luau/VM/src/ltable.cpp
2023-04-14 15:05:27 +03:00

859 lines
26 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
// This code is based on Lua 5.x implementation licensed under MIT License; see lua_LICENSE.txt for details
/*
* Implementation of tables (aka arrays, objects, or hash tables).
*
* Tables keep the elements in two parts: an array part and a hash part.
* Integer keys >=1 are all candidates to be kept in the array part. The actual size of the array is the
* largest n such that at least half the slots between 0 and n are in use.
* Hash uses a mix of chained scatter table with Brent's variation.
*
* A main invariant of these tables is that, if an element is not in its main position (i.e. the original
* position that its hash gives to it), then the colliding element is in its own main position.
* Hence even when the load factor reaches 100%, performance remains good.
*
* Table keys can be arbitrary values unless they contain NaN. Keys are hashed and compared using raw equality,
* so even if the key is a userdata with an overridden __eq, it's not used during hash lookups.
*
* Each table has a "boundary", defined as the index k where t[k] ~= nil and t[k+1] == nil. The boundary can be
* computed using a binary search and can be adjusted when the table is modified; crucially, Luau enforces an
* invariant where the boundary must be in the array part - this enforces a consistent iteration order through the
* prefix of the table when using pairs(), and allows to implement algorithms that access elements in 1..#t range
* more efficiently.
*/
#include "ltable.h"
#include "lstate.h"
#include "ldebug.h"
#include "lgc.h"
#include "lmem.h"
#include "lnumutils.h"
#include <string.h>
// max size of both array and hash part is 2^MAXBITS
#define MAXBITS 26
#define MAXSIZE (1 << MAXBITS)
static_assert(offsetof(LuaNode, val) == 0, "Unexpected Node memory layout, pointer cast in gval2slot is incorrect");
// TKey is bitpacked for memory efficiency so we need to validate bit counts for worst case
static_assert(TKey{{NULL}, {0}, LUA_TDEADKEY, 0}.tt == LUA_TDEADKEY, "not enough bits for tt");
static_assert(TKey{{NULL}, {0}, LUA_TNIL, MAXSIZE - 1}.next == MAXSIZE - 1, "not enough bits for next");
static_assert(TKey{{NULL}, {0}, LUA_TNIL, -(MAXSIZE - 1)}.next == -(MAXSIZE - 1), "not enough bits for next");
// empty hash data points to dummynode so that we can always dereference it
const LuaNode luaH_dummynode = {
{{NULL}, {0}, LUA_TNIL}, // value
{{NULL}, {0}, LUA_TNIL, 0} // key
};
#define dummynode (&luaH_dummynode)
// hash is always reduced mod 2^k
#define hashpow2(t, n) (gnode(t, lmod((n), sizenode(t))))
#define hashstr(t, str) hashpow2(t, (str)->hash)
#define hashboolean(t, p) hashpow2(t, p)
static LuaNode* hashpointer(const Table* t, const void* p)
{
// we discard the high 32-bit portion of the pointer on 64-bit platforms as it doesn't carry much entropy anyway
unsigned int h = unsigned(uintptr_t(p));
// MurmurHash3 32-bit finalizer
h ^= h >> 16;
h *= 0x85ebca6bu;
h ^= h >> 13;
h *= 0xc2b2ae35u;
h ^= h >> 16;
return hashpow2(t, h);
}
static LuaNode* hashnum(const Table* t, double n)
{
static_assert(sizeof(double) == sizeof(unsigned int) * 2, "expected a 8-byte double");
unsigned int i[2];
memcpy(i, &n, sizeof(i));
// mask out sign bit to make sure -0 and 0 hash to the same value
uint32_t h1 = i[0];
uint32_t h2 = i[1] & 0x7fffffff;
// finalizer from MurmurHash64B
const uint32_t m = 0x5bd1e995;
h1 ^= h2 >> 18;
h1 *= m;
h2 ^= h1 >> 22;
h2 *= m;
h1 ^= h2 >> 17;
h1 *= m;
h2 ^= h1 >> 19;
h2 *= m;
// ... truncated to 32-bit output (normally hash is equal to (uint64_t(h1) << 32) | h2, but we only really need the lower 32-bit half)
return hashpow2(t, h2);
}
static LuaNode* hashvec(const Table* t, const float* v)
{
unsigned int i[LUA_VECTOR_SIZE];
memcpy(i, v, sizeof(i));
// convert -0 to 0 to make sure they hash to the same value
i[0] = (i[0] == 0x80000000) ? 0 : i[0];
i[1] = (i[1] == 0x80000000) ? 0 : i[1];
i[2] = (i[2] == 0x80000000) ? 0 : i[2];
// scramble bits to make sure that integer coordinates have entropy in lower bits
i[0] ^= i[0] >> 17;
i[1] ^= i[1] >> 17;
i[2] ^= i[2] >> 17;
// Optimized Spatial Hashing for Collision Detection of Deformable Objects
unsigned int h = (i[0] * 73856093) ^ (i[1] * 19349663) ^ (i[2] * 83492791);
#if LUA_VECTOR_SIZE == 4
i[3] = (i[3] == 0x80000000) ? 0 : i[3];
i[3] ^= i[3] >> 17;
h ^= i[3] * 39916801;
#endif
return hashpow2(t, h);
}
/*
** returns the `main' position of an element in a table (that is, the index
** of its hash value)
*/
static LuaNode* mainposition(const Table* t, const TValue* key)
{
switch (ttype(key))
{
case LUA_TNUMBER:
return hashnum(t, nvalue(key));
case LUA_TVECTOR:
return hashvec(t, vvalue(key));
case LUA_TSTRING:
return hashstr(t, tsvalue(key));
case LUA_TBOOLEAN:
return hashboolean(t, bvalue(key));
case LUA_TLIGHTUSERDATA:
return hashpointer(t, pvalue(key));
default:
return hashpointer(t, gcvalue(key));
}
}
/*
** returns the index for `key' if `key' is an appropriate key to live in
** the array part of the table, -1 otherwise.
*/
static int arrayindex(double key)
{
int i;
luai_num2int(i, key);
return luai_numeq(cast_num(i), key) ? i : -1;
}
/*
** returns the index of a `key' for table traversals. First goes all
** elements in the array part, then elements in the hash part. The
** beginning of a traversal is signalled by -1.
*/
static int findindex(lua_State* L, Table* t, StkId key)
{
int i;
if (ttisnil(key))
return -1; // first iteration
i = ttisnumber(key) ? arrayindex(nvalue(key)) : -1;
if (0 < i && i <= t->sizearray) // is `key' inside array part?
return i - 1; // yes; that's the index (corrected to C)
else
{
LuaNode* n = mainposition(t, key);
for (;;)
{ // check whether `key' is somewhere in the chain
// key may be dead already, but it is ok to use it in `next'
if (luaO_rawequalKey(gkey(n), key) || (ttype(gkey(n)) == LUA_TDEADKEY && iscollectable(key) && gcvalue(gkey(n)) == gcvalue(key)))
{
i = cast_int(n - gnode(t, 0)); // key index in hash table
// hash elements are numbered after array ones
return i + t->sizearray;
}
if (gnext(n) == 0)
break;
n += gnext(n);
}
luaG_runerror(L, "invalid key to 'next'"); // key not found
}
}
int luaH_next(lua_State* L, Table* t, StkId key)
{
int i = findindex(L, t, key); // find original element
for (i++; i < t->sizearray; i++)
{ // try first array part
if (!ttisnil(&t->array[i]))
{ // a non-nil value?
setnvalue(key, cast_num(i + 1));
setobj2s(L, key + 1, &t->array[i]);
return 1;
}
}
for (i -= t->sizearray; i < sizenode(t); i++)
{ // then hash part
if (!ttisnil(gval(gnode(t, i))))
{ // a non-nil value?
getnodekey(L, key, gnode(t, i));
setobj2s(L, key + 1, gval(gnode(t, i)));
return 1;
}
}
return 0; // no more elements
}
/*
** {=============================================================
** Rehash
** ==============================================================
*/
#define maybesetaboundary(t, boundary) \
{ \
if (t->aboundary <= 0) \
t->aboundary = -int(boundary); \
}
#define getaboundary(t) (t->aboundary < 0 ? -t->aboundary : t->sizearray)
static int computesizes(int nums[], int* narray)
{
int i;
int twotoi; // 2^i
int a = 0; // number of elements smaller than 2^i
int na = 0; // number of elements to go to array part
int n = 0; // optimal size for array part
for (i = 0, twotoi = 1; twotoi / 2 < *narray; i++, twotoi *= 2)
{
if (nums[i] > 0)
{
a += nums[i];
if (a > twotoi / 2)
{ // more than half elements present?
n = twotoi; // optimal size (till now)
na = a; // all elements smaller than n will go to array part
}
}
if (a == *narray)
break; // all elements already counted
}
*narray = n;
LUAU_ASSERT(*narray / 2 <= na && na <= *narray);
return na;
}
static int countint(double key, int* nums)
{
int k = arrayindex(key);
if (0 < k && k <= MAXSIZE)
{ // is `key' an appropriate array index?
nums[ceillog2(k)]++; // count as such
return 1;
}
else
return 0;
}
static int numusearray(const Table* t, int* nums)
{
int lg;
int ttlg; // 2^lg
int ause = 0; // summation of `nums'
int i = 1; // count to traverse all array keys
for (lg = 0, ttlg = 1; lg <= MAXBITS; lg++, ttlg *= 2)
{ // for each slice
int lc = 0; // counter
int lim = ttlg;
if (lim > t->sizearray)
{
lim = t->sizearray; // adjust upper limit
if (i > lim)
break; // no more elements to count
}
// count elements in range (2^(lg-1), 2^lg]
for (; i <= lim; i++)
{
if (!ttisnil(&t->array[i - 1]))
lc++;
}
nums[lg] += lc;
ause += lc;
}
return ause;
}
static int numusehash(const Table* t, int* nums, int* pnasize)
{
int totaluse = 0; // total number of elements
int ause = 0; // summation of `nums'
int i = sizenode(t);
while (i--)
{
LuaNode* n = &t->node[i];
if (!ttisnil(gval(n)))
{
if (ttisnumber(gkey(n)))
ause += countint(nvalue(gkey(n)), nums);
totaluse++;
}
}
*pnasize += ause;
return totaluse;
}
static void setarrayvector(lua_State* L, Table* t, int size)
{
if (size > MAXSIZE)
luaG_runerror(L, "table overflow");
luaM_reallocarray(L, t->array, t->sizearray, size, TValue, t->memcat);
TValue* array = t->array;
for (int i = t->sizearray; i < size; i++)
setnilvalue(&array[i]);
t->sizearray = size;
}
static void setnodevector(lua_State* L, Table* t, int size)
{
int lsize;
if (size == 0)
{ // no elements to hash part?
t->node = cast_to(LuaNode*, dummynode); // use common `dummynode'
lsize = 0;
}
else
{
int i;
lsize = ceillog2(size);
if (lsize > MAXBITS)
luaG_runerror(L, "table overflow");
size = twoto(lsize);
t->node = luaM_newarray(L, size, LuaNode, t->memcat);
for (i = 0; i < size; i++)
{
LuaNode* n = gnode(t, i);
gnext(n) = 0;
setnilvalue(gkey(n));
setnilvalue(gval(n));
}
}
t->lsizenode = cast_byte(lsize);
t->nodemask8 = cast_byte((1 << lsize) - 1);
t->lastfree = size; // all positions are free
}
static TValue* newkey(lua_State* L, Table* t, const TValue* key);
static TValue* arrayornewkey(lua_State* L, Table* t, const TValue* key)
{
if (ttisnumber(key))
{
int k;
double n = nvalue(key);
luai_num2int(k, n);
if (luai_numeq(cast_num(k), n) && cast_to(unsigned int, k - 1) < cast_to(unsigned int, t->sizearray))
return &t->array[k - 1];
}
return newkey(L, t, key);
}
static void resize(lua_State* L, Table* t, int nasize, int nhsize)
{
if (nasize > MAXSIZE || nhsize > MAXSIZE)
luaG_runerror(L, "table overflow");
int oldasize = t->sizearray;
int oldhsize = t->lsizenode;
LuaNode* nold = t->node; // save old hash ...
if (nasize > oldasize) // array part must grow?
setarrayvector(L, t, nasize);
// create new hash part with appropriate size
setnodevector(L, t, nhsize);
// used for the migration check at the end
LuaNode* nnew = t->node;
if (nasize < oldasize)
{ // array part must shrink?
t->sizearray = nasize;
// re-insert elements from vanishing slice
for (int i = nasize; i < oldasize; i++)
{
if (!ttisnil(&t->array[i]))
{
TValue ok;
setnvalue(&ok, cast_num(i + 1));
setobjt2t(L, newkey(L, t, &ok), &t->array[i]);
}
}
// shrink array
luaM_reallocarray(L, t->array, oldasize, nasize, TValue, t->memcat);
}
// used for the migration check at the end
TValue* anew = t->array;
// re-insert elements from hash part
for (int i = twoto(oldhsize) - 1; i >= 0; i--)
{
LuaNode* old = nold + i;
if (!ttisnil(gval(old)))
{
TValue ok;
getnodekey(L, &ok, old);
setobjt2t(L, arrayornewkey(L, t, &ok), gval(old));
}
}
// make sure we haven't recursively rehashed during element migration
LUAU_ASSERT(nnew == t->node);
LUAU_ASSERT(anew == t->array);
if (nold != dummynode)
luaM_freearray(L, nold, twoto(oldhsize), LuaNode, t->memcat); // free old array
}
static int adjustasize(Table* t, int size, const TValue* ek)
{
bool tbound = t->node != dummynode || size < t->sizearray;
int ekindex = ek && ttisnumber(ek) ? arrayindex(nvalue(ek)) : -1;
// move the array size up until the boundary is guaranteed to be inside the array part
while (size + 1 == ekindex || (tbound && !ttisnil(luaH_getnum(t, size + 1))))
size++;
return size;
}
void luaH_resizearray(lua_State* L, Table* t, int nasize)
{
int nsize = (t->node == dummynode) ? 0 : sizenode(t);
int asize = adjustasize(t, nasize, NULL);
resize(L, t, asize, nsize);
}
void luaH_resizehash(lua_State* L, Table* t, int nhsize)
{
resize(L, t, t->sizearray, nhsize);
}
static void rehash(lua_State* L, Table* t, const TValue* ek)
{
int nums[MAXBITS + 1]; // nums[i] = number of keys between 2^(i-1) and 2^i
for (int i = 0; i <= MAXBITS; i++)
nums[i] = 0; // reset counts
int nasize = numusearray(t, nums); // count keys in array part
int totaluse = nasize; // all those keys are integer keys
totaluse += numusehash(t, nums, &nasize); // count keys in hash part
// count extra key
if (ttisnumber(ek))
nasize += countint(nvalue(ek), nums);
totaluse++;
// compute new size for array part
int na = computesizes(nums, &nasize);
int nh = totaluse - na;
// enforce the boundary invariant; for performance, only do hash lookups if we must
int nadjusted = adjustasize(t, nasize, ek);
// count how many extra elements belong to array part instead of hash part
int aextra = nadjusted - nasize;
if (aextra != 0)
{
// we no longer need to store those extra array elements in hash part
nh -= aextra;
// because hash nodes are twice as large as array nodes, the memory we saved for hash parts can be used by array part
// this follows the general sparse array part optimization where array is allocated when 50% occupation is reached
nasize = nadjusted + aextra;
// since the size was changed, it's again important to enforce the boundary invariant at the new size
nasize = adjustasize(t, nasize, ek);
}
// resize the table to new computed sizes
resize(L, t, nasize, nh);
}
/*
** }=============================================================
*/
Table* luaH_new(lua_State* L, int narray, int nhash)
{
Table* t = luaM_newgco(L, Table, sizeof(Table), L->activememcat);
luaC_init(L, t, LUA_TTABLE);
t->metatable = NULL;
t->tmcache = cast_byte(~0);
t->array = NULL;
t->sizearray = 0;
t->lastfree = 0;
t->lsizenode = 0;
t->readonly = 0;
t->safeenv = 0;
t->nodemask8 = 0;
t->node = cast_to(LuaNode*, dummynode);
if (narray > 0)
setarrayvector(L, t, narray);
if (nhash > 0)
setnodevector(L, t, nhash);
return t;
}
void luaH_free(lua_State* L, Table* t, lua_Page* page)
{
if (t->node != dummynode)
luaM_freearray(L, t->node, sizenode(t), LuaNode, t->memcat);
if (t->array)
luaM_freearray(L, t->array, t->sizearray, TValue, t->memcat);
luaM_freegco(L, t, sizeof(Table), t->memcat, page);
}
static LuaNode* getfreepos(Table* t)
{
while (t->lastfree > 0)
{
t->lastfree--;
LuaNode* n = gnode(t, t->lastfree);
if (ttisnil(gkey(n)))
return n;
}
return NULL; // could not find a free place
}
/*
** inserts a new key into a hash table; first, check whether key's main
** position is free. If not, check whether colliding node is in its main
** position or not: if it is not, move colliding node to an empty place and
** put new key in its main position; otherwise (colliding node is in its main
** position), new key goes to an empty position.
*/
static TValue* newkey(lua_State* L, Table* t, const TValue* key)
{
// enforce boundary invariant
if (ttisnumber(key) && nvalue(key) == t->sizearray + 1)
{
rehash(L, t, key); // grow table
// after rehash, numeric keys might be located in the new array part, but won't be found in the node part
return arrayornewkey(L, t, key);
}
LuaNode* mp = mainposition(t, key);
if (!ttisnil(gval(mp)) || mp == dummynode)
{
LuaNode* n = getfreepos(t); // get a free place
if (n == NULL)
{ // cannot find a free place?
rehash(L, t, key); // grow table
// after rehash, numeric keys might be located in the new array part, but won't be found in the node part
return arrayornewkey(L, t, key);
}
LUAU_ASSERT(n != dummynode);
TValue mk;
getnodekey(L, &mk, mp);
LuaNode* othern = mainposition(t, &mk);
if (othern != mp)
{ // is colliding node out of its main position?
// yes; move colliding node into free position
while (othern + gnext(othern) != mp)
othern += gnext(othern); // find previous
gnext(othern) = cast_int(n - othern); // redo the chain with `n' in place of `mp'
*n = *mp; // copy colliding node into free pos. (mp->next also goes)
if (gnext(mp) != 0)
{
gnext(n) += cast_int(mp - n); // correct 'next'
gnext(mp) = 0; // now 'mp' is free
}
setnilvalue(gval(mp));
}
else
{ // colliding node is in its own main position
// new node will go into free position
if (gnext(mp) != 0)
gnext(n) = cast_int((mp + gnext(mp)) - n); // chain new position
else
LUAU_ASSERT(gnext(n) == 0);
gnext(mp) = cast_int(n - mp);
mp = n;
}
}
setnodekey(L, mp, key);
luaC_barriert(L, t, key);
LUAU_ASSERT(ttisnil(gval(mp)));
return gval(mp);
}
/*
** search function for integers
*/
const TValue* luaH_getnum(Table* t, int key)
{
// (1 <= key && key <= t->sizearray)
if (cast_to(unsigned int, key - 1) < cast_to(unsigned int, t->sizearray))
return &t->array[key - 1];
else if (t->node != dummynode)
{
double nk = cast_num(key);
LuaNode* n = hashnum(t, nk);
for (;;)
{ // check whether `key' is somewhere in the chain
if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk))
return gval(n); // that's it
if (gnext(n) == 0)
break;
n += gnext(n);
}
return luaO_nilobject;
}
else
return luaO_nilobject;
}
/*
** search function for strings
*/
const TValue* luaH_getstr(Table* t, TString* key)
{
LuaNode* n = hashstr(t, key);
for (;;)
{ // check whether `key' is somewhere in the chain
if (ttisstring(gkey(n)) && tsvalue(gkey(n)) == key)
return gval(n); // that's it
if (gnext(n) == 0)
break;
n += gnext(n);
}
return luaO_nilobject;
}
/*
** main search function
*/
const TValue* luaH_get(Table* t, const TValue* key)
{
switch (ttype(key))
{
case LUA_TNIL:
return luaO_nilobject;
case LUA_TSTRING:
return luaH_getstr(t, tsvalue(key));
case LUA_TNUMBER:
{
int k;
double n = nvalue(key);
luai_num2int(k, n);
if (luai_numeq(cast_num(k), nvalue(key))) // index is int?
return luaH_getnum(t, k); // use specialized version
// else go through
}
default:
{
LuaNode* n = mainposition(t, key);
for (;;)
{ // check whether `key' is somewhere in the chain
if (luaO_rawequalKey(gkey(n), key))
return gval(n); // that's it
if (gnext(n) == 0)
break;
n += gnext(n);
}
return luaO_nilobject;
}
}
}
TValue* luaH_set(lua_State* L, Table* t, const TValue* key)
{
const TValue* p = luaH_get(t, key);
invalidateTMcache(t);
if (p != luaO_nilobject)
return cast_to(TValue*, p);
else
return luaH_newkey(L, t, key);
}
TValue* luaH_newkey(lua_State* L, Table* t, const TValue* key)
{
if (ttisnil(key))
luaG_runerror(L, "table index is nil");
else if (ttisnumber(key) && luai_numisnan(nvalue(key)))
luaG_runerror(L, "table index is NaN");
else if (ttisvector(key) && luai_vecisnan(vvalue(key)))
luaG_runerror(L, "table index contains NaN");
return newkey(L, t, key);
}
TValue* luaH_setnum(lua_State* L, Table* t, int key)
{
// (1 <= key && key <= t->sizearray)
if (cast_to(unsigned int, key - 1) < cast_to(unsigned int, t->sizearray))
return &t->array[key - 1];
// hash fallback
const TValue* p = luaH_getnum(t, key);
if (p != luaO_nilobject)
return cast_to(TValue*, p);
else
{
TValue k;
setnvalue(&k, cast_num(key));
return newkey(L, t, &k);
}
}
TValue* luaH_setstr(lua_State* L, Table* t, TString* key)
{
const TValue* p = luaH_getstr(t, key);
invalidateTMcache(t);
if (p != luaO_nilobject)
return cast_to(TValue*, p);
else
{
TValue k;
setsvalue(L, &k, key);
return newkey(L, t, &k);
}
}
static int updateaboundary(Table* t, int boundary)
{
if (boundary < t->sizearray && ttisnil(&t->array[boundary - 1]))
{
if (boundary >= 2 && !ttisnil(&t->array[boundary - 2]))
{
maybesetaboundary(t, boundary - 1);
return boundary - 1;
}
}
else if (boundary + 1 < t->sizearray && !ttisnil(&t->array[boundary]) && ttisnil(&t->array[boundary + 1]))
{
maybesetaboundary(t, boundary + 1);
return boundary + 1;
}
return 0;
}
/*
** Try to find a boundary in table `t'. A `boundary' is an integer index
** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
*/
int luaH_getn(Table* t)
{
int boundary = getaboundary(t);
if (boundary > 0)
{
if (!ttisnil(&t->array[t->sizearray - 1]) && t->node == dummynode)
return t->sizearray; // fast-path: the end of the array in `t' already refers to a boundary
if (boundary < t->sizearray && !ttisnil(&t->array[boundary - 1]) && ttisnil(&t->array[boundary]))
return boundary; // fast-path: boundary already refers to a boundary in `t'
int foundboundary = updateaboundary(t, boundary);
if (foundboundary > 0)
return foundboundary;
}
int j = t->sizearray;
if (j > 0 && ttisnil(&t->array[j - 1]))
{
// "branchless" binary search from Array Layouts for Comparison-Based Searching, Paul Khuong, Pat Morin, 2017.
// note that clang is cmov-shy on cmovs around memory operands, so it will compile this to a branchy loop.
TValue* base = t->array;
int rest = j;
while (int half = rest >> 1)
{
base = ttisnil(&base[half]) ? base : base + half;
rest -= half;
}
int boundary = !ttisnil(base) + int(base - t->array);
maybesetaboundary(t, boundary);
return boundary;
}
else
{
// validate boundary invariant
LUAU_ASSERT(t->node == dummynode || ttisnil(luaH_getnum(t, j + 1)));
return j;
}
}
Table* luaH_clone(lua_State* L, Table* tt)
{
Table* t = luaM_newgco(L, Table, sizeof(Table), L->activememcat);
luaC_init(L, t, LUA_TTABLE);
t->metatable = tt->metatable;
t->tmcache = tt->tmcache;
t->array = NULL;
t->sizearray = 0;
t->lsizenode = 0;
t->nodemask8 = 0;
t->readonly = 0;
t->safeenv = 0;
t->node = cast_to(LuaNode*, dummynode);
t->lastfree = 0;
if (tt->sizearray)
{
t->array = luaM_newarray(L, tt->sizearray, TValue, t->memcat);
maybesetaboundary(t, getaboundary(tt));
t->sizearray = tt->sizearray;
memcpy(t->array, tt->array, t->sizearray * sizeof(TValue));
}
if (tt->node != dummynode)
{
int size = 1 << tt->lsizenode;
t->node = luaM_newarray(L, size, LuaNode, t->memcat);
t->lsizenode = tt->lsizenode;
t->nodemask8 = tt->nodemask8;
memcpy(t->node, tt->node, size * sizeof(LuaNode));
t->lastfree = tt->lastfree;
}
return t;
}
void luaH_clear(Table* tt)
{
// clear array part
for (int i = 0; i < tt->sizearray; ++i)
{
setnilvalue(&tt->array[i]);
}
maybesetaboundary(tt, 0);
// clear hash part
if (tt->node != dummynode)
{
int size = sizenode(tt);
tt->lastfree = size;
for (int i = 0; i < size; ++i)
{
LuaNode* n = gnode(tt, i);
setnilvalue(gkey(n));
setnilvalue(gval(n));
gnext(n) = 0;
}
}
// back to empty -> no tag methods present
tt->tmcache = cast_byte(~0);
}