const
{
return itEnd;
}
uint32_t operator[](size_t pos) const
{
LUAU_ASSERT(pos < size_t(itEnd - itBegin));
return itBegin[pos];
}
};
BlockIteratorWrapper predecessors(const CfgInfo& cfg, uint32_t blockIdx);
BlockIteratorWrapper successors(const CfgInfo& cfg, uint32_t blockIdx);
BlockIteratorWrapper domChildren(const CfgInfo& cfg, uint32_t blockIdx);
} // namespace CodeGen
} // namespace Luau