luau/Analysis/src/ToString.cpp
vegorov-rbx 218159140c
Sync to upstream/release/584 (#977)
* Added support for async typechecking cancellation using a token passed
through frontend options
* Added luaC_enumheap for building debug tools that need a graph of Luau
heap

In our new typechecker:
* Errors or now suppressed when checking property lookup of
error-suppressing unions

In our native code generation (jit):
* Fixed unhandled value type in NOT_ANY lowering
* Fast-call tag checks will exit to VM on failure, instead of relying on
a native fallback
* Added vector type to the type information
* Eliminated redundant direct jumps across dead blocks
* Debugger APIs are now disabled for call frames executing natively
* Implemented support for unwind registration on macOS 14
2023-07-14 11:08:53 -07:00

1757 lines
45 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/ToString.h"
#include "Luau/Constraint.h"
#include "Luau/Location.h"
#include "Luau/Scope.h"
#include "Luau/TxnLog.h"
#include "Luau/TypeInfer.h"
#include "Luau/TypePack.h"
#include "Luau/Type.h"
#include "Luau/TypeFamily.h"
#include "Luau/VisitType.h"
#include <algorithm>
#include <stdexcept>
#include <string>
LUAU_FASTFLAG(DebugLuauDeferredConstraintResolution)
LUAU_FASTFLAGVARIABLE(LuauToStringPrettifyLocation, false)
/*
* Enables increasing levels of verbosity for Luau type names when stringifying.
* After level 2, test cases will break unpredictably because a pointer to their
* scope will be included in the stringification of generic and free types.
*
* Supported values:
*
* 0: Disabled, no changes.
*
* 1: Prefix free/generic types with free- and gen-, respectively. Also reveal
* hidden variadic tails.
*
* 2: Suffix free/generic types with their scope depth.
*
* 3: Suffix free/generic types with their scope pointer, if present.
*/
LUAU_FASTINTVARIABLE(DebugLuauVerboseTypeNames, 0)
LUAU_FASTFLAGVARIABLE(DebugLuauToStringNoLexicalSort, false)
namespace Luau
{
namespace
{
struct FindCyclicTypes final : TypeVisitor
{
FindCyclicTypes() = default;
FindCyclicTypes(const FindCyclicTypes&) = delete;
FindCyclicTypes& operator=(const FindCyclicTypes&) = delete;
bool exhaustive = false;
std::unordered_set<TypeId> visited;
std::unordered_set<TypePackId> visitedPacks;
std::set<TypeId> cycles;
std::set<TypePackId> cycleTPs;
void cycle(TypeId ty) override
{
cycles.insert(ty);
}
void cycle(TypePackId tp) override
{
cycleTPs.insert(tp);
}
bool visit(TypeId ty) override
{
return visited.insert(ty).second;
}
bool visit(TypePackId tp) override
{
return visitedPacks.insert(tp).second;
}
bool visit(TypeId ty, const TableType& ttv) override
{
if (!visited.insert(ty).second)
return false;
if (ttv.name || ttv.syntheticName)
{
for (TypeId itp : ttv.instantiatedTypeParams)
traverse(itp);
for (TypePackId itp : ttv.instantiatedTypePackParams)
traverse(itp);
return exhaustive;
}
return true;
}
bool visit(TypeId ty, const ClassType&) override
{
return false;
}
bool visit(TypeId, const PendingExpansionType&) override
{
return false;
}
};
template<typename TID>
void findCyclicTypes(std::set<TypeId>& cycles, std::set<TypePackId>& cycleTPs, TID ty, bool exhaustive)
{
FindCyclicTypes fct;
fct.exhaustive = exhaustive;
fct.traverse(ty);
cycles = std::move(fct.cycles);
cycleTPs = std::move(fct.cycleTPs);
}
} // namespace
static std::pair<bool, std::optional<Luau::Name>> canUseTypeNameInScope(ScopePtr scope, const std::string& name)
{
for (ScopePtr curr = scope; curr; curr = curr->parent)
{
for (const auto& [importName, nameTable] : curr->importedTypeBindings)
{
if (nameTable.count(name))
return {true, importName};
}
if (curr->exportedTypeBindings.count(name))
return {true, std::nullopt};
}
return {false, std::nullopt};
}
struct StringifierState
{
ToStringOptions& opts;
ToStringResult& result;
std::unordered_map<TypeId, std::string> cycleNames;
std::unordered_map<TypePackId, std::string> cycleTpNames;
std::unordered_set<void*> seen;
std::unordered_set<std::string> usedNames;
size_t indentation = 0;
bool exhaustive;
StringifierState(ToStringOptions& opts, ToStringResult& result)
: opts(opts)
, result(result)
, exhaustive(opts.exhaustive)
{
for (const auto& [_, v] : opts.nameMap.types)
usedNames.insert(v);
for (const auto& [_, v] : opts.nameMap.typePacks)
usedNames.insert(v);
}
bool hasSeen(const void* tv)
{
void* ttv = const_cast<void*>(tv);
if (seen.find(ttv) != seen.end())
return true;
seen.insert(ttv);
return false;
}
void unsee(const void* tv)
{
void* ttv = const_cast<void*>(tv);
auto iter = seen.find(ttv);
if (iter != seen.end())
seen.erase(iter);
}
std::string getName(TypeId ty)
{
const size_t s = opts.nameMap.types.size();
std::string& n = opts.nameMap.types[ty];
if (!n.empty())
return n;
for (int count = 0; count < 256; ++count)
{
std::string candidate = generateName(usedNames.size() + count);
if (!usedNames.count(candidate))
{
usedNames.insert(candidate);
n = candidate;
return candidate;
}
}
return generateName(s);
}
int previousNameIndex = 0;
std::string getName(TypePackId ty)
{
const size_t s = opts.nameMap.typePacks.size();
std::string& n = opts.nameMap.typePacks[ty];
if (!n.empty())
return n;
for (int count = 0; count < 256; ++count)
{
std::string candidate = generateName(previousNameIndex + count);
if (!usedNames.count(candidate))
{
previousNameIndex += count;
usedNames.insert(candidate);
n = candidate;
return candidate;
}
}
return generateName(s);
}
void emit(const std::string& s)
{
if (opts.maxTypeLength > 0 && result.name.length() > opts.maxTypeLength)
return;
result.name += s;
}
void emitLevel(Scope* scope)
{
size_t count = 0;
for (Scope* s = scope; s; s = s->parent.get())
++count;
emit(count);
if (FInt::DebugLuauVerboseTypeNames >= 3)
{
emit("-");
char buffer[16];
uint32_t s = uint32_t(intptr_t(scope) & 0xFFFFFF);
snprintf(buffer, sizeof(buffer), "0x%x", s);
emit(buffer);
}
}
void emit(TypeLevel level)
{
emit(std::to_string(level.level));
emit("-");
emit(std::to_string(level.subLevel));
}
void emit(const char* s)
{
if (opts.maxTypeLength > 0 && result.name.length() > opts.maxTypeLength)
return;
result.name += s;
}
void emit(int i)
{
emit(std::to_string(i).c_str());
}
void emit(size_t i)
{
emit(std::to_string(i).c_str());
}
void indent()
{
indentation += 4;
}
void dedent()
{
indentation -= 4;
}
void newline()
{
if (!opts.useLineBreaks)
return emit(" ");
emit("\n");
emitIndentation();
}
private:
void emitIndentation()
{
if (!opts.useLineBreaks)
return;
emit(std::string(indentation, ' '));
}
};
struct TypeStringifier
{
StringifierState& state;
explicit TypeStringifier(StringifierState& state)
: state(state)
{
}
void stringify(TypeId tv)
{
if (state.opts.maxTypeLength > 0 && state.result.name.length() > state.opts.maxTypeLength)
return;
if (tv->ty.valueless_by_exception())
{
state.result.error = true;
state.emit("* VALUELESS BY EXCEPTION *");
return;
}
auto it = state.cycleNames.find(tv);
if (it != state.cycleNames.end())
{
state.emit(it->second);
return;
}
Luau::visit(
[this, tv](auto&& t) {
return (*this)(tv, t);
},
tv->ty);
}
void stringify(const std::string& name, const Property& prop)
{
if (isIdentifier(name))
state.emit(name);
else
{
state.emit("[\"");
state.emit(escape(name));
state.emit("\"]");
}
state.emit(": ");
if (FFlag::DebugLuauReadWriteProperties)
{
// We special case the stringification if the property's read and write types are shared.
if (prop.isShared())
return stringify(*prop.readType());
// Otherwise emit them separately.
if (auto ty = prop.readType())
{
state.emit("read ");
stringify(*ty);
}
if (prop.readType() && prop.writeType())
state.emit(" + ");
if (auto ty = prop.writeType())
{
state.emit("write ");
stringify(*ty);
}
}
else
stringify(prop.type());
}
void stringify(TypePackId tp);
void stringify(TypePackId tpid, const std::vector<std::optional<FunctionArgument>>& names);
void stringify(const std::vector<TypeId>& types, const std::vector<TypePackId>& typePacks)
{
if (types.size() == 0 && typePacks.size() == 0)
return;
if (types.size() || typePacks.size())
state.emit("<");
bool first = true;
for (TypeId ty : types)
{
if (!first)
state.emit(", ");
first = false;
stringify(ty);
}
bool singleTp = typePacks.size() == 1;
for (TypePackId tp : typePacks)
{
if (isEmpty(tp) && singleTp)
continue;
if (!first)
state.emit(", ");
else
first = false;
bool wrap = !singleTp && get<TypePack>(follow(tp));
if (wrap)
state.emit("(");
stringify(tp);
if (wrap)
state.emit(")");
}
if (types.size() || typePacks.size())
state.emit(">");
}
void operator()(TypeId ty, const FreeType& ftv)
{
state.result.invalid = true;
if (FInt::DebugLuauVerboseTypeNames >= 1)
state.emit("free-");
state.emit(state.getName(ty));
if (FInt::DebugLuauVerboseTypeNames >= 2)
{
state.emit("-");
if (FFlag::DebugLuauDeferredConstraintResolution)
state.emitLevel(ftv.scope);
else
state.emit(ftv.level);
}
}
void operator()(TypeId, const BoundType& btv)
{
stringify(btv.boundTo);
}
void operator()(TypeId ty, const GenericType& gtv)
{
if (FInt::DebugLuauVerboseTypeNames >= 1)
state.emit("gen-");
if (gtv.explicitName)
{
state.usedNames.insert(gtv.name);
state.opts.nameMap.types[ty] = gtv.name;
state.emit(gtv.name);
}
else
state.emit(state.getName(ty));
if (FInt::DebugLuauVerboseTypeNames >= 2)
{
state.emit("-");
if (FFlag::DebugLuauDeferredConstraintResolution)
state.emitLevel(gtv.scope);
else
state.emit(gtv.level);
}
}
void operator()(TypeId, const BlockedType& btv)
{
state.emit("*blocked-");
state.emit(btv.index);
state.emit("*");
}
void operator()(TypeId ty, const PendingExpansionType& petv)
{
state.emit("*pending-expansion-");
state.emit(petv.index);
state.emit("*");
}
void operator()(TypeId, const PrimitiveType& ptv)
{
switch (ptv.type)
{
case PrimitiveType::NilType:
state.emit("nil");
return;
case PrimitiveType::Boolean:
state.emit("boolean");
return;
case PrimitiveType::Number:
state.emit("number");
return;
case PrimitiveType::String:
state.emit("string");
return;
case PrimitiveType::Thread:
state.emit("thread");
return;
case PrimitiveType::Function:
state.emit("function");
return;
case PrimitiveType::Table:
state.emit("table");
return;
default:
LUAU_ASSERT(!"Unknown primitive type");
throw InternalCompilerError("Unknown primitive type " + std::to_string(ptv.type));
}
}
void operator()(TypeId, const SingletonType& stv)
{
if (const BooleanSingleton* bs = Luau::get<BooleanSingleton>(&stv))
state.emit(bs->value ? "true" : "false");
else if (const StringSingleton* ss = Luau::get<StringSingleton>(&stv))
{
state.emit("\"");
state.emit(escape(ss->value));
state.emit("\"");
}
else
{
LUAU_ASSERT(!"Unknown singleton type");
throw InternalCompilerError("Unknown singleton type");
}
}
void operator()(TypeId, const FunctionType& ftv)
{
if (state.hasSeen(&ftv))
{
state.result.cycle = true;
state.emit("*CYCLE*");
return;
}
// We should not be respecting opts.hideNamedFunctionTypeParameters here.
if (ftv.generics.size() > 0 || ftv.genericPacks.size() > 0)
{
state.emit("<");
bool comma = false;
for (auto it = ftv.generics.begin(); it != ftv.generics.end(); ++it)
{
if (comma)
state.emit(", ");
comma = true;
stringify(*it);
}
for (auto it = ftv.genericPacks.begin(); it != ftv.genericPacks.end(); ++it)
{
if (comma)
state.emit(", ");
comma = true;
stringify(*it);
}
state.emit(">");
}
state.emit("(");
if (state.opts.functionTypeArguments)
stringify(ftv.argTypes, ftv.argNames);
else
stringify(ftv.argTypes);
state.emit(") -> ");
bool plural = true;
auto retBegin = begin(ftv.retTypes);
auto retEnd = end(ftv.retTypes);
if (retBegin != retEnd)
{
++retBegin;
if (retBegin == retEnd && !retBegin.tail())
plural = false;
}
if (plural)
state.emit("(");
stringify(ftv.retTypes);
if (plural)
state.emit(")");
state.unsee(&ftv);
}
void operator()(TypeId, const TableType& ttv)
{
if (ttv.boundTo)
return stringify(*ttv.boundTo);
if (!state.exhaustive)
{
if (ttv.name)
{
// If scope if provided, add module name and check visibility
if (state.opts.scope)
{
auto [success, moduleName] = canUseTypeNameInScope(state.opts.scope, *ttv.name);
if (!success)
state.result.invalid = true;
if (moduleName)
{
state.emit(*moduleName);
state.emit(".");
}
}
state.emit(*ttv.name);
stringify(ttv.instantiatedTypeParams, ttv.instantiatedTypePackParams);
return;
}
if (ttv.syntheticName)
{
state.result.invalid = true;
state.emit(*ttv.syntheticName);
stringify(ttv.instantiatedTypeParams, ttv.instantiatedTypePackParams);
return;
}
}
if (state.hasSeen(&ttv))
{
state.result.cycle = true;
state.emit("*CYCLE*");
return;
}
std::string openbrace = "@@@";
std::string closedbrace = "@@@?!";
switch (state.opts.hideTableKind ? TableState::Unsealed : ttv.state)
{
case TableState::Sealed:
state.result.invalid = true;
openbrace = "{|";
closedbrace = "|}";
break;
case TableState::Unsealed:
openbrace = "{";
closedbrace = "}";
break;
case TableState::Free:
state.result.invalid = true;
openbrace = "{-";
closedbrace = "-}";
break;
case TableState::Generic:
state.result.invalid = true;
openbrace = "{+";
closedbrace = "+}";
break;
}
// If this appears to be an array, we want to stringify it using the {T} syntax.
if (ttv.indexer && ttv.props.empty() && isNumber(ttv.indexer->indexType))
{
state.emit("{");
stringify(ttv.indexer->indexResultType);
state.emit("}");
state.unsee(&ttv);
return;
}
state.emit(openbrace);
state.indent();
bool comma = false;
if (ttv.indexer)
{
state.newline();
state.emit("[");
stringify(ttv.indexer->indexType);
state.emit("]: ");
stringify(ttv.indexer->indexResultType);
comma = true;
}
size_t index = 0;
size_t oldLength = state.result.name.length();
for (const auto& [name, prop] : ttv.props)
{
if (comma)
{
state.emit(",");
state.newline();
}
else
state.newline();
size_t length = state.result.name.length() - oldLength;
if (state.opts.maxTableLength > 0 && (length - 2 * index) >= state.opts.maxTableLength)
{
state.emit("... ");
state.emit(std::to_string(ttv.props.size() - index));
state.emit(" more ...");
break;
}
stringify(name, prop);
comma = true;
++index;
}
state.dedent();
if (comma)
state.newline();
else
state.emit(" ");
state.emit(closedbrace);
state.unsee(&ttv);
}
void operator()(TypeId, const MetatableType& mtv)
{
state.result.invalid = true;
if (!state.exhaustive && mtv.syntheticName)
{
state.emit(*mtv.syntheticName);
return;
}
state.emit("{ @metatable ");
stringify(mtv.metatable);
state.emit(",");
state.newline();
stringify(mtv.table);
state.emit(" }");
}
void operator()(TypeId, const ClassType& ctv)
{
state.emit(ctv.name);
}
void operator()(TypeId, const AnyType&)
{
state.emit("any");
}
void operator()(TypeId, const UnionType& uv)
{
if (state.hasSeen(&uv))
{
state.result.cycle = true;
state.emit("*CYCLE*");
return;
}
bool optional = false;
bool hasNonNilDisjunct = false;
std::vector<std::string> results = {};
for (auto el : &uv)
{
el = follow(el);
if (isNil(el))
{
optional = true;
continue;
}
else
{
hasNonNilDisjunct = true;
}
std::string saved = std::move(state.result.name);
bool needParens = !state.cycleNames.count(el) && (get<IntersectionType>(el) || get<FunctionType>(el));
if (needParens)
state.emit("(");
stringify(el);
if (needParens)
state.emit(")");
results.push_back(std::move(state.result.name));
state.result.name = std::move(saved);
}
state.unsee(&uv);
if (!FFlag::DebugLuauToStringNoLexicalSort)
std::sort(results.begin(), results.end());
if (optional && results.size() > 1)
state.emit("(");
bool first = true;
for (std::string& ss : results)
{
if (!first)
{
state.newline();
state.emit("| ");
}
state.emit(ss);
first = false;
}
if (optional)
{
const char* s = "?";
if (results.size() > 1)
s = ")?";
if (!hasNonNilDisjunct)
s = "nil";
state.emit(s);
}
}
void operator()(TypeId, const IntersectionType& uv)
{
if (state.hasSeen(&uv))
{
state.result.cycle = true;
state.emit("*CYCLE*");
return;
}
std::vector<std::string> results = {};
for (auto el : uv.parts)
{
el = follow(el);
std::string saved = std::move(state.result.name);
bool needParens = !state.cycleNames.count(el) && (get<UnionType>(el) || get<FunctionType>(el));
if (needParens)
state.emit("(");
stringify(el);
if (needParens)
state.emit(")");
results.push_back(std::move(state.result.name));
state.result.name = std::move(saved);
}
state.unsee(&uv);
if (!FFlag::DebugLuauToStringNoLexicalSort)
std::sort(results.begin(), results.end());
bool first = true;
for (std::string& ss : results)
{
if (!first)
{
state.newline();
state.emit("& ");
}
state.emit(ss);
first = false;
}
}
void operator()(TypeId, const ErrorType& tv)
{
state.result.error = true;
state.emit("*error-type*");
}
void operator()(TypeId, const LazyType& ltv)
{
if (TypeId unwrapped = ltv.unwrapped.load())
{
stringify(unwrapped);
}
else
{
state.result.invalid = true;
state.emit("lazy?");
}
}
void operator()(TypeId, const UnknownType& ttv)
{
state.emit("unknown");
}
void operator()(TypeId, const NeverType& ttv)
{
state.emit("never");
}
void operator()(TypeId, const NegationType& ntv)
{
state.emit("~");
// The precedence of `~` should be less than `|` and `&`.
TypeId followed = follow(ntv.ty);
bool parens = get<UnionType>(followed) || get<IntersectionType>(followed);
if (parens)
state.emit("(");
stringify(ntv.ty);
if (parens)
state.emit(")");
}
void operator()(TypeId, const TypeFamilyInstanceType& tfitv)
{
state.emit(tfitv.family->name);
state.emit("<");
bool comma = false;
for (TypeId ty : tfitv.typeArguments)
{
if (comma)
state.emit(", ");
comma = true;
stringify(ty);
}
for (TypePackId tp : tfitv.packArguments)
{
if (comma)
state.emit(", ");
comma = true;
stringify(tp);
}
state.emit(">");
}
};
struct TypePackStringifier
{
StringifierState& state;
const std::vector<std::optional<FunctionArgument>> elemNames;
static inline const std::vector<std::optional<FunctionArgument>> dummyElemNames = {};
unsigned elemIndex = 0;
explicit TypePackStringifier(StringifierState& state, const std::vector<std::optional<FunctionArgument>>& elemNames)
: state(state)
, elemNames(elemNames)
{
}
explicit TypePackStringifier(StringifierState& state)
: state(state)
, elemNames(dummyElemNames)
{
}
void stringify(TypeId tv)
{
TypeStringifier tvs{state};
tvs.stringify(tv);
}
void stringify(TypePackId tp)
{
if (state.opts.maxTypeLength > 0 && state.result.name.length() > state.opts.maxTypeLength)
return;
if (tp->ty.valueless_by_exception())
{
state.result.error = true;
state.emit("* VALUELESS TP BY EXCEPTION *");
return;
}
auto it = state.cycleTpNames.find(tp);
if (it != state.cycleTpNames.end())
{
state.emit(it->second);
return;
}
Luau::visit(
[this, tp](auto&& t) {
return (*this)(tp, t);
},
tp->ty);
}
void operator()(TypePackId, const TypePack& tp)
{
if (state.hasSeen(&tp))
{
state.result.cycle = true;
state.emit("*CYCLETP*");
return;
}
bool first = true;
for (const auto& typeId : tp.head)
{
if (first)
first = false;
else
state.emit(", ");
// Do not respect opts.namedFunctionOverrideArgNames here
if (elemIndex < elemNames.size() && elemNames[elemIndex])
{
state.emit(elemNames[elemIndex]->name);
state.emit(": ");
}
elemIndex++;
stringify(typeId);
}
if (tp.tail && !isEmpty(*tp.tail))
{
TypePackId tail = follow(*tp.tail);
if (auto vtp = get<VariadicTypePack>(tail); !vtp || (FInt::DebugLuauVerboseTypeNames < 1 && !vtp->hidden))
{
if (first)
first = false;
else
state.emit(", ");
stringify(tail);
}
}
state.unsee(&tp);
}
void operator()(TypePackId, const Unifiable::Error& error)
{
state.result.error = true;
state.emit("*error-type*");
}
void operator()(TypePackId, const VariadicTypePack& pack)
{
state.emit("...");
if (FInt::DebugLuauVerboseTypeNames >= 1 && pack.hidden)
{
state.emit("*hidden*");
}
stringify(pack.ty);
}
void operator()(TypePackId tp, const GenericTypePack& pack)
{
if (FInt::DebugLuauVerboseTypeNames >= 1)
state.emit("gen-");
if (pack.explicitName)
{
state.usedNames.insert(pack.name);
state.opts.nameMap.typePacks[tp] = pack.name;
state.emit(pack.name);
}
else
{
state.emit(state.getName(tp));
}
if (FInt::DebugLuauVerboseTypeNames >= 2)
{
state.emit("-");
if (FFlag::DebugLuauDeferredConstraintResolution)
state.emitLevel(pack.scope);
else
state.emit(pack.level);
}
state.emit("...");
}
void operator()(TypePackId tp, const FreeTypePack& pack)
{
state.result.invalid = true;
if (FInt::DebugLuauVerboseTypeNames >= 1)
state.emit("free-");
state.emit(state.getName(tp));
if (FInt::DebugLuauVerboseTypeNames >= 2)
{
state.emit("-");
if (FFlag::DebugLuauDeferredConstraintResolution)
state.emitLevel(pack.scope);
else
state.emit(pack.level);
}
state.emit("...");
}
void operator()(TypePackId, const BoundTypePack& btv)
{
stringify(btv.boundTo);
}
void operator()(TypePackId, const BlockedTypePack& btp)
{
state.emit("*blocked-tp-");
state.emit(btp.index);
state.emit("*");
}
void operator()(TypePackId, const TypeFamilyInstanceTypePack& tfitp)
{
state.emit(tfitp.family->name);
state.emit("<");
bool comma = false;
for (TypeId p : tfitp.typeArguments)
{
if (comma)
state.emit(", ");
comma = true;
stringify(p);
}
for (TypePackId p : tfitp.packArguments)
{
if (comma)
state.emit(", ");
comma = true;
stringify(p);
}
state.emit(">");
}
};
void TypeStringifier::stringify(TypePackId tp)
{
TypePackStringifier tps(state);
tps.stringify(tp);
}
void TypeStringifier::stringify(TypePackId tpid, const std::vector<std::optional<FunctionArgument>>& names)
{
TypePackStringifier tps(state, names);
tps.stringify(tpid);
}
static void assignCycleNames(const std::set<TypeId>& cycles, const std::set<TypePackId>& cycleTPs,
std::unordered_map<TypeId, std::string>& cycleNames, std::unordered_map<TypePackId, std::string>& cycleTpNames, bool exhaustive)
{
int nextIndex = 1;
for (TypeId cycleTy : cycles)
{
std::string name;
// TODO: use the stringified type list if there are no cycles
if (auto ttv = get<TableType>(follow(cycleTy)); !exhaustive && ttv && (ttv->syntheticName || ttv->name))
{
// If we have a cycle type in type parameters, assign a cycle name for this named table
if (std::find_if(ttv->instantiatedTypeParams.begin(), ttv->instantiatedTypeParams.end(), [&](auto&& el) {
return cycles.count(follow(el));
}) != ttv->instantiatedTypeParams.end())
cycleNames[cycleTy] = ttv->name ? *ttv->name : *ttv->syntheticName;
continue;
}
name = "t" + std::to_string(nextIndex);
++nextIndex;
cycleNames[cycleTy] = std::move(name);
}
for (TypePackId tp : cycleTPs)
{
std::string name = "tp" + std::to_string(nextIndex);
++nextIndex;
cycleTpNames[tp] = std::move(name);
}
}
ToStringResult toStringDetailed(TypeId ty, ToStringOptions& opts)
{
/*
* 1. Walk the Type and track seen TypeIds. When you reencounter a TypeId, add it to a set of seen cycles.
* 2. Generate some names for each cycle. For a starting point, we can just call them t0, t1 and so on.
* 3. For each seen cycle, stringify it like we do now, but replace each known cycle with its name.
* 4. Print out the root of the type using the same algorithm as step 3.
*/
ty = follow(ty);
ToStringResult result;
StringifierState state{opts, result};
std::set<TypeId> cycles;
std::set<TypePackId> cycleTPs;
findCyclicTypes(cycles, cycleTPs, ty, opts.exhaustive);
assignCycleNames(cycles, cycleTPs, state.cycleNames, state.cycleTpNames, opts.exhaustive);
TypeStringifier tvs{state};
if (!opts.exhaustive)
{
if (auto ttv = get<TableType>(ty); ttv && (ttv->name || ttv->syntheticName))
{
if (ttv->syntheticName)
result.invalid = true;
// If scope if provided, add module name and check visibility
if (ttv->name && opts.scope)
{
auto [success, moduleName] = canUseTypeNameInScope(opts.scope, *ttv->name);
if (!success)
result.invalid = true;
if (moduleName)
result.name = format("%s.", moduleName->c_str());
}
result.name += ttv->name ? *ttv->name : *ttv->syntheticName;
tvs.stringify(ttv->instantiatedTypeParams, ttv->instantiatedTypePackParams);
return result;
}
else if (auto mtv = get<MetatableType>(ty); mtv && mtv->syntheticName)
{
result.invalid = true;
result.name = *mtv->syntheticName;
return result;
}
}
/* If the root itself is a cycle, we special case a little.
* We go out of our way to print the following:
*
* t1 where t1 = the_whole_root_type
*/
auto it = state.cycleNames.find(ty);
if (it != state.cycleNames.end())
state.emit(it->second);
else
tvs.stringify(ty);
if (!state.cycleNames.empty() || !state.cycleTpNames.empty())
{
result.cycle = true;
state.emit(" where ");
}
state.exhaustive = true;
std::vector<std::pair<TypeId, std::string>> sortedCycleNames{state.cycleNames.begin(), state.cycleNames.end()};
std::sort(sortedCycleNames.begin(), sortedCycleNames.end(), [](const auto& a, const auto& b) {
return a.second < b.second;
});
bool semi = false;
for (const auto& [cycleTy, name] : sortedCycleNames)
{
if (semi)
state.emit(" ; ");
state.emit(name);
state.emit(" = ");
Luau::visit(
[&tvs, cycleTy = cycleTy](auto&& t) {
return tvs(cycleTy, t);
},
cycleTy->ty);
semi = true;
}
std::vector<std::pair<TypePackId, std::string>> sortedCycleTpNames(state.cycleTpNames.begin(), state.cycleTpNames.end());
std::sort(sortedCycleTpNames.begin(), sortedCycleTpNames.end(), [](const auto& a, const auto& b) {
return a.second < b.second;
});
TypePackStringifier tps{state};
for (const auto& [cycleTp, name] : sortedCycleTpNames)
{
if (semi)
state.emit(" ; ");
state.emit(name);
state.emit(" = ");
Luau::visit(
[&tps, cycleTy = cycleTp](auto&& t) {
return tps(cycleTy, t);
},
cycleTp->ty);
semi = true;
}
if (opts.maxTypeLength > 0 && result.name.length() > opts.maxTypeLength)
{
result.truncated = true;
result.name += "... *TRUNCATED*";
}
return result;
}
ToStringResult toStringDetailed(TypePackId tp, ToStringOptions& opts)
{
/*
* 1. Walk the Type and track seen TypeIds. When you reencounter a TypeId, add it to a set of seen cycles.
* 2. Generate some names for each cycle. For a starting point, we can just call them t0, t1 and so on.
* 3. For each seen cycle, stringify it like we do now, but replace each known cycle with its name.
* 4. Print out the root of the type using the same algorithm as step 3.
*/
ToStringResult result;
StringifierState state{opts, result};
std::set<TypeId> cycles;
std::set<TypePackId> cycleTPs;
findCyclicTypes(cycles, cycleTPs, tp, opts.exhaustive);
assignCycleNames(cycles, cycleTPs, state.cycleNames, state.cycleTpNames, opts.exhaustive);
TypeStringifier tvs{state};
/* If the root itself is a cycle, we special case a little.
* We go out of our way to print the following:
*
* t1 where t1 = the_whole_root_type
*/
auto it = state.cycleTpNames.find(tp);
if (it != state.cycleTpNames.end())
state.emit(it->second);
else
tvs.stringify(tp);
if (!cycles.empty())
{
result.cycle = true;
state.emit(" where ");
}
state.exhaustive = true;
std::vector<std::pair<TypeId, std::string>> sortedCycleNames{state.cycleNames.begin(), state.cycleNames.end()};
std::sort(sortedCycleNames.begin(), sortedCycleNames.end(), [](const auto& a, const auto& b) {
return a.second < b.second;
});
bool semi = false;
for (const auto& [cycleTy, name] : sortedCycleNames)
{
if (semi)
state.emit(" ; ");
state.emit(name);
state.emit(" = ");
Luau::visit(
[&tvs, cycleTy = cycleTy](auto t) {
return tvs(cycleTy, t);
},
cycleTy->ty);
semi = true;
}
if (opts.maxTypeLength > 0 && result.name.length() > opts.maxTypeLength)
{
result.name += "... *TRUNCATED*";
}
return result;
}
std::string toString(TypeId ty, ToStringOptions& opts)
{
return toStringDetailed(ty, opts).name;
}
std::string toString(TypePackId tp, ToStringOptions& opts)
{
return toStringDetailed(tp, opts).name;
}
std::string toString(const Type& tv, ToStringOptions& opts)
{
return toString(const_cast<TypeId>(&tv), opts);
}
std::string toString(const TypePackVar& tp, ToStringOptions& opts)
{
return toString(const_cast<TypePackId>(&tp), opts);
}
std::string toStringNamedFunction(const std::string& funcName, const FunctionType& ftv, ToStringOptions& opts)
{
ToStringResult result;
StringifierState state{opts, result};
TypeStringifier tvs{state};
state.emit(funcName);
if (!opts.hideNamedFunctionTypeParameters)
tvs.stringify(ftv.generics, ftv.genericPacks);
state.emit("(");
auto argPackIter = begin(ftv.argTypes);
bool first = true;
size_t idx = 0;
while (argPackIter != end(ftv.argTypes))
{
// ftv takes a self parameter as the first argument, skip it if specified in option
if (idx == 0 && ftv.hasSelf && opts.hideFunctionSelfArgument)
{
++argPackIter;
++idx;
continue;
}
if (!first)
state.emit(", ");
first = false;
// We don't respect opts.functionTypeArguments
if (idx < opts.namedFunctionOverrideArgNames.size())
{
state.emit(opts.namedFunctionOverrideArgNames[idx] + ": ");
}
else if (idx < ftv.argNames.size() && ftv.argNames[idx])
{
state.emit(ftv.argNames[idx]->name + ": ");
}
else
{
state.emit("_: ");
}
tvs.stringify(*argPackIter);
++argPackIter;
++idx;
}
if (argPackIter.tail())
{
if (auto vtp = get<VariadicTypePack>(*argPackIter.tail()); !vtp || !vtp->hidden)
{
if (!first)
state.emit(", ");
state.emit("...: ");
if (vtp)
tvs.stringify(vtp->ty);
else
tvs.stringify(*argPackIter.tail());
}
}
state.emit("): ");
size_t retSize = size(ftv.retTypes);
bool hasTail = !finite(ftv.retTypes);
bool wrap = get<TypePack>(follow(ftv.retTypes)) && (hasTail ? retSize != 0 : retSize != 1);
if (wrap)
state.emit("(");
tvs.stringify(ftv.retTypes);
if (wrap)
state.emit(")");
return result.name;
}
static ToStringOptions& dumpOptions()
{
static ToStringOptions opts = ([]() {
ToStringOptions o;
o.exhaustive = true;
o.functionTypeArguments = true;
o.maxTableLength = 0;
o.maxTypeLength = 0;
return o;
})();
return opts;
}
std::string dump(TypeId ty)
{
std::string s = toString(ty, dumpOptions());
printf("%s\n", s.c_str());
return s;
}
std::string dump(const std::optional<TypeId>& ty)
{
if (ty)
return dump(*ty);
printf("nullopt\n");
return "nullopt";
}
std::string dump(TypePackId ty)
{
std::string s = toString(ty, dumpOptions());
printf("%s\n", s.c_str());
return s;
}
std::string dump(const std::optional<TypePackId>& ty)
{
if (ty)
return dump(*ty);
printf("nullopt\n");
return "nullopt";
}
std::string dump(const ScopePtr& scope, const char* name)
{
auto binding = scope->linearSearchForBinding(name);
if (!binding)
{
printf("No binding %s\n", name);
return {};
}
TypeId ty = binding->typeId;
std::string s = toString(ty, dumpOptions());
printf("%s\n", s.c_str());
return s;
}
std::string generateName(size_t i)
{
std::string n;
n = char('a' + i % 26);
if (i >= 26)
n += std::to_string(i / 26);
return n;
}
std::string toString(const Constraint& constraint, ToStringOptions& opts)
{
auto go = [&opts](auto&& c) -> std::string {
using T = std::decay_t<decltype(c)>;
auto tos = [&opts](auto&& a) {
return toString(a, opts);
};
if constexpr (std::is_same_v<T, SubtypeConstraint>)
{
std::string subStr = tos(c.subType);
std::string superStr = tos(c.superType);
return subStr + " <: " + superStr;
}
else if constexpr (std::is_same_v<T, PackSubtypeConstraint>)
{
std::string subStr = tos(c.subPack);
std::string superStr = tos(c.superPack);
return subStr + " <: " + superStr;
}
else if constexpr (std::is_same_v<T, GeneralizationConstraint>)
{
std::string subStr = tos(c.generalizedType);
std::string superStr = tos(c.sourceType);
return subStr + " ~ gen " + superStr;
}
else if constexpr (std::is_same_v<T, InstantiationConstraint>)
{
std::string subStr = tos(c.subType);
std::string superStr = tos(c.superType);
return subStr + " ~ inst " + superStr;
}
else if constexpr (std::is_same_v<T, UnaryConstraint>)
{
std::string resultStr = tos(c.resultType);
std::string operandStr = tos(c.operandType);
return resultStr + " ~ Unary<" + toString(c.op) + ", " + operandStr + ">";
}
else if constexpr (std::is_same_v<T, BinaryConstraint>)
{
std::string resultStr = tos(c.resultType);
std::string leftStr = tos(c.leftType);
std::string rightStr = tos(c.rightType);
return resultStr + " ~ Binary<" + toString(c.op) + ", " + leftStr + ", " + rightStr + ">";
}
else if constexpr (std::is_same_v<T, IterableConstraint>)
{
std::string iteratorStr = tos(c.iterator);
std::string variableStr = tos(c.variables);
return variableStr + " ~ Iterate<" + iteratorStr + ">";
}
else if constexpr (std::is_same_v<T, NameConstraint>)
{
std::string namedStr = tos(c.namedType);
return "@name(" + namedStr + ") = " + c.name;
}
else if constexpr (std::is_same_v<T, TypeAliasExpansionConstraint>)
{
std::string targetStr = tos(c.target);
return "expand " + targetStr;
}
else if constexpr (std::is_same_v<T, FunctionCallConstraint>)
{
return "call " + tos(c.fn) + "( " + tos(c.argsPack) + " )" + " with { result = " + tos(c.result) + " }";
}
else if constexpr (std::is_same_v<T, PrimitiveTypeConstraint>)
{
return tos(c.resultType) + " ~ prim " + tos(c.expectedType) + ", " + tos(c.singletonType) + ", " + tos(c.multitonType);
}
else if constexpr (std::is_same_v<T, HasPropConstraint>)
{
return tos(c.resultType) + " ~ hasProp " + tos(c.subjectType) + ", \"" + c.prop + "\"";
}
else if constexpr (std::is_same_v<T, SetPropConstraint>)
{
const std::string pathStr = c.path.size() == 1 ? "\"" + c.path[0] + "\"" : "[\"" + join(c.path, "\", \"") + "\"]";
return tos(c.resultType) + " ~ setProp " + tos(c.subjectType) + ", " + pathStr + " " + tos(c.propType);
}
else if constexpr (std::is_same_v<T, SetIndexerConstraint>)
{
return tos(c.resultType) + " ~ setIndexer " + tos(c.subjectType) + " [ " + tos(c.indexType) + " ] " + tos(c.propType);
}
else if constexpr (std::is_same_v<T, SingletonOrTopTypeConstraint>)
{
std::string result = tos(c.resultType);
std::string discriminant = tos(c.discriminantType);
if (c.negated)
return result + " ~ if isSingleton D then ~D else unknown where D = " + discriminant;
else
return result + " ~ if isSingleton D then D else unknown where D = " + discriminant;
}
else if constexpr (std::is_same_v<T, UnpackConstraint>)
return tos(c.resultPack) + " ~ unpack " + tos(c.sourcePack);
else if constexpr (std::is_same_v<T, RefineConstraint>)
{
const char* op = c.mode == RefineConstraint::Union ? "union" : "intersect";
return tos(c.resultType) + " ~ refine " + tos(c.type) + " " + op + " " + tos(c.discriminant);
}
else if constexpr (std::is_same_v<T, ReduceConstraint>)
return "reduce " + tos(c.ty);
else if constexpr (std::is_same_v<T, ReducePackConstraint>)
{
return "reduce " + tos(c.tp);
}
else
static_assert(always_false_v<T>, "Non-exhaustive constraint switch");
};
return visit(go, constraint.c);
}
std::string toString(const Constraint& constraint)
{
return toString(constraint, ToStringOptions{});
}
std::string dump(const Constraint& c)
{
ToStringOptions opts;
opts.exhaustive = true;
opts.functionTypeArguments = true;
std::string s = toString(c, opts);
printf("%s\n", s.c_str());
return s;
}
std::optional<std::string> getFunctionNameAsString(const AstExpr& expr)
{
const AstExpr* curr = &expr;
std::string s;
for (;;)
{
if (auto local = curr->as<AstExprLocal>())
return local->local->name.value + s;
if (auto global = curr->as<AstExprGlobal>())
return global->name.value + s;
if (auto indexname = curr->as<AstExprIndexName>())
{
curr = indexname->expr;
s = "." + std::string(indexname->index.value) + s;
}
else if (auto group = curr->as<AstExprGroup>())
{
curr = group->expr;
}
else
{
return std::nullopt;
}
}
return s;
}
std::string toString(const Position& position)
{
return "{ line = " + std::to_string(position.line) + ", col = " + std::to_string(position.column) + " }";
}
std::string toString(const Location& location, int offset, bool useBegin)
{
if (FFlag::LuauToStringPrettifyLocation)
{
return "(" + std::to_string(location.begin.line + offset) + ", " + std::to_string(location.begin.column + offset) + ") - (" +
std::to_string(location.end.line + offset) + ", " + std::to_string(location.end.column + offset) + ")";
}
else
{
return "Location { " + toString(location.begin) + ", " + toString(location.end) + " }";
}
}
} // namespace Luau