luau/prototyping/Properties/Step.agda
Alan Jeffrey c5477d522d
Prototyping strict mode (#399)
* First cut of strict mode

Co-authored-by: Lily Brown <lily@lily.fyi>
2022-03-02 16:02:51 -06:00

142 lines
8.4 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --rewriting #-}
module Properties.Step where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Float using (primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv; primFloatEquality; primFloatLess)
open import Agda.Builtin.Bool using (true; false)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Heap using (Heap; _[_]; alloc; ok; function_is_end)
open import Luau.Syntax using (Block; Expr; nil; var; val; addr; bool; function_is_end; block_is_end; _$_; local_←_; return; done; _∙_; name; fun; arg; number; binexp; +; -; *; /; <; >; <=; >=; ==; ~=)
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; app₁ ; app₂ ; beta; function; block; return; done; local; subst; binOp₀; binOp₁; binOp₂; +; -; *; /; <; >; <=; >=; ==; ~=; evalEqOp; evalNeqOp)
open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; block; local; return; bin₁; bin₂; +; -; *; /; <; >; <=; >=)
open import Luau.RuntimeType using (valueType; function; number)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Properties.Remember using (remember; _,_)
open import Utility.Bool using (not; _or_)
data BinOpStepResult v op w : Set where
step : x (v op w x) BinOpStepResult v op w
error₁ : BinOpError op (valueType(v)) BinOpStepResult v op w
error₂ : BinOpError op (valueType(w)) BinOpStepResult v op w
binOpStep : v op w BinOpStepResult v op w
binOpStep nil + w = error₁ (+ (λ ()))
binOpStep (addr a) + w = error₁ (+ (λ ()))
binOpStep (number m) + nil = error₂ (+ (λ ()))
binOpStep (number m) + (addr a) = error₂ (+ (λ ()))
binOpStep (number m) + (number n) = step (number (primFloatPlus m n)) (+ m n)
binOpStep (number m) + (bool b) = error₂ (+ (λ ()))
binOpStep (bool b) + w = error₁ (+ (λ ()))
binOpStep nil - w = error₁ (- (λ ()))
binOpStep (addr a) - w = error₁ (- (λ ()))
binOpStep (number x) - nil = error₂ (- (λ ()))
binOpStep (number x) - (addr a) = error₂ (- (λ ()))
binOpStep (number x) - (number n) = step (number (primFloatMinus x n)) (- x n)
binOpStep (number x) - (bool b) = error₂ (- (λ ()))
binOpStep (bool b) - w = error₁ (- (λ ()))
binOpStep nil * w = error₁ (* (λ ()))
binOpStep (addr a) * w = error₁ (* (λ ()))
binOpStep (number m) * nil = error₂ (* (λ ()))
binOpStep (number m) * (addr a) = error₂ (* (λ ()))
binOpStep (number m) * (number n) = step (number (primFloatDiv m n)) (* m n)
binOpStep (number m) * (bool b) = error₂ (* (λ ()))
binOpStep (bool b) * w = error₁ (* (λ ()))
binOpStep nil / w = error₁ (/ (λ ()))
binOpStep (addr a) / w = error₁ (/ (λ ()))
binOpStep (number m) / nil = error₂ (/ (λ ()))
binOpStep (number m) / (addr a) = error₂ (/ (λ ()))
binOpStep (number m) / (number n) = step (number (primFloatTimes m n)) (/ m n)
binOpStep (number m) / (bool b) = error₂ (/ (λ ()))
binOpStep (bool b) / w = error₁ (/ (λ ()))
binOpStep nil < w = error₁ (< (λ ()))
binOpStep (addr a) < w = error₁ (< (λ ()))
binOpStep (number m) < nil = error₂ (< (λ ()))
binOpStep (number m) < (addr a) = error₂ (< (λ ()))
binOpStep (number m) < (number n) = step (bool (primFloatLess m n)) (< m n)
binOpStep (number m) < (bool b) = error₂ (< (λ ()))
binOpStep (bool b) < w = error₁ (< (λ ()))
binOpStep nil > w = error₁ (> (λ ()))
binOpStep (addr a) > w = error₁ (> (λ ()))
binOpStep (number m) > nil = error₂ (> (λ ()))
binOpStep (number m) > (addr a) = error₂ (> (λ ()))
binOpStep (number m) > (number n) = step (bool (primFloatLess n m)) (> m n)
binOpStep (number m) > (bool b) = error₂ (> (λ ()))
binOpStep (bool b) > w = error₁ (> (λ ()))
binOpStep v == w = step (bool (evalEqOp v w)) (== v w)
binOpStep v ~= w = step (bool (evalNeqOp v w)) (~= v w)
binOpStep nil <= w = error₁ (<= (λ ()))
binOpStep (addr a) <= w = error₁ (<= (λ ()))
binOpStep (number m) <= nil = error₂ (<= (λ ()))
binOpStep (number m) <= (addr a) = error₂ (<= (λ ()))
binOpStep (number m) <= (number n) = step (bool (primFloatLess m n or primFloatEquality m n)) (<= m n)
binOpStep (number m) <= (bool b) = error₂ (<= (λ ()))
binOpStep (bool b) <= w = error₁ (<= (λ ()))
binOpStep nil >= w = error₁ (>= (λ ()))
binOpStep (addr a) >= w = error₁ (>= (λ ()))
binOpStep (number m) >= nil = error₂ (>= (λ ()))
binOpStep (number m) >= (addr a) = error₂ (>= (λ ()))
binOpStep (number m) >= (number n) = step (bool (primFloatLess n m or primFloatEquality m n)) (>= m n)
binOpStep (number m) >= (bool b) = error₂ (>= (λ ()))
binOpStep (bool b) >= w = error₁ (>= (λ ()))
data StepResultᴮ {a} (H : Heap a) (B : Block a) : Set
data StepResultᴱ {a} (H : Heap a) (M : Expr a) : Set
data StepResultᴮ H B where
step : H B (H B ⟶ᴮ B H) StepResultᴮ H B
return : v {B} (B (return (val v) B)) StepResultᴮ H B
done : (B done) StepResultᴮ H B
error : (RuntimeErrorᴮ H B) StepResultᴮ H B
data StepResultᴱ H M where
step : H M (H M ⟶ᴱ M H) StepResultᴱ H M
value : V (M val V) StepResultᴱ H M
error : (RuntimeErrorᴱ H M) StepResultᴱ H M
stepᴱ : {a} H M StepResultᴱ {a} H M
stepᴮ : {a} H B StepResultᴮ {a} H B
stepᴱ H (val v) = value v refl
stepᴱ H (var x) = error UnboundVariable
stepᴱ H (M $ N) with stepᴱ H M
stepᴱ H (M $ N) | step H M D = step H (M $ N) (app₁ D)
stepᴱ H (_ $ N) | value v refl with stepᴱ H N
stepᴱ H (_ $ N) | value v refl | step H N s = step H (val v $ N) (app₂ v s)
stepᴱ H (_ $ _) | value (addr a) refl | value w refl with remember (H [ a ])
stepᴱ H (_ $ _) | value (addr a) refl | value w refl | (nothing , p) = error (app₁ (SEGV p))
stepᴱ H (_ $ _) | value (addr a) refl | value w refl | (just(function F is B end) , p) = step H (block (fun F) is B [ w / name (arg F) ]ᴮ end) (beta function F is B end w refl p)
stepᴱ H (_ $ _) | value nil refl | value w refl = error (FunctionMismatch nil w (λ ()))
stepᴱ H (_ $ _) | value (number m) refl | value w refl = error (FunctionMismatch (number m) w (λ ()))
stepᴱ H (_ $ _) | value (bool b) refl | value w refl = error (FunctionMismatch (bool b) w (λ ()))
stepᴱ H (M $ N) | value V p | error E = error (app₂ E)
stepᴱ H (M $ N) | error E = error (app₁ E)
stepᴱ H (block b is B end) with stepᴮ H B
stepᴱ H (block b is B end) | step H B D = step H (block b is B end) (block D)
stepᴱ H (block b is (return _ B) end) | return v refl = step H (val v) (return v)
stepᴱ H (block b is done end) | done refl = step H (val nil) done
stepᴱ H (block b is B end) | error E = error (block E)
stepᴱ H (function F is C end) with alloc H (function F is C end)
stepᴱ H function F is C end | ok a H p = step H (val (addr a)) (function a p)
stepᴱ H (binexp M op N) with stepᴱ H M
stepᴱ H (binexp M op N) | step H M s = step H (binexp M op N) (binOp₁ s)
stepᴱ H (binexp M op N) | error E = error (bin₁ E)
stepᴱ H (binexp M op N) | value v refl with stepᴱ H N
stepᴱ H (binexp M op N) | value v refl | step H N s = step H (binexp (val v) op N) (binOp₂ s)
stepᴱ H (binexp M op N) | value v refl | error E = error (bin₂ E)
stepᴱ H (binexp M op N) | value v refl | value w refl with binOpStep v op w
stepᴱ H (binexp M op N) | value v refl | value w refl | step x p = step H (val x) (binOp₀ p)
stepᴱ H (binexp M op N) | value v refl | value w refl | error₁ E = error (BinOpMismatch₁ v w E)
stepᴱ H (binexp M op N) | value v refl | value w refl | error₂ E = error (BinOpMismatch₂ v w E)
stepᴮ H (function F is C end B) with alloc H (function F is C end)
stepᴮ H (function F is C end B) | ok a H p = step H (B [ addr a / name (fun F) ]ᴮ) (function a p)
stepᴮ H (local x M B) with stepᴱ H M
stepᴮ H (local x M B) | step H M D = step H (local x M B) (local D)
stepᴮ H (local x _ B) | value v refl = step H (B [ v / name x ]ᴮ) (subst v)
stepᴮ H (local x M B) | error E = error (local E)
stepᴮ H (return M B) with stepᴱ H M
stepᴮ H (return M B) | step H M D = step H (return M B) (return D)
stepᴮ H (return _ B) | value V refl = return V refl
stepᴮ H (return M B) | error E = error (return E)
stepᴮ H done = done refl