luau/tests/TypeInfer.tables.test.cpp
vegorov-rbx f5dabc2998
Sync to upstream/release/644 (#1432)
In this update we improve overall stability of the new type solver and
address some type inference issues with it.

If you use the new solver and want to use all new fixes included in this
release, you have to reference an additional Luau flag:
```c++
LUAU_DYNAMIC_FASTINT(LuauTypeSolverRelease)
```
And set its value to `644`:
```c++
DFInt::LuauTypeSolverRelease.value = 644; // Or a higher value for future updates
```

## New Solver
* Fixed a debug assertion failure in autocomplete (Fixes #1391)
* Fixed type function distribution issue which transformed `len<>` and
`unm<>` into `not<>` (Fixes #1416)
* Placed a limit on the possible normalized table intersection size as a
temporary measure to avoid hangs and out-of-memory issues for complex
type refinements
* Internal recursion limits are now respected in the subtyping
operations and in autocomplete, to avoid stack overflow crashes
* Fixed false positive errors on assignments to tables whose indexers
are unions of strings
* Fixed memory corruption crashes in subtyping of generic types
containing other generic types in their bounds

---

Internal Contributors:

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2024-09-20 09:53:26 -07:00

4854 lines
131 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/BuiltinDefinitions.h"
#include "Luau/Common.h"
#include "Luau/Frontend.h"
#include "Luau/ToString.h"
#include "Luau/TypeInfer.h"
#include "Luau/Type.h"
#include "Fixture.h"
#include "ScopedFlags.h"
#include "doctest.h"
#include <algorithm>
using namespace Luau;
LUAU_FASTFLAG(LuauSolverV2)
LUAU_FASTFLAG(LuauInstantiateInSubtyping)
LUAU_FASTFLAG(LuauFixIndexerSubtypingOrdering)
LUAU_FASTFLAG(LuauAcceptIndexingTableUnionsIntersections)
LUAU_DYNAMIC_FASTFLAG(LuauImproveNonFunctionCallError)
LUAU_DYNAMIC_FASTINT(LuauTypeSolverRelease)
TEST_SUITE_BEGIN("TableTests");
TEST_CASE_FIXTURE(BuiltinsFixture, "generalization_shouldnt_seal_table_in_len_function_fn")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local t = {}
for i = #t, 2, -1 do
t[i] = t[i + 1]
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
const TableType* tType = get<TableType>(requireType("t"));
REQUIRE(tType != nullptr);
REQUIRE(tType->indexer);
CHECK_EQ(tType->indexer->indexType, builtinTypes->numberType);
CHECK_EQ(follow(tType->indexer->indexResultType), builtinTypes->unknownType);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "LUAU_ASSERT_arg_exprs_doesnt_trigger_assert")
{
CheckResult result = check(R"(
local FadeValue = {}
function FadeValue.new(finalCallback)
local self = setmetatable({}, FadeValue)
self.finalCallback = finalCallback
return self
end
function FadeValue:destroy()
self.finalCallback()
self.finalCallback = nil
end
)");
}
TEST_CASE_FIXTURE(Fixture, "basic")
{
CheckResult result = check("local t = {foo = \"bar\", baz = 9, quux = nil}");
LUAU_REQUIRE_NO_ERRORS(result);
const TableType* tType = get<TableType>(requireType("t"));
REQUIRE(tType != nullptr);
std::optional<Property> fooProp = get(tType->props, "foo");
REQUIRE(bool(fooProp));
CHECK_EQ(PrimitiveType::String, getPrimitiveType(fooProp->type()));
std::optional<Property> bazProp = get(tType->props, "baz");
REQUIRE(bool(bazProp));
CHECK_EQ(PrimitiveType::Number, getPrimitiveType(bazProp->type()));
std::optional<Property> quuxProp = get(tType->props, "quux");
REQUIRE(bool(quuxProp));
CHECK_EQ(PrimitiveType::NilType, getPrimitiveType(quuxProp->type()));
}
TEST_CASE_FIXTURE(Fixture, "augment_table")
{
CheckResult result = check(R"(
local t = {}
t.foo = 'bar'
)");
LUAU_REQUIRE_NO_ERRORS(result);
const TableType* tType = get<TableType>(requireType("t"));
REQUIRE(tType != nullptr);
CHECK("{ foo: string }" == toString(requireType("t"), {true}));
}
TEST_CASE_FIXTURE(Fixture, "augment_nested_table")
{
CheckResult result = check(R"(
local t = { p = {} }
t.p.foo = 'bar'
)");
LUAU_REQUIRE_NO_ERRORS(result);
TableType* tType = getMutable<TableType>(requireType("t"));
REQUIRE(tType != nullptr);
REQUIRE(tType->props.find("p") != tType->props.end());
const TableType* pType = get<TableType>(tType->props["p"].type());
REQUIRE(pType != nullptr);
CHECK("{ p: { foo: string } }" == toString(requireType("t"), {true}));
}
TEST_CASE_FIXTURE(Fixture, "assign_key_at_index_expr")
{
CheckResult result = check(R"(
function f(t: {[string]: number})
t["hello"] = 1
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
// We had a bug where we forgot to record the astType of this particular node.
CHECK("string" == toString(requireTypeAtPosition({2, 19})));
}
TEST_CASE_FIXTURE(Fixture, "index_expression_is_checked_against_the_indexer_type")
{
CheckResult result = check(R"(
function f(t: {[boolean]: number})
t["hello"] = 15
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
CHECK_MESSAGE(get<CannotExtendTable>(result.errors[0]), "Expected CannotExtendTable but got " << toString(result.errors[0]));
else
CHECK(get<TypeMismatch>(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "cannot_augment_sealed_table")
{
CheckResult result = check(R"(
function mkt()
return {prop=999}
end
local t = mkt()
t.foo = 'bar'
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeError& err = result.errors[0];
CHECK(err.location == Location{Position{6, 8}, Position{6, 13}});
CannotExtendTable* error = get<CannotExtendTable>(err);
REQUIRE_MESSAGE(error != nullptr, "Expected CannotExtendTable but got: " << toString(err));
// TODO: better, more robust comparison of type vars
auto s = toString(error->tableType, ToStringOptions{/*exhaustive*/ true});
if (FFlag::LuauSolverV2)
CHECK_EQ(s, "{ prop: number }");
else
CHECK_EQ(s, "{| prop: number |}");
CHECK_EQ(error->prop, "foo");
CHECK_EQ(error->context, CannotExtendTable::Property);
}
TEST_CASE_FIXTURE(Fixture, "dont_seal_an_unsealed_table_by_passing_it_to_a_function_that_takes_a_sealed_table")
{
CheckResult result = check(R"(
type T = {[number]: number}
function f(arg: T) end
local B = {}
f(B)
function B:method() end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "updating_sealed_table_prop_is_ok")
{
CheckResult result = check("local t = {prop=999} t.prop = 0");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "cannot_change_type_of_unsealed_table_prop")
{
CheckResult result = check(R"(
local t = {}
t.prop = 999
t.prop = 'hello'
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "cannot_change_type_of_table_prop")
{
CheckResult result = check("local t = {prop=999} t.prop = 'hello'");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "report_sensible_error_when_adding_a_value_to_a_nonexistent_prop")
{
CheckResult result = check(R"(
local t = {}
t.foo[1] = 'one'
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
INFO(result.errors[0]);
UnknownProperty* err = get<UnknownProperty>(result.errors[0]);
REQUIRE(err);
CHECK("t" == toString(err->table));
CHECK("foo" == err->key);
}
TEST_CASE_FIXTURE(Fixture, "function_calls_can_produce_tables")
{
CheckResult result = check("function get_table() return {prop=999} end get_table().prop = 0");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "function_calls_produces_sealed_table_given_unsealed_table")
{
CheckResult result = check(R"(
function f() return {} end
f().foo = 'fail'
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "tc_member_function")
{
CheckResult result = check("local T = {} function T:foo() return 5 end");
LUAU_REQUIRE_NO_ERRORS(result);
const TableType* tableType = get<TableType>(requireType("T"));
REQUIRE(tableType != nullptr);
std::optional<Property> fooProp = get(tableType->props, "foo");
REQUIRE(bool(fooProp));
const FunctionType* methodType = get<FunctionType>(follow(fooProp->type()));
REQUIRE(methodType != nullptr);
}
TEST_CASE_FIXTURE(Fixture, "tc_member_function_2")
{
CheckResult result = check("local T = {U={}} function T.U:foo() return 5 end");
LUAU_REQUIRE_NO_ERRORS(result);
const TableType* tableType = get<TableType>(requireType("T"));
REQUIRE(tableType != nullptr);
std::optional<Property> uProp = get(tableType->props, "U");
REQUIRE(bool(uProp));
TypeId uType = uProp->type();
const TableType* uTable = get<TableType>(uType);
REQUIRE(uTable != nullptr);
std::optional<Property> fooProp = get(uTable->props, "foo");
REQUIRE(bool(fooProp));
const FunctionType* methodType = get<FunctionType>(follow(fooProp->type()));
REQUIRE(methodType != nullptr);
std::vector<TypeId> methodArgs = flatten(methodType->argTypes).first;
REQUIRE_EQ(methodArgs.size(), 1);
// TODO(rblanckaert): Revist when we can bind self at function creation time
// REQUIRE_EQ(*methodArgs[0], *uType);
}
TEST_CASE_FIXTURE(Fixture, "call_method")
{
CheckResult result = check(R"(
local T = {}
T.x = 0
function T:method()
return self.x
end
local a = T:method()
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(*builtinTypes->numberType, *requireType("a"));
}
TEST_CASE_FIXTURE(Fixture, "call_method_with_explicit_self_argument")
{
CheckResult result = check(R"(
local T = {}
T.x = 0
function T:method()
return self.x
end
local a = T.method(T)
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "used_dot_instead_of_colon")
{
// CLI-114792 Dot vs colon warnings aren't in the new solver yet.
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local T = {}
T.x = 0
function T:method()
return self.x
end
local a = T.method()
)");
auto it = std::find_if(
result.errors.begin(),
result.errors.end(),
[](const TypeError& e)
{
return nullptr != get<FunctionRequiresSelf>(e);
}
);
REQUIRE(it != result.errors.end());
}
TEST_CASE_FIXTURE(BuiltinsFixture, "used_colon_correctly")
{
CheckResult result = check(R"(
--!nonstrict
local upVector = {}
function upVector:Dot(lookVector)
return 8
end
local v = math.abs(upVector:Dot(5))
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "used_dot_instead_of_colon_but_correctly")
{
CheckResult result = check(R"(
local T = {}
T.x = 0
function T:method(arg1, arg2)
return self.x
end
local a = T.method(T, 6, 7)
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "used_colon_instead_of_dot")
{
// CLI-114792 Dot vs colon warnings aren't in the new solver yet.
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local T = {}
T.x = 0
function T.method()
return 5
end
local a = T:method()
)");
auto it = std::find_if(
result.errors.begin(),
result.errors.end(),
[](const TypeError& e)
{
return nullptr != get<FunctionDoesNotTakeSelf>(e);
}
);
REQUIRE(it != result.errors.end());
}
TEST_CASE_FIXTURE(Fixture, "open_table_unification_2")
{
// CLI-114792 We don't report MissingProperties in many places where the old solver does.
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local a = {}
a.x = 99
function a:method()
return self.y
end
a:method()
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeError& err = result.errors[0];
MissingProperties* error = get<MissingProperties>(err);
REQUIRE_MESSAGE(error != nullptr, "Expected MissingProperties but got " << toString(err));
REQUIRE(error->properties.size() == 1);
CHECK_EQ("y", error->properties[0]);
// TODO(rblanckaert): Revist when we can bind self at function creation time
// CHECK_EQ(err.location, Location(Position{5, 19}, Position{5, 25}));
CHECK_EQ(err.location, Location(Position{7, 8}, Position{7, 9}));
}
TEST_CASE_FIXTURE(Fixture, "open_table_unification_3")
{
CheckResult result = check(R"(
function id(x)
return x
end
function foo(o)
id(o.bar)
id(o.baz)
end
)");
TypeId fooType = requireType("foo");
const FunctionType* fooFn = get<FunctionType>(fooType);
REQUIRE(fooFn != nullptr);
std::vector<TypeId> fooArgs = flatten(fooFn->argTypes).first;
REQUIRE_EQ(1, fooArgs.size());
TypeId arg0 = fooArgs[0];
const TableType* arg0Table = get<TableType>(follow(arg0));
REQUIRE(arg0Table != nullptr);
CHECK(arg0Table->props.count("bar"));
CHECK(arg0Table->props.count("baz"));
}
TEST_CASE_FIXTURE(Fixture, "table_param_width_subtyping_1")
{
CheckResult result = check(R"(
function foo(o)
local a = o.x
local b = o.y
return o
end
foo({x=55, y=nil, w=3.14159})
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "table_param_width_subtyping_2")
{
CheckResult result = check(R"(
--!strict
function foo(o)
string.lower(o.bar)
string.lower(o.baz)
end
foo({bar='bar'})
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
// CLI 114792 We don't report MissingProperties in many places where the old solver does
if (FFlag::LuauSolverV2)
{
TypeMismatch* error = get<TypeMismatch>(result.errors[0]);
REQUIRE_MESSAGE(error != nullptr, "Expected TypeMismatch but got " << toString(result.errors[0]));
CHECK("{ read bar: string }" == toString(error->givenType));
CHECK("{ read bar: string, read baz: string }" == toString(error->wantedType));
}
else
{
MissingProperties* error = get<MissingProperties>(result.errors[0]);
REQUIRE_MESSAGE(error != nullptr, "Expected MissingProperties but got " << toString(result.errors[0]));
REQUIRE(error->properties.size() == 1);
CHECK_EQ("baz", error->properties[0]);
}
}
TEST_CASE_FIXTURE(Fixture, "table_param_width_subtyping_3")
{
CheckResult result = check(R"(
local T = {}
T.bar = 'hello'
function T:method()
local a = self.baz
end
T:method()
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(result.errors[0].location == Location{Position{6, 8}, Position{6, 9}});
if (FFlag::LuauSolverV2)
CHECK(toString(result.errors[0]) == "Type 'T' could not be converted into '{ read baz: unknown }'");
else
{
TypeError& err = result.errors[0];
MissingProperties* error = get<MissingProperties>(err);
REQUIRE_MESSAGE(error != nullptr, "Expected MissingProperties but got " << toString(err));
REQUIRE(error->properties.size() == 1);
CHECK_EQ("baz", error->properties[0]);
// TODO(rblanckaert): Revist when we can bind self at function creation time
/*
CHECK_EQ(err->location,
(Location{ Position{4, 22}, Position{4, 30} })
);
*/
}
}
TEST_CASE_FIXTURE(Fixture, "table_unification_4")
{
// CLI-114134 - Use egraphs to simplify types better.
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
function foo(o)
if o.prop then
return o
else
return {prop=false}
end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "ok_to_add_property_to_free_table")
{
CheckResult result = check(R"(
function fn(d)
d:Method()
d.prop = true
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
dumpErrors(result);
}
TEST_CASE_FIXTURE(Fixture, "okay_to_add_property_to_unsealed_tables_by_assignment")
{
// CLI-114872
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
--!strict
local t = { u = {} }
t = { u = { p = 37 } }
t = { u = { q = "hi" } }
local x = t.u.p
local y = t.u.q
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("number?", toString(requireType("x")));
CHECK_EQ("string?", toString(requireType("y")));
}
TEST_CASE_FIXTURE(Fixture, "okay_to_add_property_to_unsealed_tables_by_function_call")
{
// CLI-114873
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
--!strict
function get(x) return x.opts["MYOPT"] end
function set(x,y) x.opts["MYOPT"] = y end
local t = { opts = {} }
set(t,37)
local x = get(t)
)");
LUAU_REQUIRE_ERRORS(result);
// CHECK_EQ("number?", toString(requireType("x")));
}
TEST_CASE_FIXTURE(Fixture, "width_subtyping")
{
CheckResult result = check(R"(
--!strict
function f(x : { q : number })
x.q = 8
end
local t : { q : number, r : string } = { q = 8, r = "hi" }
f(t)
local x : string = t.r
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "width_subtyping_needs_covariance")
{
CheckResult result = check(R"(
--!strict
function f(x : { p : { q : number }})
x.p = { q = 8, r = 5 }
end
local t : { p : { q : number, r : string } } = { p = { q = 8, r = "hi" } }
f(t) -- Shouldn't typecheck
local x : string = t.p.r -- x is 5
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "infer_array")
{
CheckResult result = check(R"(
local t = {}
t[1] = 'one'
t[2] = 'two'
)");
LUAU_REQUIRE_NO_ERRORS(result);
const TableType* ttv = get<TableType>(requireType("t"));
REQUIRE(ttv != nullptr);
REQUIRE(bool(ttv->indexer));
CHECK_EQ(*ttv->indexer->indexType, *builtinTypes->numberType);
CHECK_EQ(*ttv->indexer->indexResultType, *builtinTypes->stringType);
}
/* This is a bit weird.
* The type of buttonVector[i] is initially free, compared to a string with ==
* We can't actually use this to infer that buttonVector is {string}, and we
* also have a rule that forbids comparing unknown types with those that may have
* metatables.
*
* Due to a historical quirk, strings are exempt from this rule. Without this exemption,
* the test code here would fail to typecheck at the use of ==.
*/
TEST_CASE_FIXTURE(Fixture, "infer_array_2")
{
CheckResult result = check(R"(
local buttonVector = {}
function createButton( actionName, functionInfoTable )
local position = nil
for i = 1,#buttonVector do
if buttonVector[i] == "empty" then
position = i
break
end
end
return position
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "indexers_get_quantified_too")
{
CheckResult result = check(R"(
function swap(p)
local temp = p[0]
p[0] = p[1]
p[1] = temp
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
if (FFlag::LuauSolverV2)
CHECK("({unknown}) -> ()" == toString(requireType("swap")));
else
{
const FunctionType* ftv = get<FunctionType>(requireType("swap"));
REQUIRE(ftv != nullptr);
std::vector<TypeId> argVec = flatten(ftv->argTypes).first;
REQUIRE_EQ(1, argVec.size());
const TableType* ttv = get<TableType>(follow(argVec[0]));
REQUIRE(ttv != nullptr);
REQUIRE(bool(ttv->indexer));
const TableIndexer& indexer = *ttv->indexer;
REQUIRE("number" == toString(indexer.indexType));
TypeId indexResultType = follow(indexer.indexResultType);
REQUIRE_MESSAGE(get<GenericType>(indexResultType), "Expected generic but got " << toString(indexResultType));
}
}
TEST_CASE_FIXTURE(Fixture, "indexers_quantification_2")
{
CheckResult result = check(R"(
function mergesort(arr)
local p = arr[0]
return arr
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
const FunctionType* ftv = get<FunctionType>(requireType("mergesort"));
REQUIRE(ftv != nullptr);
std::vector<TypeId> argVec = flatten(ftv->argTypes).first;
REQUIRE_EQ(1, argVec.size());
const TableType* argType = get<TableType>(follow(argVec[0]));
REQUIRE(argType != nullptr);
std::vector<TypeId> retVec = flatten(ftv->retTypes).first;
const TableType* retType = get<TableType>(follow(retVec[0]));
REQUIRE(retType != nullptr);
CHECK_EQ(argType->state, retType->state);
REQUIRE_EQ(*argVec[0], *retVec[0]);
}
TEST_CASE_FIXTURE(Fixture, "infer_indexer_from_array_like_table")
{
CheckResult result = check(R"(
local t = {"one", "two", "three"}
)");
LUAU_REQUIRE_NO_ERRORS(result);
const TableType* ttv = get<TableType>(requireType("t"));
REQUIRE(ttv != nullptr);
REQUIRE(bool(ttv->indexer));
const TableIndexer& indexer = *ttv->indexer;
CHECK_EQ(*builtinTypes->numberType, *indexer.indexType);
if (FFlag::LuauSolverV2)
{
// CLI-114134 - Use egraphs to simplify types
CHECK("string | string | string" == toString(indexer.indexResultType));
}
else
CHECK_EQ(*builtinTypes->stringType, *indexer.indexResultType);
}
TEST_CASE_FIXTURE(Fixture, "infer_indexer_from_value_property_in_literal")
{
CheckResult result = check(R"(
function Symbol(n)
return { __name=n }
end
function f()
return {
[Symbol("hello")] = true,
x = 0,
y = 0
}
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
const FunctionType* fType = get<FunctionType>(requireType("f"));
REQUIRE(fType != nullptr);
auto retType_ = first(fType->retTypes);
REQUIRE(bool(retType_));
auto retType = get<TableType>(follow(*retType_));
REQUIRE(retType != nullptr);
CHECK(bool(retType->indexer));
const TableIndexer& indexer = *retType->indexer;
if (FFlag::LuauSolverV2)
CHECK_EQ("{ __name: string }", toString(indexer.indexType));
else
CHECK_EQ("{| __name: string |}", toString(indexer.indexType));
}
TEST_CASE_FIXTURE(Fixture, "infer_indexer_from_its_variable_type_and_unifiable")
{
// This code is totally different in the new solver. We instead create a new type state for t2.
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local t1: { [string]: string } = {}
local t2 = { "bar" }
t2 = t1
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm != nullptr);
TypeId t2Ty = requireType("t2");
const TableType* tTy = get<TableType>(t2Ty);
REQUIRE_MESSAGE(tTy != nullptr, "Expected a table but got " << toString(t2Ty));
REQUIRE(tTy->indexer);
CHECK_EQ(*builtinTypes->numberType, *tTy->indexer->indexType);
CHECK_EQ(*builtinTypes->stringType, *tTy->indexer->indexResultType);
}
TEST_CASE_FIXTURE(Fixture, "indexer_mismatch")
{
CheckResult result = check(R"(
local t1: { [string]: string } = {}
local t2: { [number]: number } = {}
t2 = t1
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeId t1 = requireType("t1");
TypeId t2 = requireType("t2");
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm != nullptr);
CHECK(toString(tm->wantedType) == "{number}");
if (FFlag::LuauSolverV2)
CHECK(toString(tm->givenType) == "{ [string]: string }");
else
CHECK(toString(tm->givenType) == "{| [string]: string |}");
CHECK_NE(*t1, *t2);
}
TEST_CASE_FIXTURE(Fixture, "infer_indexer_from_its_function_return_type")
{
CheckResult result = check(R"(
local function f(): { [number]: string }
return {}
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "infer_indexer_for_left_unsealed_table_from_right_hand_table_with_indexer")
{
CheckResult result = check(R"(
local function f(): { [number]: string } return {} end
local t = {}
t = f()
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "sealed_table_value_can_infer_an_indexer")
{
CheckResult result = check(R"(
local t: { a: string, [number]: string } = { a = "foo" }
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "array_factory_function")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
function empty() return {} end
local array: {string} = empty()
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "sealed_table_indexers_must_unify")
{
CheckResult result = check(R"(
function f(a: {number}): {string}
return a
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
{
// CLI-114879 - Error path reporting is not great
CHECK(
toString(result.errors[0]) ==
"Type pack '{number}' could not be converted into '{string}'; at [0].indexResult(), number is not exactly string"
);
}
else
CHECK_MESSAGE(nullptr != get<TypeMismatch>(result.errors[0]), "Expected a TypeMismatch but got " << result.errors[0]);
}
TEST_CASE_FIXTURE(Fixture, "indexer_on_sealed_table_must_unify_with_free_table")
{
// CLI-114134 What should be happening here is that the type of `t` should
// be reduced from `{number} & {string}` to `never`, but that's not
// happening.
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
function F(t): {number}
t[4] = "hi"
return t
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "infer_type_when_indexing_from_a_table_indexer")
{
CheckResult result = check(R"(
function f(t: {string})
return t[1]
end
local s = f({})
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(*builtinTypes->stringType, *requireType("s"));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "indexing_from_a_table_should_prefer_properties_when_possible")
{
CheckResult result = check(R"(
function f(): { a: string, [string]: number }
error("e")
end
local t = f()
local a1 = t.a
local a2 = t["a"]
local b1 = t.b
local b2 = t["b"]
local some_indirection_variable = "foo"
local c = t[some_indirection_variable]
local d = t[1]
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(*builtinTypes->stringType, *requireType("a1"));
CHECK_EQ(*builtinTypes->stringType, *requireType("a2"));
CHECK_EQ(*builtinTypes->numberType, *requireType("b1"));
CHECK_EQ(*builtinTypes->numberType, *requireType("b2"));
CHECK_EQ(*builtinTypes->numberType, *requireType("c"));
CHECK_MESSAGE(nullptr != get<TypeMismatch>(result.errors[0]), "Expected a TypeMismatch but got " << result.errors[0]);
}
TEST_CASE_FIXTURE(Fixture, "any_when_indexing_into_an_unsealed_table_with_no_indexer_in_nonstrict_mode")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
--!nonstrict
local constants = {
key1 = "value1",
key2 = "value2"
}
local function getKey()
return "key1"
end
local k1 = constants[getKey()]
)");
CHECK("any" == toString(requireType("k1")));
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "disallow_indexing_into_an_unsealed_table_with_no_indexer_in_strict_mode")
{
CheckResult result = check(R"(
local constants = {
key1 = "value1",
key2 = "value2"
}
function getConstant(key)
return constants[key]
end
local k1 = getConstant("key1")
)");
if (FFlag::LuauSolverV2)
CHECK("unknown" == toString(requireType("k1")));
else
CHECK("any" == toString(requireType("k1")));
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "assigning_to_an_unsealed_table_with_string_literal_should_infer_new_properties_over_indexer")
{
CheckResult result = check(R"(
local t = {}
t["a"] = "foo"
local a = t.a
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("string" == toString(*builtinTypes->stringType));
TypeId tType = requireType("t");
TableType* tableType = getMutable<TableType>(tType);
REQUIRE_MESSAGE(tableType != nullptr, "Expected a table but got " << toString(tType, {true}));
REQUIRE(tableType->indexer == std::nullopt);
REQUIRE(0 != tableType->props.count("a"));
TypeId propertyA = tableType->props["a"].type();
REQUIRE(propertyA != nullptr);
CHECK_EQ(*builtinTypes->stringType, *propertyA);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "oop_indexer_works")
{
CheckResult result = check(R"(
local clazz = {}
clazz.__index = clazz
function clazz:speak()
return "hi"
end
function clazz.new()
return setmetatable({}, clazz)
end
local me = clazz.new()
local words = me:speak()
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(*builtinTypes->stringType, *requireType("words"));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "indexer_table")
{
CheckResult result = check(R"(
local clazz = {a="hello"}
local instanace = setmetatable({}, {__index=clazz})
local b = instanace.a
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(*builtinTypes->stringType, *requireType("b"));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "indexer_fn")
{
CheckResult result = check(R"(
local instanace = setmetatable({}, {__index=function() return 10 end})
local b = instanace.somemethodwedonthave
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(*builtinTypes->numberType, *requireType("b"));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "meta_add")
{
// Note: meta_add_inferred and this unit test are currently the same exact thing.
// We'll want to change this one in particular when we add real syntax for metatables.
CheckResult result = check(R"(
local mt = {
__add = function(l, r)
return l
end
}
local a = setmetatable({}, mt)
local b = setmetatable({}, mt)
local c = a + b
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(follow(requireType("a")), follow(requireType("c")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "meta_add_inferred")
{
CheckResult result = check(R"(
local a = {}
setmetatable(a, {__add=function(a,b) return b end} )
local c = a + a
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(*requireType("a"), *requireType("c"));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "meta_add_both_ways")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
type VectorMt = { __add: (Vector, number) -> Vector }
local vectorMt: VectorMt
type Vector = typeof(setmetatable({}, vectorMt))
local a: Vector
local b = a + 2
local c = 2 + a
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("Vector", toString(requireType("a")));
CHECK_EQ(*requireType("a"), *requireType("b"));
CHECK_EQ(*requireType("a"), *requireType("c"));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "meta_add_both_ways_lti")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
local vectorMt = {}
function vectorMt.__add(self: Vector, other: number)
return self
end
type Vector = typeof(setmetatable({}, vectorMt))
local a: Vector = setmetatable({}, vectorMt)
local b = a + 2
local c = 2 + a
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("Vector", toString(requireType("a")));
CHECK_EQ(*requireType("a"), *requireType("b"));
CHECK_EQ(*requireType("a"), *requireType("c"));
}
// This test exposed a bug where we let go of the "seen" stack while unifying table types
// As a result, type inference crashed with a stack overflow.
TEST_CASE_FIXTURE(BuiltinsFixture, "unification_of_unions_in_a_self_referential_type")
{
CheckResult result = check(R"(
type A = {}
type AMT = { __mul: (A, A | number) -> A }
local a: A
local amt: AMT
setmetatable(a, amt)
type B = {}
type BMT = { __mul: (B, A | B | number) -> A }
local b: B
local bmt: BMT
setmetatable(b, bmt)
a = b
)");
LUAU_REQUIRE_NO_ERRORS(result);
const MetatableType* amtv = get<MetatableType>(requireType("a"));
REQUIRE(amtv);
CHECK_EQ(follow(amtv->metatable), follow(requireType("amt")));
const MetatableType* bmtv = get<MetatableType>(requireType("b"));
REQUIRE(bmtv);
CHECK_EQ(follow(bmtv->metatable), follow(requireType("bmt")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "oop_polymorphic")
{
CheckResult result = check(R"(
local animal = {}
animal.__index = animal
function animal:isAlive() return true end
function animal:speed() return 10 end
local pelican = {}
setmetatable(pelican, animal)
pelican.__index = pelican
function pelican:movement() return "fly" end
function pelican:speed() return 30 end
function pelican.new(name)
local s = {}
setmetatable(s, pelican)
s.name = name
return s
end
local scoops = pelican.new("scoops")
local alive = scoops:isAlive()
local at = scoops.isAlive
local movement = scoops:movement()
local name = scoops.name
local speed = scoops:speed()
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(*builtinTypes->booleanType, *requireType("alive"));
CHECK_EQ(*builtinTypes->stringType, *requireType("movement"));
CHECK_EQ(*builtinTypes->stringType, *requireType("name"));
CHECK_EQ(*builtinTypes->numberType, *requireType("speed"));
}
TEST_CASE_FIXTURE(Fixture, "user_defined_table_types_are_named")
{
CheckResult result = check(R"(
type Vector3 = {x: number, y: number}
local v: Vector3 = {x = 5, y = 7}
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("Vector3", toString(requireType("v")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "result_is_always_any_if_lhs_is_any")
{
CheckResult result = check(R"(
type Vector3MT = {
__add: (Vector3MT, Vector3MT) -> Vector3MT,
__mul: (Vector3MT, Vector3MT|number) -> Vector3MT
}
local Vector3: {new: (number?, number?, number?) -> Vector3MT}
local Vector3MT: Vector3MT
setmetatable(Vector3, Vector3MT)
type CFrameMT = {
__mul: (CFrameMT, Vector3MT|CFrameMT) -> Vector3MT|CFrameMT
}
local CFrame: {
Angles:(number, number, number) -> CFrameMT
}
local CFrameMT: CFrameMT
setmetatable(CFrame, CFrameMT)
local n: any
local a = (n + Vector3.new(0, 1.5, 0)) * CFrame.Angles(0, math.pi/2, 0)
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("any", toString(requireType("a")));
}
TEST_CASE_FIXTURE(Fixture, "result_is_bool_for_equality_operators_if_lhs_is_any")
{
CheckResult result = check(R"(
function f(): (any, number)
return 5, 7
end
local a: any, b: number = f()
local c = a < b
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("boolean", toString(requireType("c")));
}
TEST_CASE_FIXTURE(Fixture, "inequality_operators_imply_exactly_matching_types")
{
CheckResult result = check(R"(
function abs(n)
if n < 0 then
return -n
else
return n
end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("(number) -> number", toString(requireType("abs")));
}
TEST_CASE_FIXTURE(Fixture, "nice_error_when_trying_to_fetch_property_of_boolean")
{
CheckResult result = check(R"(
local a = true
local b = a.some_prop
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("Type 'boolean' does not have key 'some_prop'", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "defining_a_method_for_a_builtin_sealed_table_must_fail")
{
CheckResult result = check(R"(
function string.m() end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "defining_a_self_method_for_a_builtin_sealed_table_must_fail")
{
CheckResult result = check(R"(
function string:m() end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "defining_a_method_for_a_local_sealed_table_must_fail")
{
CheckResult result = check(R"(
function mkt() return {x = 1} end
local t = mkt()
function t.m() end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "defining_a_self_method_for_a_local_sealed_table_must_fail")
{
CheckResult result = check(R"(
function mkt() return {x = 1} end
local t = mkt()
function t:m() end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "defining_a_method_for_a_local_unsealed_table_is_ok")
{
CheckResult result = check(R"(
local t = {x = 1}
function t.m() end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "defining_a_self_method_for_a_local_unsealed_table_is_ok")
{
CheckResult result = check(R"(
local t = {x = 1}
function t:m() end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
// This unit test could be flaky if the fix has regressed.
TEST_CASE_FIXTURE(Fixture, "pass_incompatible_union_to_a_generic_table_without_crashing")
{
CheckResult result = check(R"(
-- must be in this specific order, and with (roughly) those exact properties!
type A = {x: number, [any]: any} | {}
function f(t)
t.y = 1
end
function g(a: A)
f(a)
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(get<TypeMismatch>(result.errors[0]));
}
// This unit test could be flaky if the fix has regressed.
TEST_CASE_FIXTURE(Fixture, "passing_compatible_unions_to_a_generic_table_without_crashing")
{
CheckResult result = check(R"(
type A = {x: number, y: number, [any]: any} | {y: number}
function f(t)
t.y = 1
end
function g(a: A)
f(a)
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "found_like_key_in_table_function_call")
{
CheckResult result = check(R"(
local t = {}
function t.Foo() end
t.fOo()
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeError te = result.errors[0];
UnknownPropButFoundLikeProp* error = get<UnknownPropButFoundLikeProp>(te);
REQUIRE(error);
TypeId t = requireType("t");
CHECK_EQ(*t, *error->table);
CHECK_EQ("fOo", error->key);
auto candidates = error->candidates;
CHECK_EQ(1, candidates.size());
CHECK(candidates.find("Foo") != candidates.end());
CHECK_EQ(toString(te), "Key 'fOo' not found in table 't'. Did you mean 'Foo'?");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "found_like_key_in_table_property_access")
{
CheckResult result = check(R"(
local t = {X = 1}
print(t.x)
)");
REQUIRE_EQ(result.errors.size(), 1);
TypeError te = result.errors[0];
UnknownPropButFoundLikeProp* error = get<UnknownPropButFoundLikeProp>(te);
REQUIRE(error);
TypeId t = requireType("t");
CHECK_EQ(*t, *error->table);
CHECK_EQ("x", error->key);
auto candidates = error->candidates;
CHECK_EQ(1, candidates.size());
CHECK(candidates.find("X") != candidates.end());
CHECK_EQ(toString(te), "Key 'x' not found in table 't'. Did you mean 'X'?");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "found_multiple_like_keys")
{
CheckResult result = check(R"(
local t = {Foo = 1, foO = 2}
print(t.foo)
)");
REQUIRE_EQ(result.errors.size(), 1);
TypeError te = result.errors[0];
UnknownPropButFoundLikeProp* error = get<UnknownPropButFoundLikeProp>(te);
REQUIRE(error);
TypeId t = requireType("t");
CHECK_EQ(*t, *error->table);
CHECK_EQ("foo", error->key);
auto candidates = error->candidates;
CHECK_EQ(2, candidates.size());
CHECK(candidates.find("Foo") != candidates.end());
CHECK(candidates.find("foO") != candidates.end());
CHECK_EQ(toString(te), "Key 'foo' not found in table 't'. Did you mean one of 'Foo', 'foO'?");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "dont_suggest_exact_match_keys")
{
// CLI-114977 Unsealed table writes don't account for order properly
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local t = {}
t.foO = 1
print(t.Foo)
t.Foo = 2
)");
REQUIRE_EQ(result.errors.size(), 1);
TypeError te = result.errors[0];
UnknownPropButFoundLikeProp* error = get<UnknownPropButFoundLikeProp>(te);
REQUIRE(error);
TypeId t = requireType("t");
CHECK_EQ(*t, *error->table);
CHECK_EQ("Foo", error->key);
auto candidates = error->candidates;
CHECK_EQ(1, candidates.size());
CHECK(candidates.find("foO") != candidates.end());
CHECK(candidates.find("Foo") == candidates.end());
CHECK_EQ(toString(te), "Key 'Foo' not found in table 't'. Did you mean 'foO'?");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "getmetatable_returns_pointer_to_metatable")
{
CheckResult result = check(R"(
local t = {x = 1}
local mt = {__index = {y = 2}}
setmetatable(t, mt)
local returnedMT = getmetatable(t)
)");
CHECK_EQ(*requireType("mt"), *requireType("returnedMT"));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "metatable_mismatch_should_fail")
{
// This test is invalid because we now create a new type state for t1 at the assignment.
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local t1 = {x = 1}
local mt1 = {__index = {y = 2}}
setmetatable(t1, mt1)
local t2 = {x = 1}
local mt2 = {__index = function() return nil end}
setmetatable(t2, mt2)
t1 = t2
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
CHECK_EQ(*tm->wantedType, *requireType("t1"));
CHECK_EQ(*tm->givenType, *requireType("t2"));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "property_lookup_through_tabletypevar_metatable")
{
CheckResult result = check(R"(
local t = {x = 1}
local mt = {__index = {y = 2}}
setmetatable(t, mt)
print(t.x)
print(t.y)
print(t.z)
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
UnknownProperty* up = get<UnknownProperty>(result.errors[0]);
REQUIRE_MESSAGE(up, result.errors[0].data);
CHECK_EQ(up->key, "z");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "missing_metatable_for_sealed_tables_do_not_get_inferred")
{
// This test is invalid because we now create a new type state for t at the assignment.
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local t = {x = 1}
local a = {x = 1}
local b = {__index = {y = 2}}
setmetatable(a, b)
t = a
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeId a = requireType("a");
TypeId t = requireType("t");
CHECK_NE(*a, *t);
TypeError te = result.errors[0];
TypeMismatch* tm = get<TypeMismatch>(te);
REQUIRE(tm);
CHECK_EQ(tm->wantedType, t);
CHECK_EQ(tm->givenType, a);
const MetatableType* aTy = get<MetatableType>(a);
REQUIRE(aTy);
const TableType* tTy = get<TableType>(t);
REQUIRE(tTy);
}
// Could be flaky if the fix has regressed.
TEST_CASE_FIXTURE(Fixture, "right_table_missing_key")
{
CheckResult result = check(R"(
function _(...)
end
local l7 = not _,function(l0)
_ += _((_) or {function(...)
end,["z"]=_,} or {},(function(l43,...)
end))
_ += 0 < {}
end
repeat
until _
local l0 = n4,_((_) or {} or {[30976]=_,},({}))
)");
CHECK_GE(result.errors.size(), 0);
}
// Could be flaky if the fix has regressed.
TEST_CASE_FIXTURE(Fixture, "right_table_missing_key2")
{
// CLI-114792 We don't report MissingProperties
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
function f(t: {}): { [string]: string, a: string }
return t
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
MissingProperties* mp = get<MissingProperties>(result.errors[0]);
REQUIRE_MESSAGE(mp, "Expected MissingProperties but got " << toString(result.errors[0]));
CHECK_EQ(mp->context, MissingProperties::Missing);
REQUIRE_EQ(1, mp->properties.size());
CHECK_EQ(mp->properties[0], "a");
CHECK_EQ("{| [string]: string, a: string |}", toString(mp->superType));
CHECK_EQ("{| |}", toString(mp->subType));
}
TEST_CASE_FIXTURE(Fixture, "casting_unsealed_tables_with_props_into_table_with_indexer")
{
CheckResult result = check(R"(
type StringToStringMap = { [string]: string }
local rt: StringToStringMap = { ["foo"] = 1 }
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
ToStringOptions o{/* exhaustive= */ true};
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
if (FFlag::LuauSolverV2)
{
CHECK_EQ("{ [string]: string }", toString(tm->wantedType, o));
CHECK_EQ("{ [string]: number }", toString(tm->givenType, o));
}
else
{
CHECK_EQ("{| [string]: string |}", toString(tm->wantedType, o));
// Should t now have an indexer?
// It would if the assignment to rt was correctly typed.
CHECK_EQ("{ [string]: string, foo: number }", toString(tm->givenType, o));
}
}
TEST_CASE_FIXTURE(Fixture, "casting_sealed_tables_with_props_into_table_with_indexer")
{
CheckResult result = check(R"(
type StringToStringMap = { [string]: string }
function mkrt() return { ["foo"] = 1 } end
local rt: StringToStringMap = mkrt()
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
ToStringOptions o{/* exhaustive= */ true};
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
if (FFlag::LuauSolverV2)
{
CHECK_EQ("{ [string]: string }", toString(tm->wantedType, o));
CHECK_EQ("{ foo: number }", toString(tm->givenType, o));
}
else
{
CHECK_EQ("{| [string]: string |}", toString(tm->wantedType, o));
CHECK_EQ("{| foo: number |}", toString(tm->givenType, o));
}
}
TEST_CASE_FIXTURE(Fixture, "casting_tables_with_props_into_table_with_indexer2")
{
CheckResult result = check(R"(
local function foo(x: {[string]: number, a: string}) end
foo({ a = "" })
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "casting_tables_with_props_into_table_with_indexer3")
{
CheckResult result = check(R"(
local function foo(a: {[string]: number, a: string}) end
foo({ a = 1 })
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
ToStringOptions o{/* exhaustive= */ true};
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
if (FFlag::LuauSolverV2)
{
CHECK("string" == toString(tm->wantedType));
CHECK("number" == toString(tm->givenType));
}
else
{
CHECK_EQ("{| [string]: number, a: string |}", toString(tm->wantedType, o));
CHECK_EQ("{ [string]: number, a: number }", toString(tm->givenType, o));
}
}
TEST_CASE_FIXTURE(Fixture, "casting_tables_with_props_into_table_with_indexer4")
{
CheckResult result = check(R"(
local function foo(a: {[string]: number, a: string}, i: string)
return a[i]
end
local hi: number = foo({ a = "hi" }, "a") -- shouldn't typecheck since at runtime hi is "hi"
)");
// This typechecks but shouldn't
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "table_subtyping_with_missing_props_dont_report_multiple_errors")
{
CheckResult result = check(R"(
function f(vec1: {x: number}): {x: number, y: number, z: number}
return vec1
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
{
CHECK_EQ(
"Type pack '{ x: number }' could not be converted into '{ x: number, y: number, z: number }';"
" at [0], { x: number } is not a subtype of { x: number, y: number, z: number }",
toString(result.errors[0])
);
}
else
{
MissingProperties* mp = get<MissingProperties>(result.errors[0]);
REQUIRE_MESSAGE(mp, result.errors[0]);
CHECK_EQ(mp->context, MissingProperties::Missing);
REQUIRE_EQ(2, mp->properties.size());
CHECK_EQ(mp->properties[0], "y");
CHECK_EQ(mp->properties[1], "z");
CHECK_EQ("{| x: number, y: number, z: number |}", toString(mp->superType));
CHECK_EQ("{| x: number |}", toString(mp->subType));
}
}
TEST_CASE_FIXTURE(Fixture, "table_subtyping_with_missing_props_dont_report_multiple_errors2")
{
CheckResult result = check(R"(
type MixedTable = {[number]: number, x: number}
local t: MixedTable = {"fail"}
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
CHECK("MixedTable" == toString(tm->wantedType));
CHECK("{string}" == toString(tm->givenType));
}
else
{
LUAU_REQUIRE_ERROR_COUNT(2, result);
MissingProperties* mp = get<MissingProperties>(result.errors[1]);
REQUIRE(mp);
CHECK_EQ(mp->context, MissingProperties::Missing);
REQUIRE_EQ(1, mp->properties.size());
CHECK_EQ(mp->properties[0], "x");
}
}
TEST_CASE_FIXTURE(Fixture, "table_subtyping_with_extra_props_dont_report_multiple_errors")
{
CheckResult result = check(R"(
function mkvec3() return {x = 1, y = 2, z = 3} end
function mkvec1() return {x = 1} end
local vec3: {{x: number, y: number, z: number}} = {mkvec3()}
local vec1: {{x: number}} = {mkvec1()}
vec1 = vec3
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
if (FFlag::LuauSolverV2)
{
CHECK_EQ("{{ x: number }}", toString(tm->wantedType));
CHECK_EQ("{{ x: number, y: number, z: number }}", toString(tm->givenType));
}
else
{
CHECK_EQ("{{| x: number |}}", toString(tm->wantedType));
CHECK_EQ("{{| x: number, y: number, z: number |}}", toString(tm->givenType));
}
}
TEST_CASE_FIXTURE(Fixture, "table_subtyping_with_extra_props_is_ok")
{
CheckResult result = check(R"(
local vec3 = {x = 1, y = 2, z = 3}
local vec1 = {x = 1}
vec1 = vec3
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "type_mismatch_on_massive_table_is_cut_short")
{
ScopedFastInt sfis{FInt::LuauTableTypeMaximumStringifierLength, 40};
CheckResult result = check(R"(
local t: {a: number,b: number, c: number, d: number, e: number, f: number} = nil :: any
t = 1
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
if (FFlag::LuauSolverV2)
{
CHECK("{ a: number, b: number, c: number, d: number, e: number, ... 1 more ... }" == toString(requireType("t")));
CHECK_EQ("number", toString(tm->givenType));
CHECK_EQ(
"Type 'number' could not be converted into '{ a: number, b: number, c: number, d: number, e: number, ... 1 more ... }'",
toString(result.errors[0])
);
}
else
{
CHECK("{| a: number, b: number, c: number, d: number, e: number, ... 1 more ... |}" == toString(requireType("t")));
CHECK_EQ("number", toString(tm->givenType));
CHECK_EQ(
"Type 'number' could not be converted into '{| a: number, b: number, c: number, d: number, e: number, ... 1 more ... |}'",
toString(result.errors[0])
);
}
}
TEST_CASE_FIXTURE(Fixture, "ok_to_set_nil_even_on_non_lvalue_base_expr")
{
// CLI-100076 Assigning nil to an indexer should always succeed
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local function f(): { [string]: number }
return { ["foo"] = 1 }
end
f()["foo"] = nil
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "ok_to_provide_a_subtype_during_construction")
{
CheckResult result = check(R"(
local a: string | number = 1
local t = {a, 1}
)");
LUAU_REQUIRE_NO_ERRORS(result);
if (FFlag::LuauSolverV2)
{
// CLI-114134 Use egraphs to simplify types more consistently
CHECK("{number | number | string}" == toString(requireType("t"), {/*exhaustive*/ true}));
}
else
CHECK_EQ("{number | string}", toString(requireType("t"), {/*exhaustive*/ true}));
}
TEST_CASE_FIXTURE(Fixture, "reasonable_error_when_adding_a_nonexistent_property_to_an_array_like_table")
{
CheckResult result = check(R"(
--!strict
function mkA() return {"value"} end
local A = mkA()
A.B = "Hello"
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
{
CannotExtendTable* cet = get<CannotExtendTable>(result.errors[0]);
REQUIRE_MESSAGE(cet, "Expected CannotExtendTable but got " << result.errors[0]);
CHECK("B" == cet->prop);
}
else
{
UnknownProperty* up = get<UnknownProperty>(result.errors[0]);
REQUIRE_MESSAGE(up != nullptr, "Expected an UnknownProperty but got " << result.errors[0]);
CHECK_EQ("B", up->key);
}
}
TEST_CASE_FIXTURE(Fixture, "shorter_array_types_actually_work")
{
CheckResult result = check(R"(
--!strict
local A: {string | number}
)");
LUAU_REQUIRE_ERROR_COUNT(0, result);
CHECK_EQ("{number | string}", toString(requireType("A")));
}
TEST_CASE_FIXTURE(Fixture, "only_ascribe_synthetic_names_at_module_scope")
{
CheckResult result = check(R"(
--!strict
local TopLevel = {}
local foo
for i = 1, 10 do
local SubScope = { 1, 2, 3 }
foo = SubScope
end
)");
LUAU_REQUIRE_ERROR_COUNT(0, result);
CHECK_EQ("TopLevel", toString(requireType("TopLevel")));
if (FFlag::LuauSolverV2)
CHECK_EQ("{number}?", toString(requireType("foo")));
else
CHECK_EQ("{number}", toString(requireType("foo")));
}
TEST_CASE_FIXTURE(Fixture, "hide_table_error_properties")
{
CheckResult result = check(R"(
--!strict
local function f()
local function mkt() return { x = 1 } end
local t = mkt()
function t.a() end
function t.b() end
return t
end
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
if (FFlag::LuauSolverV2)
{
CHECK_EQ("Cannot add property 'a' to table '{ x: number }'", toString(result.errors[0]));
CHECK_EQ("Cannot add property 'b' to table '{ x: number }'", toString(result.errors[1]));
}
else
{
CHECK_EQ("Cannot add property 'a' to table '{| x: number |}'", toString(result.errors[0]));
CHECK_EQ("Cannot add property 'b' to table '{| x: number |}'", toString(result.errors[1]));
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "builtin_table_names")
{
CheckResult result = check(R"(
os.h = 2
string.k = 3
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK_EQ("Cannot add property 'h' to table 'typeof(os)'", toString(result.errors[0]));
CHECK_EQ("Cannot add property 'k' to table 'typeof(string)'", toString(result.errors[1]));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "persistent_sealed_table_is_immutable")
{
CheckResult result = check(R"(
function os:bad() end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("Cannot add property 'bad' to table 'typeof(os)'", toString(result.errors[0]));
const TableType* osType = get<TableType>(requireType("os"));
REQUIRE(osType != nullptr);
CHECK(osType->props.find("bad") == osType->props.end());
}
TEST_CASE_FIXTURE(Fixture, "common_table_element_list")
{
CheckResult result = check(R"(
type Table = {
a: number,
b: number?
}
local Test: {Table} = {
{ a = 1 },
{ a = 2, b = 3 }
}
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "common_table_element_general")
{
// CLI-115275 - Bidirectional inference does not always propagate indexer types into the expression
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
type Table = {
a: number,
b: number?
}
local Test: {Table} = {
[2] = { a = 1 },
[5] = { a = 2, b = 3 }
}
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "common_table_element_inner_index")
{
CheckResult result = check(R"(
type Table = {
a: number,
b: number?
}
local Test: {{Table}} = {{
{ a = 1 },
{ a = 2, b = 3 }
},{
{ a = 3 },
{ a = 4, b = 3 }
}}
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "common_table_element_inner_prop")
{
CheckResult result = check(R"(
type Table = {
a: number,
b: number?
}
local Test: {{x: Table, y: Table}} = {{
x = { a = 1 },
y = { a = 2, b = 3 }
},{
x = { a = 3 },
y = { a = 4 }
}}
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "common_table_element_union_assignment")
{
CheckResult result = check(R"(
type Foo = {x: number | string}
local foos: {Foo} = {
{x = 1234567},
{x = "hello"},
}
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "quantifying_a_bound_var_works")
{
CheckResult result = check(R"(
local clazz = {}
clazz.__index = clazz
function clazz:speak()
return "hi"
end
function clazz.new()
return setmetatable({}, clazz)
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
TypeId ty = requireType("clazz");
TableType* ttv = getMutable<TableType>(ty);
REQUIRE_MESSAGE(ttv, "Expected a table but got " << toString(ty, {true}));
REQUIRE(ttv->props.count("new"));
Property& prop = ttv->props["new"];
REQUIRE(prop.type());
const FunctionType* ftv = get<FunctionType>(follow(prop.type()));
REQUIRE(ftv);
const TypePack* res = get<TypePack>(follow(ftv->retTypes));
REQUIRE(res);
REQUIRE(res->head.size() == 1);
const MetatableType* mtv = get<MetatableType>(follow(res->head[0]));
REQUIRE(mtv);
ttv = getMutable<TableType>(follow(mtv->table));
REQUIRE(ttv);
REQUIRE_EQ(ttv->state, TableState::Sealed);
}
TEST_CASE_FIXTURE(Fixture, "common_table_element_union_in_call")
{
CheckResult result = check(R"(
local function foo(l: {{x: number | string}}) end
foo({
{x = 1234567},
{x = "hello"},
})
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "common_table_element_union_in_call_tail")
{
// CLI-115239 - Bidirectional checking does not work for __call metamethods
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
type Foo = {x: number | string}
local function foo(l: {Foo}, ...: {Foo}) end
foo(
{{x = 1234567}, {x = "hello"}},
{{x = 1234567}, {x = "hello"}},
{{x = 1234567}, {x = "hello"}}
)
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "common_table_element_union_in_prop")
{
CheckResult result = check(R"(
type Foo = {x: number | string}
local t: { a: {Foo}, b: number } = {
a = {
{x = 1234567},
{x = "hello"},
},
b = 5
}
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
// It's unsound to instantiate tables containing generic methods,
// since mutating properties means table properties should be invariant.
TEST_CASE_FIXTURE(Fixture, "invariant_table_properties_means_instantiating_tables_in_assignment_is_unsound")
{
CheckResult result = check(R"(
--!strict
local t = {}
function t.m(x) return x end
local a : string = t.m("hi")
local b : number = t.m(5)
local u : { m : (number)->number } = t -- This shouldn't typecheck
u.m = function(x) return 1+x end
local c : string = t.m("hi")
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(get<TypeMismatch>(result.errors[0]));
CHECK(Location{{6, 45}, {6, 46}} == result.errors[0].location);
CHECK(get<ExplicitFunctionAnnotationRecommended>(result.errors[1]));
}
// TODO: test behavior is wrong with LuauInstantiateInSubtyping until we can re-enable the covariant requirement for instantiation in subtyping
else if (FFlag::LuauInstantiateInSubtyping)
LUAU_REQUIRE_NO_ERRORS(result);
else
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "table_insert_should_cope_with_optional_properties_in_nonstrict")
{
CheckResult result = check(R"(
--!nonstrict
local buttons = {}
table.insert(buttons, { a = 1 })
table.insert(buttons, { a = 2, b = true })
table.insert(buttons, { a = 3 })
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "table_insert_should_cope_with_optional_properties_in_strict")
{
CheckResult result = check(R"(
--!strict
local buttons = {}
table.insert(buttons, { a = 1 })
table.insert(buttons, { a = 2, b = true })
table.insert(buttons, { a = 3 })
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "error_detailed_prop")
{
CheckResult result = check(R"(
type A = { x: number, y: number }
type B = { x: number, y: string }
local a: A = { x = 123, y = 456 }
local b: B = a
)");
LUAU_REQUIRE_ERRORS(result);
if (FFlag::LuauSolverV2)
CHECK(toString(result.errors.at(0)) == R"(Type 'A' could not be converted into 'B'; at [read "y"], number is not exactly string)");
else
{
const std::string expected = R"(Type 'A' could not be converted into 'B'
caused by:
Property 'y' is not compatible.
Type 'number' could not be converted into 'string' in an invariant context)";
CHECK_EQ(expected, toString(result.errors[0]));
}
}
TEST_CASE_FIXTURE(Fixture, "error_detailed_prop_nested")
{
CheckResult result = check(R"(
type AS = { x: number, y: number }
type BS = { x: number, y: string }
type A = { a: boolean, b: AS }
type B = { a: boolean, b: BS }
local a: A = { a = false, b = { x = 123, y = 456 } }
local b: B = a
)");
LUAU_REQUIRE_ERRORS(result);
if (FFlag::LuauSolverV2)
CHECK(toString(result.errors.at(0)) == R"(Type 'A' could not be converted into 'B'; at [read "b"][read "y"], number is not exactly string)");
else
{
const std::string expected = R"(Type 'A' could not be converted into 'B'
caused by:
Property 'b' is not compatible.
Type 'AS' could not be converted into 'BS'
caused by:
Property 'y' is not compatible.
Type 'number' could not be converted into 'string' in an invariant context)";
CHECK_EQ(expected, toString(result.errors[0]));
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "error_detailed_metatable_prop")
{
CheckResult result = check(R"(
local a1 = setmetatable({ x = 2, y = 3 }, { __call = function(s) end });
local b1 = setmetatable({ x = 2, y = "hello" }, { __call = function(s) end });
local c1: typeof(a1) = b1
local a2 = setmetatable({ x = 2, y = 3 }, { __call = function(s) end });
local b2 = setmetatable({ x = 2, y = 4 }, { __call = function(s, t) end });
local c2: typeof(a2) = b2
)");
const std::string expected1 = R"(Type 'b1' could not be converted into 'a1'
caused by:
Type
'{ x: number, y: string }'
could not be converted into
'{ x: number, y: number }'
caused by:
Property 'y' is not compatible.
Type 'string' could not be converted into 'number' in an invariant context)";
const std::string expected2 = R"(Type 'b2' could not be converted into 'a2'
caused by:
Type
'{ __call: <a, b>(a, b) -> () }'
could not be converted into
'{ __call: <a>(a) -> () }'
caused by:
Property '__call' is not compatible.
Type
'<a, b>(a, b) -> ()'
could not be converted into
'<a>(a) -> ()'; different number of generic type parameters)";
if (FFlag::LuauSolverV2)
{
// The assignment of c2 to b2 is, surprisingly, allowed under the new
// solver for two reasons:
//
// First, both of the __call functions have hidden ...any arguments
// because their exact definition is available.
//
// Second, nil <: unknown, so we consider that parameter to be optional.
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK("Type 'b1' could not be converted into 'a1'; at [read \"y\"], string is not exactly number" == toString(result.errors[0]));
}
else if (FFlag::LuauInstantiateInSubtyping)
{
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK_EQ(expected1, toString(result.errors[0]));
const std::string expected3 = R"(Type 'b2' could not be converted into 'a2'
caused by:
Type
'{ __call: <a, b>(a, b) -> () }'
could not be converted into
'{ __call: <a>(a) -> () }'
caused by:
Property '__call' is not compatible.
Type
'<a, b>(a, b) -> ()'
could not be converted into
'<a>(a) -> ()'; different number of generic type parameters)";
CHECK_EQ(expected2, toString(result.errors[1]));
}
else
{
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK_EQ(expected1, toString(result.errors[0]));
std::string expected3 = R"(Type 'b2' could not be converted into 'a2'
caused by:
Type
'{ __call: (a, b) -> () }'
could not be converted into
'{ __call: <a>(a) -> () }'
caused by:
Property '__call' is not compatible.
Type
'(a, b) -> ()'
could not be converted into
'<a>(a) -> ()'; different number of generic type parameters)";
CHECK_EQ(expected3, toString(result.errors[1]));
}
}
TEST_CASE_FIXTURE(Fixture, "error_detailed_indexer_key")
{
CheckResult result = check(R"(
type A = { [number]: string }
type B = { [string]: string }
local a: A = { 'a', 'b' }
local b: B = a
)");
LUAU_REQUIRE_ERRORS(result);
if (FFlag::LuauSolverV2)
{
CHECK("Type 'A' could not be converted into 'B'; at indexer(), number is not exactly string" == toString(result.errors[0]));
}
else
{
const std::string expected = R"(Type 'A' could not be converted into 'B'
caused by:
Property '[indexer key]' is not compatible.
Type 'number' could not be converted into 'string' in an invariant context)";
CHECK_EQ(expected, toString(result.errors[0]));
}
}
TEST_CASE_FIXTURE(Fixture, "error_detailed_indexer_value")
{
CheckResult result = check(R"(
type A = { [number]: number }
type B = { [number]: string }
local a: A = { 1, 2, 3 }
local b: B = a
)");
LUAU_REQUIRE_ERRORS(result);
if (FFlag::LuauSolverV2)
{
CHECK("Type 'A' could not be converted into 'B'; at indexResult(), number is not exactly string" == toString(result.errors[0]));
}
else
{
const std::string expected = R"(Type 'A' could not be converted into 'B'
caused by:
Property '[indexer value]' is not compatible.
Type 'number' could not be converted into 'string' in an invariant context)";
CHECK_EQ(expected, toString(result.errors[0]));
}
}
TEST_CASE_FIXTURE(Fixture, "explicitly_typed_table")
{
// Table properties like HasSuper.p must be invariant. The new solver rightly rejects this program.
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
--!strict
type Super = { x : number }
type Sub = { x : number, y: number }
type HasSuper = { p : Super }
type HasSub = { p : Sub }
local a: HasSuper = { p = { x = 5, y = 7 }}
a.p = { x = 9 }
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "explicitly_typed_table_error")
{
CheckResult result = check(R"(
--!strict
type Super = { x : number }
type Sub = { x : number, y: number }
type HasSuper = { p : Super }
type HasSub = { p : Sub }
local tmp = { p = { x = 5, y = 7 }}
local a: HasSuper = tmp
a.p = { x = 9 }
-- needs to be an error because
local y: number = tmp.p.y
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
CHECK(
"Type 'tmp' could not be converted into 'HasSuper'; at [read \"p\"], { x: number, y: number } is not exactly Super" ==
toString(result.errors[0])
);
else
{
const std::string expected = R"(Type 'tmp' could not be converted into 'HasSuper'
caused by:
Property 'p' is not compatible.
Table type '{ x: number, y: number }' not compatible with type 'Super' because the former has extra field 'y')";
CHECK_EQ(expected, toString(result.errors[0]));
}
}
TEST_CASE_FIXTURE(Fixture, "explicitly_typed_table_with_indexer")
{
// CLI-114791 Bidirectional inference should be able to cause the inference engine to forget that a table literal has some property
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
--!strict
type Super = { x : number }
type Sub = { x : number, y: number }
type HasSuper = { [string] : Super }
type HasSub = { [string] : Sub }
local a: HasSuper = { p = { x = 5, y = 7 }}
a.p = { x = 9 }
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "recursive_metatable_type_call")
{
// CLI-114782
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local b
b = setmetatable({}, {__call = b})
b()
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (DFFlag::LuauImproveNonFunctionCallError)
CHECK_EQ(toString(result.errors[0]), R"(Cannot call a value of type t1 where t1 = { @metatable { __call: t1 }, { } })");
else
CHECK_EQ(toString(result.errors[0]), R"(Cannot call non-function t1 where t1 = { @metatable { __call: t1 }, { } })");
}
TEST_CASE_FIXTURE(Fixture, "table_subtyping_shouldn't_add_optional_properties_to_sealed_tables")
{
CheckResult result = check(R"(
--!strict
local function setNumber(t: { p: number? }, x:number) t.p = x end
local function getString(t: { p: string? }):string return t.p or "" end
-- This shouldn't type-check!
local function oh(x:number): string
local t: {} = {}
setNumber(t, x)
return getString(t)
end
local s: string = oh(37)
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "top_table_type")
{
CheckResult result = check(R"(
--!strict
type Table = { [any] : any }
type HasTable = { p: Table? }
type HasHasTable = { p: HasTable? }
local t : Table = { p = 5 }
local u : HasTable = { p = { p = 5 } }
local v : HasHasTable = { p = { p = { p = 5 } } }
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "length_operator_union")
{
CheckResult result = check(R"(
local x: {number} | {string}
local y = #x
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "length_operator_intersection")
{
CheckResult result = check(R"(
local x: {number} & {z:string} -- mixed tables are evil
local y = #x
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "length_operator_non_table_union")
{
CheckResult result = check(R"(
local x: {number} | any | string
local y = #x
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "length_operator_union_errors")
{
ScopedFastFlag _{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
local x: {number} | number | string
local y = #x
)");
// CLI-119936: This shouldn't double error but does under the new solver.
LUAU_REQUIRE_ERROR_COUNT(2, result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "dont_hang_when_trying_to_look_up_in_cyclic_metatable_index")
{
// t :: t1 where t1 = {metatable {__index: t1, __tostring: (t1) -> string}}
CheckResult result = check(R"(
local mt = {}
local t = setmetatable({}, mt)
mt.__index = t
function mt:__tostring()
return t.p
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("Type 't' does not have key 'p'", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "give_up_after_one_metatable_index_look_up")
{
CheckResult result = check(R"(
local data = { x = 5 }
local t1 = setmetatable({}, { __index = data })
local t2 = setmetatable({}, t1) -- note: must be t1, not a new table
local x1 = t1.x -- ok
local x2 = t2.x -- nope
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("Type 't2' does not have key 'x'", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "confusing_indexing")
{
CheckResult result = check(R"(
type T = {} & {p: number | string}
local function f(t: T)
return t.p
end
local foo = f({p = "string"})
)");
if (FFlag::LuauSolverV2)
{
// CLI-114781 Bidirectional checking can't see through the intersection
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
else
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("number | string", toString(requireType("foo")));
}
TEST_CASE_FIXTURE(Fixture, "pass_a_union_of_tables_to_a_function_that_requires_a_table")
{
CheckResult result = check(R"(
local a: {x: number, y: number, [any]: any} | {y: number}
function f(t)
t.y = 1
return t
end
local b = f(a)
)");
LUAU_REQUIRE_NO_ERRORS(result);
if (FFlag::LuauSolverV2)
REQUIRE_EQ("{ y: number }", toString(requireType("b")));
else
REQUIRE_EQ("{- y: number -}", toString(requireType("b")));
}
TEST_CASE_FIXTURE(Fixture, "pass_a_union_of_tables_to_a_function_that_requires_a_table_2")
{
CheckResult result = check(R"(
local a: {y: number} | {x: number, y: number, [any]: any}
function f(t)
t.y = 1
return t
end
local b = f(a)
)");
LUAU_REQUIRE_NO_ERRORS(result);
if (FFlag::LuauSolverV2)
REQUIRE_EQ("{ y: number }", toString(requireType("b")));
else
REQUIRE_EQ("{- y: number -}", toString(requireType("b")));
}
TEST_CASE_FIXTURE(Fixture, "unifying_tables_shouldnt_uaf1")
{
CheckResult result = check(R"(
-- This example produced a UAF at one point, caused by pointers to table types becoming
-- invalidated by child unifiers. (Calling log.concat can cause pointers to become invalid.)
type _Entry = {
a: number,
middle: (self: _Entry) -> (),
z: number
}
export type AnyEntry = _Entry
local Entry = {}
Entry.__index = Entry
function Entry:dispose()
self:middle()
forgetChildren(self) -- unify free with sealed AnyEntry
end
function forgetChildren(parent: AnyEntry)
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "unifying_tables_shouldnt_uaf2")
{
CheckResult result = check(R"(
-- Another example that UAFd, this time found by fuzzing.
local _
do
_._ *= (_[{n0=_[{[{[_]=_,}]=_,}],}])[_]
_ = (_.n0)
end
_._ *= (_[false])[_]
_ = (_.cos)
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "cannot_call_tables")
{
CheckResult result = check("local foo = {} foo()");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(get<CannotCallNonFunction>(result.errors[0]) != nullptr);
}
TEST_CASE_FIXTURE(Fixture, "table_length")
{
CheckResult result = check(R"(
local t = {}
local s = #t
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(nullptr != get<TableType>(requireType("t")));
CHECK_EQ(*builtinTypes->numberType, *requireType("s"));
}
TEST_CASE_FIXTURE(Fixture, "nil_assign_doesnt_hit_indexer")
{
// CLI-100076 - Assigning a table key to `nil` in the presence of an indexer should always be permitted
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check("local a = {} a[0] = 7 a[0] = nil");
LUAU_REQUIRE_ERROR_COUNT(0, result);
}
TEST_CASE_FIXTURE(Fixture, "wrong_assign_does_hit_indexer")
{
CheckResult result = check(R"(
local a = {}
a[0] = 7
a[0] = 't'
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK((Location{Position{3, 15}, Position{3, 18}}) == result.errors[0].location);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
CHECK(tm->wantedType == builtinTypes->numberType);
CHECK(tm->givenType == builtinTypes->stringType);
}
TEST_CASE_FIXTURE(Fixture, "nil_assign_doesnt_hit_no_indexer")
{
CheckResult result = check(R"(
local a = {a=1, b=2}
a['a'] = nil
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(
result.errors[0],
(TypeError{
Location{Position{2, 17}, Position{2, 20}},
TypeMismatch{
builtinTypes->numberType,
builtinTypes->nilType,
}
})
);
}
TEST_CASE_FIXTURE(Fixture, "free_rhs_table_can_also_be_bound")
{
check(R"(
local o
local v = o:i()
function g(u)
v = u
end
o:f(g)
o:h()
o:h()
)");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "table_unifies_into_map")
{
CheckResult result = check(R"(
local Instance: any
local UDim2: any
function Create(instanceType)
return function(data)
local obj = Instance.new(instanceType)
for k, v in pairs(data) do
if type(k) == 'number' then
--v.Parent = obj
else
obj[k] = v
end
end
return obj
end
end
local topbarShadow = Create'ImageLabel'{
Name = "TopBarShadow";
Size = UDim2.new(1, 0, 0, 3);
Position = UDim2.new(0, 0, 1, 0);
Image = "rbxasset://textures/ui/TopBar/dropshadow.png";
BackgroundTransparency = 1;
Active = false;
Visible = false;
};
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "tables_get_names_from_their_locals")
{
CheckResult result = check(R"(
local T = {}
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("T", toString(requireType("T")));
}
TEST_CASE_FIXTURE(Fixture, "should_not_unblock_table_type_twice")
{
// don't run this when the DCR flag isn't set
if (!FFlag::LuauSolverV2)
return;
check(R"(
local timer = peek(timerQueue)
while timer ~= nil do
if timer.startTime <= currentTime then
timer.isQueued = true
end
timer = peek(timerQueue)
end
)");
// Just checking this is enough to satisfy the original bug.
}
TEST_CASE_FIXTURE(Fixture, "generalize_table_argument")
{
CheckResult result = check(R"(
function foo(arr)
local work = {}
for i = 1, #arr do
work[i] = arr[i]
end
return arr
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
const FunctionType* fooType = get<FunctionType>(requireType("foo"));
REQUIRE(fooType);
std::optional<TypeId> fooArg1 = first(fooType->argTypes);
REQUIRE(fooArg1);
const TableType* fooArg1Table = get<TableType>(follow(*fooArg1));
REQUIRE(fooArg1Table);
if (FFlag::LuauSolverV2)
CHECK_EQ(fooArg1Table->state, TableState::Sealed);
else
CHECK_EQ(fooArg1Table->state, TableState::Generic);
}
/*
* This test case exposed an oversight in the treatment of free tables.
* Free tables, like free Types, need to record the scope depth where they were created so that
* we do not erroneously let-generalize them when they are used in a nested lambda.
*
* For more information about let-generalization, see <http://okmij.org/ftp/ML/generalization.html>
*
* The important idea here is that the return type of Counter.new is a table with some metatable.
* That metatable *must* be the same Type as the type of Counter. If it is a copy (produced by
* the generalization process), then it loses the knowledge that its metatable will have an :incr()
* method.
*/
TEST_CASE_FIXTURE(BuiltinsFixture, "dont_quantify_table_that_belongs_to_outer_scope")
{
CheckResult result = check(R"(
local Counter = {}
Counter.__index = Counter
function Counter.new()
local self = setmetatable({count=0}, Counter)
return self
end
function Counter:incr()
self.count = 1
return self.count
end
local self = Counter.new()
print(self:incr())
)");
LUAU_REQUIRE_NO_ERRORS(result);
TableType* counterType = getMutable<TableType>(requireType("Counter"));
REQUIRE(counterType);
REQUIRE(counterType->props.count("new"));
const FunctionType* newType = get<FunctionType>(follow(counterType->props["new"].type()));
REQUIRE(newType);
std::optional<TypeId> newRetType = *first(newType->retTypes);
REQUIRE(newRetType);
const MetatableType* newRet = get<MetatableType>(follow(*newRetType));
REQUIRE(newRet);
const TableType* newRetMeta = get<TableType>(follow(newRet->metatable));
REQUIRE(newRetMeta);
CHECK(newRetMeta->props.count("incr"));
CHECK_EQ(follow(newRet->metatable), follow(requireType("Counter")));
}
// TODO: CLI-39624
TEST_CASE_FIXTURE(BuiltinsFixture, "instantiate_tables_at_scope_level")
{
CheckResult result = check(R"(
--!strict
local Option = {}
Option.__index = Option
function Option.Is(obj)
return (type(obj) == "table" and getmetatable(obj) == Option)
end
return Option
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "inferring_crazy_table_should_also_be_quick")
{
CheckResult result = check(R"(
--!strict
function f(U)
U(w:s(an):c()():c():U(s):c():c():U(s):c():U(s):cU()):c():U(s):c():U(s):c():c():U(s):c():U(s):cU()
end
)");
ModulePtr module = getMainModule();
if (FFlag::LuauSolverV2)
CHECK_GE(500, module->internalTypes.types.size());
else
CHECK_GE(100, module->internalTypes.types.size());
}
TEST_CASE_FIXTURE(Fixture, "MixedPropertiesAndIndexers")
{
CheckResult result = check(R"(
local x = {}
x.a = "a"
x[0] = true
x.b = 37
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "setmetatable_cant_be_used_to_mutate_global_types")
{
{
Fixture fix;
// inherit env from parent fixture checker
fix.frontend.globals.globalScope = frontend.globals.globalScope;
fix.check(R"(
--!nonstrict
type MT = typeof(setmetatable)
function wtf(arg: {MT}): typeof(table)
arg = wtf(arg)
end
)");
}
// validate sharedEnv post-typecheck; valuable for debugging some typeck crashes but slows fuzzing down
// note: it's important for typeck to be destroyed at this point!
{
for (auto& p : frontend.globals.globalScope->bindings)
{
toString(p.second.typeId); // toString walks the entire type, making sure ASAN catches access to destroyed type arenas
}
}
}
TEST_CASE_FIXTURE(Fixture, "evil_table_unification")
{
// this code re-infers the type of _ while processing fields of _, which can cause use-after-free
check(R"(
--!nonstrict
_ = ...
_:table(_,string)[_:gsub(_,...,n0)],_,_:gsub(_,string)[""],_:split(_,...,table)._,n0 = nil
do end
)");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "dont_crash_when_setmetatable_does_not_produce_a_metatabletypevar")
{
CheckResult result = check("local x = setmetatable({})");
if (FFlag::LuauSolverV2)
{
// CLI-114665: Generic parameters should not also be optional.
LUAU_REQUIRE_NO_ERRORS(result);
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("Argument count mismatch. Function 'setmetatable' expects 2 arguments, but only 1 is specified", toString(result.errors[0]));
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "instantiate_table_cloning")
{
CheckResult result = check(R"(
--!nonstrict
local l0:any,l61:t0<t32> = _,math
while _ do
_()
end
function _():t0<t0>
end
type t0<t32> = any
)");
std::optional<TypeId> ty = requireType("math");
REQUIRE(ty);
const TableType* ttv = get<TableType>(*ty);
REQUIRE(ttv);
CHECK(ttv->instantiatedTypeParams.empty());
}
TEST_CASE_FIXTURE(BuiltinsFixture, "instantiate_table_cloning_2")
{
CheckResult result = check(R"(
type X<T> = T
type K = X<typeof(math)>
)");
LUAU_REQUIRE_NO_ERRORS(result);
std::optional<TypeId> ty = requireType("math");
REQUIRE(ty);
const TableType* ttv = get<TableType>(*ty);
REQUIRE(ttv);
CHECK(ttv->instantiatedTypeParams.empty());
}
TEST_CASE_FIXTURE(Fixture, "instantiate_table_cloning_3")
{
CheckResult result = check(R"(
type X<T> = T
local a = {}
a.x = 4
local b: X<typeof(a)>
a.y = 5
local c: X<typeof(a)>
c = b
)");
LUAU_REQUIRE_NO_ERRORS(result);
std::optional<TypeId> ty = requireType("a");
REQUIRE(ty);
const TableType* ttv = get<TableType>(*ty);
REQUIRE(ttv);
CHECK(0 == ttv->instantiatedTypeParams.size());
}
TEST_CASE_FIXTURE(Fixture, "record_location_of_inserted_table_properties")
{
CheckResult result = check(R"(
local a = {}
a.foo = 1234
)");
LUAU_REQUIRE_NO_ERRORS(result);
const TableType* tt = get<TableType>(requireType("a"));
REQUIRE(tt);
REQUIRE(tt->props.count("foo"));
const Property& prop = tt->props.find("foo")->second;
CHECK(Location{{2, 10}, {2, 13}} == prop.location);
}
TEST_CASE_FIXTURE(Fixture, "table_indexing_error_location")
{
CheckResult result = check(R"(
local foo = {42}
local bar: number?
local baz = foo[bar]
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(result.errors[0].location, Location{Position{3, 16}, Position{3, 19}});
}
TEST_CASE_FIXTURE(BuiltinsFixture, "table_call_metamethod_basic")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local a = setmetatable({
a = 1,
}, {
__call = function(self, b: number)
return self.a * b
end,
})
local foo = a(12)
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(get<ExplicitFunctionAnnotationRecommended>(result.errors[0]));
}
else
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(requireType("foo") == builtinTypes->numberType);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "table_call_metamethod_must_be_callable")
{
CheckResult result = check(R"(
local a = setmetatable({}, {
__call = 123,
})
local foo = a()
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (!FFlag::LuauSolverV2)
{
TypeError e{
Location{{5, 20}, {5, 21}},
CannotCallNonFunction{builtinTypes->numberType},
};
CHECK(result.errors[0] == e);
}
else if (DFFlag::LuauImproveNonFunctionCallError)
{
CHECK("Cannot call a value of type a" == toString(result.errors[0]));
}
else
{
CHECK("Cannot call non-function a" == toString(result.errors[0]));
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "table_call_metamethod_generic")
{
CheckResult result = check(R"(
local a = setmetatable({}, {
__call = function<T>(self, b: T)
return b
end,
})
local foo = a(12)
local bar = a("bar")
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(requireType("foo") == builtinTypes->numberType);
CHECK(requireType("bar") == builtinTypes->stringType);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "table_simple_call")
{
// The new solver can see that this function is safe to oversaturate.
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local a = setmetatable({ x = 2 }, {
__call = function(self)
return (self.x :: number) * 2 -- should work without annotation in the future
end
})
local b = a()
local c = a(2) -- too many arguments
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("Argument count mismatch. Function 'a' expects 1 argument, but 2 are specified", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "access_index_metamethod_that_returns_variadic")
{
CheckResult result = check(R"(
type Foo = {x: string}
local t = {}
setmetatable(t, {
__index = function(x: string): ...Foo
return {x = x}
end
})
local foo = t.bar
)");
LUAU_REQUIRE_NO_ERRORS(result);
ToStringOptions o;
o.exhaustive = true;
if (FFlag::LuauSolverV2)
CHECK_EQ("{ x: string }", toString(requireType("foo"), o));
else
CHECK_EQ("{| x: string |}", toString(requireType("foo"), o));
}
TEST_CASE_FIXTURE(Fixture, "dont_invalidate_the_properties_iterator_of_free_table_when_rolled_back")
{
fileResolver.source["Module/Backend/Types"] = R"(
export type Fiber = {
return_: Fiber?
}
return {}
)";
fileResolver.source["Module/Backend"] = R"(
local Types = require(script.Types)
type Fiber = Types.Fiber
type ReactRenderer = { findFiberByHostInstance: () -> Fiber? }
local function attach(renderer): ()
local function getPrimaryFiber(fiber)
local alternate = fiber.alternate
return fiber
end
local function getFiberIDForNative()
local fiber = renderer.findFiberByHostInstance()
fiber = fiber.return_
return getPrimaryFiber(fiber)
end
end
function culprit(renderer: ReactRenderer): ()
attach(renderer)
end
return culprit
)";
CheckResult result = frontend.check("Module/Backend");
}
TEST_CASE_FIXTURE(Fixture, "checked_prop_too_early")
{
CheckResult result = check(R"(
local t: {x: number?}? = {x = nil}
local u = t.x and t or 5
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
{
CHECK_EQ("Value of type '{ x: number? }?' could be nil", toString(result.errors[0]));
CHECK_EQ("number | { x: number }", toString(requireType("u")));
}
else
{
CHECK_EQ("Value of type '{| x: number? |}?' could be nil", toString(result.errors[0]));
CHECK_EQ("number | {| x: number? |}", toString(requireType("u")));
}
}
TEST_CASE_FIXTURE(Fixture, "accidentally_checked_prop_in_opposite_branch")
{
CheckResult result = check(R"(
local t: {x: number?}? = {x = nil}
local u = t and t.x == 5 or t.x == 31337
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
CHECK_EQ("Value of type '{ x: number? }?' could be nil", toString(result.errors[0]));
else
CHECK_EQ("Value of type '{| x: number? |}?' could be nil", toString(result.errors[0]));
CHECK_EQ("boolean", toString(requireType("u")));
}
/*
* We had an issue where part of the type of pairs() was an unsealed table.
* This test depends on FFlagDebugLuauFreezeArena to trigger it.
*/
TEST_CASE_FIXTURE(Fixture, "pairs_parameters_are_not_unsealed_tables")
{
check(R"(
function _(l0:{n0:any})
_ = pairs
end
)");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "table_function_check_use_after_free")
{
CheckResult result = check(R"(
local t = {}
function t.x(value)
for k,v in pairs(t) do end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
/*
* When we add new properties to an unsealed table, we should do a level check and promote the property type to be at
* the level of the table.
*/
TEST_CASE_FIXTURE(Fixture, "inferred_properties_of_a_table_should_start_with_the_same_TypeLevel_of_that_table")
{
CheckResult result = check(R"(
--!strict
local T = {}
local function f(prop)
T[1] = {
prop = prop,
}
end
local function g()
local l = T[1].prop
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
// The real bug here was that we weren't always uncondionally typechecking a trailing return statement last.
TEST_CASE_FIXTURE(BuiltinsFixture, "dont_leak_free_table_props")
{
CheckResult result = check(R"(
local function a(state)
print(state.blah)
end
local function b(state) -- The bug was that we inferred state: {blah: any, gwar: any}
print(state.gwar)
end
return function()
return function(state)
a(state)
b(state)
end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
if (FFlag::LuauSolverV2)
{
CHECK_EQ("({ read blah: unknown }) -> ()", toString(requireType("a")));
CHECK_EQ("({ read gwar: unknown }) -> ()", toString(requireType("b")));
CHECK_EQ("(...any) -> ({ read blah: unknown, read gwar: unknown }) -> ()", toString(getMainModule()->returnType));
}
else
{
CHECK_EQ("<a>({+ blah: a +}) -> ()", toString(requireType("a")));
CHECK_EQ("<a>({+ gwar: a +}) -> ()", toString(requireType("b")));
CHECK_EQ("() -> <a, b>({+ blah: a, gwar: b +}) -> ()", toString(getMainModule()->returnType));
}
}
TEST_CASE_FIXTURE(Fixture, "mixed_tables_with_implicit_numbered_keys")
{
CheckResult result = check(R"(
local t: { [string]: number } = { 5, 6, 7 }
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(
"Type '{number}' could not be converted into '{ [string]: number }'; at indexer(), number is not exactly string" ==
toString(result.errors[0])
);
}
else
{
LUAU_REQUIRE_ERROR_COUNT(3, result);
CHECK_EQ("Type 'number' could not be converted into 'string'", toString(result.errors[0]));
CHECK_EQ("Type 'number' could not be converted into 'string'", toString(result.errors[1]));
CHECK_EQ("Type 'number' could not be converted into 'string'", toString(result.errors[2]));
}
}
TEST_CASE_FIXTURE(Fixture, "expected_indexer_value_type_extra")
{
CheckResult result = check(R"(
type X = { { x: boolean?, y: boolean? } }
local l1: {[string]: X} = { key = { { x = true }, { y = true } } }
local l2: {[any]: X} = { key = { { x = true }, { y = true } } }
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "expected_indexer_value_type_extra_2")
{
CheckResult result = check(R"(
type X = {[any]: string | boolean}
local x: X = { key = "str" }
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "expected_indexer_from_table_union")
{
LUAU_REQUIRE_NO_ERRORS(check(R"(local a: {[string]: {number | string}} = {a = {2, 's'}})"));
LUAU_REQUIRE_NO_ERRORS(check(R"(local a: {[string]: {number | string}}? = {a = {2, 's'}})"));
LUAU_REQUIRE_NO_ERRORS(check(R"(local a: {[string]: {[string]: {string?}}?} = {["a"] = {["b"] = {"a", "b"}}})"));
}
TEST_CASE_FIXTURE(Fixture, "prop_access_on_key_whose_types_mismatches")
{
CheckResult result = check(R"(
local t: {number} = {}
local x = t.x
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("Key 'x' not found in table '{number}'", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "prop_access_on_unions_of_indexers_where_key_whose_types_mismatches")
{
CheckResult result = check(R"(
local t: { [number]: number } | { [boolean]: number } = {}
local u = t.x
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
CHECK_EQ("Type '{ [boolean]: number } | {number}' does not have key 'x'", toString(result.errors[0]));
else
CHECK_EQ("Type '{number} | {| [boolean]: number |}' does not have key 'x'", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "leaking_bad_metatable_errors")
{
CheckResult result = check(R"(
local a = setmetatable({}, 1)
local b = a.x
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK_EQ("Metatable was not a table", toString(result.errors[0]));
CHECK_EQ("Type 'a' does not have key 'x'", toString(result.errors[1]));
}
TEST_CASE_FIXTURE(Fixture, "scalar_is_a_subtype_of_a_compatible_polymorphic_shape_type")
{
// CLI-115087 The new solver cannot infer that a table-like type is actually string
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local function f(s)
return s:lower()
end
f("foo" :: string)
f("bar" :: "bar")
f("baz" :: "bar" | "baz")
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "scalar_is_not_a_subtype_of_a_compatible_polymorphic_shape_type")
{
CheckResult result = check(R"(
local function f(s)
return s:absolutely_no_scalar_has_this_method()
end
f("foo" :: string)
f("bar" :: "bar")
f("baz" :: "bar" | "baz")
)");
if (FFlag::LuauSolverV2)
{
// CLI-115090 Error reporting is quite bad in this case.
// This should be just 3
LUAU_REQUIRE_ERROR_COUNT(4, result);
TypeMismatch* tm1 = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm1);
CHECK("typeof(string)" == toString(tm1->givenType));
CHECK("t1 where t1 = { read absolutely_no_scalar_has_this_method: (t1) -> (a...) }" == toString(tm1->wantedType));
TypeMismatch* tm2 = get<TypeMismatch>(result.errors[1]);
REQUIRE(tm2);
CHECK("typeof(string)" == toString(tm2->givenType));
CHECK("t1 where t1 = { read absolutely_no_scalar_has_this_method: (t1) -> (a...) }" == toString(tm2->wantedType));
TypeMismatch* tm3 = get<TypeMismatch>(result.errors[2]);
REQUIRE(tm3);
CHECK("typeof(string)" == toString(tm3->givenType));
CHECK("t1 where t1 = { read absolutely_no_scalar_has_this_method: (t1) -> (a...) }" == toString(tm3->wantedType));
TypeMismatch* tm4 = get<TypeMismatch>(result.errors[3]);
REQUIRE(tm4);
CHECK("typeof(string)" == toString(tm4->givenType));
CHECK("t1 where t1 = { read absolutely_no_scalar_has_this_method: (t1) -> (a...) }" == toString(tm4->wantedType));
}
else
{
LUAU_REQUIRE_ERROR_COUNT(3, result);
const std::string expected1 =
R"(Type 'string' could not be converted into 't1 where t1 = {- absolutely_no_scalar_has_this_method: (t1) -> (a...) -}'
caused by:
The former's metatable does not satisfy the requirements.
Table type 'typeof(string)' not compatible with type 't1 where t1 = {- absolutely_no_scalar_has_this_method: (t1) -> (a...) -}' because the former is missing field 'absolutely_no_scalar_has_this_method')";
CHECK_EQ(expected1, toString(result.errors[0]));
const std::string expected2 =
R"(Type '"bar"' could not be converted into 't1 where t1 = {- absolutely_no_scalar_has_this_method: (t1) -> (a...) -}'
caused by:
The former's metatable does not satisfy the requirements.
Table type 'typeof(string)' not compatible with type 't1 where t1 = {- absolutely_no_scalar_has_this_method: (t1) -> (a...) -}' because the former is missing field 'absolutely_no_scalar_has_this_method')";
CHECK_EQ(expected2, toString(result.errors[1]));
const std::string expected3 = R"(Type
'"bar" | "baz"'
could not be converted into
't1 where t1 = {- absolutely_no_scalar_has_this_method: (t1) -> (a...) -}'
caused by:
Not all union options are compatible.
Type '"bar"' could not be converted into 't1 where t1 = {- absolutely_no_scalar_has_this_method: (t1) -> (a...) -}'
caused by:
The former's metatable does not satisfy the requirements.
Table type 'typeof(string)' not compatible with type 't1 where t1 = {- absolutely_no_scalar_has_this_method: (t1) -> (a...) -}' because the former is missing field 'absolutely_no_scalar_has_this_method')";
CHECK_EQ(expected3, toString(result.errors[2]));
}
}
TEST_CASE_FIXTURE(Fixture, "a_free_shape_can_turn_into_a_scalar_if_it_is_compatible")
{
// CLI-115087 The new solver cannot infer that a table-like type is actually string
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local function f(s): string
local foo = s:lower()
return s
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("(string) -> string", toString(requireType("f")));
}
TEST_CASE_FIXTURE(Fixture, "a_free_shape_cannot_turn_into_a_scalar_if_it_is_not_compatible")
{
CheckResult result = check(R"(
local function f(s): string
local foo = s:absolutely_no_scalar_has_this_method()
return s
end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_ERROR_COUNT(4, result);
CHECK(toString(result.errors[0]) == "Parameter 's' has been reduced to never. This function is not callable with any possible value.");
// FIXME: These free types should have been generalized by now.
CHECK(
toString(result.errors[1]) ==
"Parameter 's' is required to be a subtype of '{- read absolutely_no_scalar_has_this_method: ('a <: (never) -> ('b, c...)) -}' here."
);
CHECK(toString(result.errors[2]) == "Parameter 's' is required to be a subtype of 'string' here.");
CHECK(get<CannotCallNonFunction>(result.errors[3]));
CHECK_EQ("(never) -> string", toString(requireType("f")));
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
const std::string expected =
R"(Type 't1 where t1 = {+ absolutely_no_scalar_has_this_method: (t1) -> (a, b...) +}' could not be converted into 'string'
caused by:
The former's metatable does not satisfy the requirements.
Table type 'typeof(string)' not compatible with type 't1 where t1 = {+ absolutely_no_scalar_has_this_method: (t1) -> (a, b...) +}' because the former is missing field 'absolutely_no_scalar_has_this_method')";
CHECK_EQ(expected, toString(result.errors[0]));
CHECK_EQ("<a, b...>(t1) -> string where t1 = {+ absolutely_no_scalar_has_this_method: (t1) -> (a, b...) +}", toString(requireType("f")));
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "a_free_shape_can_turn_into_a_scalar_directly")
{
// We need egraphs to simplify the type of `out` here. CLI-114134
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
local function stringByteList(str)
local out = {}
for i = 1, #str do
table.insert(out, string.byte(str, i))
end
return table.concat(out, ",")
end
local x = stringByteList("xoo")
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "invariant_table_properties_means_instantiating_tables_in_call_is_unsound")
{
ScopedFastFlag sff[]{
{FFlag::LuauInstantiateInSubtyping, true},
};
CheckResult result = check(R"(
--!strict
local t = {}
function t.m<T>(x: T) return x end
local a : string = t.m("hi")
local b : number = t.m(5)
function f(x : { m : (number)->number })
x.m = function(x: number) return 1+x end
end
f(t) -- This shouldn't typecheck
local c : string = t.m("hi")
)");
if (FFlag::LuauSolverV2)
{
// FIXME. We really should be reporting just one error in this case. CLI-114509
LUAU_REQUIRE_ERROR_COUNT(3, result);
CHECK(get<TypePackMismatch>(result.errors[0]));
CHECK(get<TypeMismatch>(result.errors[1]));
CHECK(get<TypeMismatch>(result.errors[2]));
}
else
{
// TODO: test behavior is wrong until we can re-enable the covariant requirement for instantiation in subtyping
// LUAU_REQUIRE_ERRORS(result);
// CHECK_EQ(toString(result.errors[0]), R"(Type 't' could not be converted into '{| m: (number) -> number |}'
// caused by:
// Property 'm' is not compatible. Type '<a>(a) -> a' could not be converted into '(number) -> number'; different number of generic type
// parameters)");
// // this error message is not great since the underlying issue is that the context is invariant,
// and `(number) -> number` cannot be a subtype of `<a>(a) -> a`.
LUAU_REQUIRE_NO_ERRORS(result);
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "generic_table_instantiation_potential_regression")
{
CheckResult result = check(R"(
--!strict
function f(x)
x.p = 5
return x
end
local g : ({ p : number, q : string }) -> ({ p : number, r : boolean }) = f
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
{
const TypeMismatch* error = get<TypeMismatch>(result.errors[0]);
REQUIRE_MESSAGE(error, "Expected TypeMismatch but got " << result.errors[0]);
CHECK("({ p: number, q: string }) -> { p: number, r: boolean }" == toString(error->wantedType));
CHECK("({ p: number }) -> { p: number }" == toString(error->givenType));
}
else
{
const MissingProperties* error = get<MissingProperties>(result.errors[0]);
REQUIRE_MESSAGE(error != nullptr, "Expected MissingProperties but got " << result.errors[0]);
REQUIRE(error->properties.size() == 1);
CHECK_EQ("r", error->properties[0]);
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "setmetatable_has_a_side_effect")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local mt = {
__add = function(x, y)
return 123
end,
}
local foo = {}
setmetatable(foo, mt)
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("foo")) == "{ @metatable mt, foo }");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "tables_should_be_fully_populated")
{
CheckResult result = check(R"(
local t = {
x = 5 :: NonexistingTypeWhichEndsUpReturningAnErrorType,
y = 5
}
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
ToStringOptions opts;
opts.exhaustive = true;
CHECK_EQ("{ x: *error-type*, y: number }", toString(requireType("t"), opts));
}
TEST_CASE_FIXTURE(Fixture, "fuzz_table_indexer_unification_can_bound_owner_to_string")
{
CheckResult result = check(R"(
sin,_ = nil
_ = _[_.sin][_._][_][_]._
_[_] = _
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "fuzz_table_extra_prop_unification_can_bound_owner_to_string")
{
CheckResult result = check(R"(
l0,_ = nil
_ = _,_[_.n5]._[_][_][_]._
_._.foreach[_],_ = _[_],_._
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "fuzz_typelevel_promote_on_changed_table_type")
{
CheckResult result = check(R"(
_._,_ = nil
_ = _.foreach[_]._,_[_.n5]._[_.foreach][_][_]._
_ = _._
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "fuzz_table_unify_instantiated_table")
{
ScopedFastFlag sff[]{
{FFlag::LuauInstantiateInSubtyping, true},
};
CheckResult result = check(R"(
function _(...)
end
local function l0():typeof(_()()[_()()[_]])
end
return _[_()()[_]] <= _
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "fuzz_table_unify_instantiated_table_with_prop_realloc")
{
ScopedFastFlag sff[]{
{FFlag::LuauInstantiateInSubtyping, true},
};
CheckResult result = check(R"(
function _(l0,l0)
do
_ = _().n0
end
l0(_()._,_)
end
_(_,function(...)
end)
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "fuzz_table_unify_prop_realloc")
{
CheckResult result = check(R"(
n3,_ = nil
_ = _[""]._,_[l0][_._][{[_]=_,_=_,}][_G].number
_ = {_,}
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "when_augmenting_an_unsealed_table_with_an_indexer_apply_the_correct_scope_to_the_indexer_type")
{
CheckResult result = check(R"(
local events = {}
local mockObserveEvent = function(_, key, callback)
events[key] = callback
end
events['FriendshipNotifications']({
EventArgs = {
UserId2 = '2'
},
Type = 'FriendshipDeclined'
})
)");
TypeId ty = follow(requireType("events"));
const TableType* tt = get<TableType>(ty);
REQUIRE_MESSAGE(tt, "Expected table but got " << toString(ty, {true}));
CHECK(tt->props.empty());
REQUIRE(tt->indexer);
if (FFlag::LuauSolverV2)
CHECK("unknown" == toString(tt->indexer->indexType));
else
CHECK("string" == toString(tt->indexer->indexType));
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "dont_extend_unsealed_tables_in_rvalue_position")
{
CheckResult result = check(R"(
local testDictionary = {
FruitName = "Lemon",
FruitColor = "Yellow",
Sour = true
}
local print: any
print(testDictionary[""])
)");
TypeId ty = follow(requireType("testDictionary"));
const TableType* ttv = get<TableType>(ty);
REQUIRE(ttv);
CHECK(0 == ttv->props.count(""));
if (FFlag::LuauSolverV2)
LUAU_REQUIRE_ERROR_COUNT(1, result);
else
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "extend_unsealed_table_with_metatable")
{
CheckResult result = check(R"(
local T = setmetatable({}, {
__call = function(_, name: string?)
end,
})
T.for_ = "for_"
return T
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "top_table_type_is_isomorphic_to_empty_sealed_table_type")
{
CheckResult result = check(R"(
local None = newproxy(true)
local mt = getmetatable(None)
mt.__tostring = function()
return "Object.None"
end
function assign(...)
for index = 1, select("#", ...) do
local rest = select(index, ...)
if rest ~= nil and typeof(rest) == "table" then
for key, value in pairs(rest) do
end
end
end
end
)");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "luau-polyfill.Array.includes")
{
CheckResult result = check(R"(
type Array<T> = { [number]: T }
function indexOf<T>(array: Array<T>, searchElement: any, fromIndex: number?): number
return -1
end
return function<T>(array: Array<T>, searchElement: any, fromIndex: number?): boolean
return -1 ~= indexOf(array, searchElement, fromIndex)
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "certain_properties_of_table_literal_arguments_can_be_covariant")
{
CheckResult result = check(R"(
function f(a: {[string]: string | {any} | nil })
return a
end
local x = f({
title = "Feature.VirtualEvents.EnableNotificationsModalTitle",
body = "Feature.VirtualEvents.EnableNotificationsModalBody",
notNow = "Feature.VirtualEvents.NotNowButton",
getNotified = "Feature.VirtualEvents.GetNotifiedButton",
})
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "subproperties_can_also_be_covariantly_tested")
{
CheckResult result = check(R"(
type T = {
[string]: {[string]: (string | number)?}
}
function f(t: T)
return t
end
local x = f({
subprop={x="hello"}
})
local y = f({
subprop={x=41}
})
local z = f({
subprop={}
})
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "cyclic_shifted_tables")
{
CheckResult result = check(R"(
local function id<a>(x: a): a
return x
end
-- Remove name from cyclic table
local foo = id({})
foo.foo = id({})
foo.foo.foo = id({})
foo.foo.foo.foo = id({})
foo.foo.foo.foo.foo = foo
local almostFoo = id({})
almostFoo.foo = id({})
almostFoo.foo.foo = id({})
almostFoo.foo.foo.foo = id({})
almostFoo.foo.foo.foo.foo = almostFoo
-- Shift
almostFoo = almostFoo.foo.foo
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "cli_84607_missing_prop_in_array_or_dict")
{
ScopedFastFlag sff{FFlag::LuauFixIndexerSubtypingOrdering, true};
CheckResult result = check(R"(
type Thing = { name: string, prop: boolean }
local arrayOfThings : {Thing} = {
{ name = "a" }
}
local dictOfThings : {[string]: Thing} = {
a = { name = "a" }
}
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
if (FFlag::LuauSolverV2)
{
const TypeMismatch* err1 = get<TypeMismatch>(result.errors[0]);
REQUIRE_MESSAGE(err1, "Expected TypeMismatch but got " << result.errors[0]);
CHECK("{Thing}" == toString(err1->wantedType));
CHECK("{{ name: string }}" == toString(err1->givenType));
const TypeMismatch* err2 = get<TypeMismatch>(result.errors[1]);
REQUIRE_MESSAGE(err2, "Expected TypeMismatch but got " << result.errors[1]);
CHECK("{ [string]: Thing }" == toString(err2->wantedType));
CHECK("{ [string]: { name: string } }" == toString(err2->givenType));
}
else
{
TypeError& err1 = result.errors[0];
MissingProperties* error1 = get<MissingProperties>(err1);
REQUIRE(error1);
REQUIRE(error1->properties.size() == 1);
CHECK_EQ("prop", error1->properties[0]);
TypeError& err2 = result.errors[1];
TypeMismatch* mismatch = get<TypeMismatch>(err2);
REQUIRE(mismatch);
MissingProperties* error2 = get<MissingProperties>(*mismatch->error);
REQUIRE(error2);
REQUIRE(error2->properties.size() == 1);
CHECK_EQ("prop", error2->properties[0]);
}
}
TEST_CASE_FIXTURE(Fixture, "simple_method_definition")
{
CheckResult result = check(R"(
local T = {}
function T:m()
return 5
end
return T
)");
LUAU_REQUIRE_NO_ERRORS(result);
if (FFlag::LuauSolverV2)
CHECK_EQ("{ m: (unknown) -> number }", toString(getMainModule()->returnType, ToStringOptions{true}));
else
CHECK_EQ("{| m: <a>(a) -> number |}", toString(getMainModule()->returnType, ToStringOptions{true}));
}
TEST_CASE_FIXTURE(Fixture, "identify_all_problematic_table_fields")
{
ScopedFastFlag sff_LuauSolverV2{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
type T = {
a: number,
b: string,
c: boolean,
}
local a: T = {
a = "foo",
b = false,
c = 123,
}
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
std::string expected =
"Type '{ a: string, b: boolean, c: number }' could not be converted into 'T'; at [read \"a\"], string is not exactly number"
"\n\tat [read \"b\"], boolean is not exactly string"
"\n\tat [read \"c\"], number is not exactly boolean";
CHECK(toString(result.errors[0]) == expected);
}
TEST_CASE_FIXTURE(Fixture, "read_and_write_only_table_properties_are_unsupported")
{
ScopedFastFlag sff[] = {
{FFlag::LuauSolverV2, false},
};
CheckResult result = check(R"(
type W = {read x: number}
type X = {write x: boolean}
type Y = {read ["prop"]: boolean}
type Z = {write ["prop"]: string}
)");
LUAU_REQUIRE_ERROR_COUNT(4, result);
CHECK("read keyword is illegal here" == toString(result.errors[0]));
CHECK(Location{{1, 18}, {1, 22}} == result.errors[0].location);
CHECK("write keyword is illegal here" == toString(result.errors[1]));
CHECK(Location{{2, 18}, {2, 23}} == result.errors[1].location);
CHECK("read keyword is illegal here" == toString(result.errors[2]));
CHECK(Location{{4, 18}, {4, 22}} == result.errors[2].location);
CHECK("write keyword is illegal here" == toString(result.errors[3]));
CHECK(Location{{5, 18}, {5, 23}} == result.errors[3].location);
}
TEST_CASE_FIXTURE(Fixture, "read_ond_write_only_indexers_are_unsupported")
{
CheckResult result = check(R"(
type T = {read [string]: number}
type U = {write [string]: boolean}
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK("read keyword is illegal here" == toString(result.errors[0]));
CHECK(Location{{1, 18}, {1, 22}} == result.errors[0].location);
CHECK("write keyword is illegal here" == toString(result.errors[1]));
CHECK(Location{{2, 18}, {2, 23}} == result.errors[1].location);
}
TEST_CASE_FIXTURE(Fixture, "infer_write_property")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
function f(t)
t.y = 1
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("({ y: number }) -> ()" == toString(requireType("f")));
}
TEST_CASE_FIXTURE(Fixture, "table_subtyping_error_suppression")
{
CheckResult result = check(R"(
function one(tbl: {x: any}) end
function two(tbl: {x: string}) one(tbl) end -- ok, string <: any and any <: string
function three(tbl: {x: any, y: string}) end
function four(tbl: {x: string, y: string}) three(tbl) end -- ok, string <: any, any <: string, string <: string
function five(tbl: {x: string, y: number}) three(tbl) end -- error, string <: any, any <: string, but number </: string
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
// the new solver reports specifically the inner mismatch, rather than the whole table
// honestly not sure which of these is a better developer experience.
if (FFlag::LuauSolverV2)
{
CHECK_EQ(*tm->wantedType, *builtinTypes->stringType);
CHECK_EQ(*tm->givenType, *builtinTypes->numberType);
}
else
{
CHECK_EQ("{| x: any, y: string |}", toString(tm->wantedType));
CHECK_EQ("{| x: string, y: number |}", toString(tm->givenType));
}
}
TEST_CASE_FIXTURE(Fixture, "write_to_read_only_property")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
function f(t: {read x: number})
t.x = 5
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK("Property x of table '{ read x: number }' is read-only" == toString(result.errors[0]));
PropertyAccessViolation* pav = get<PropertyAccessViolation>(result.errors[0]);
REQUIRE(pav);
CHECK("{ read x: number }" == toString(pav->table, {true}));
CHECK("x" == pav->key);
CHECK(PropertyAccessViolation::CannotWrite == pav->context);
}
TEST_CASE_FIXTURE(Fixture, "write_to_unusually_named_read_only_property")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
function f(t: {read ["hello world"]: number})
t["hello world"] = 5
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK("Property \"hello world\" of table '{ read [\"hello world\"]: number }' is read-only" == toString(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "write_annotations_are_unsupported_even_with_the_new_solver")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
function f(t: {write foo: number})
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK("write keyword is illegal here" == toString(result.errors[0]));
CHECK(Location{{1, 23}, {1, 28}} == result.errors[0].location);
}
TEST_CASE_FIXTURE(Fixture, "read_and_write_only_table_properties_are_unsupported")
{
ScopedFastFlag sff[] = {{FFlag::LuauSolverV2, false}};
CheckResult result = check(R"(
type W = {read x: number}
type X = {write x: boolean}
type Y = {read ["prop"]: boolean}
type Z = {write ["prop"]: string}
)");
LUAU_REQUIRE_ERROR_COUNT(4, result);
CHECK("read keyword is illegal here" == toString(result.errors[0]));
CHECK(Location{{1, 18}, {1, 22}} == result.errors[0].location);
CHECK("write keyword is illegal here" == toString(result.errors[1]));
CHECK(Location{{2, 18}, {2, 23}} == result.errors[1].location);
CHECK("read keyword is illegal here" == toString(result.errors[2]));
CHECK(Location{{4, 18}, {4, 22}} == result.errors[2].location);
CHECK("write keyword is illegal here" == toString(result.errors[3]));
CHECK(Location{{5, 18}, {5, 23}} == result.errors[3].location);
}
TEST_CASE_FIXTURE(Fixture, "read_ond_write_only_indexers_are_unsupported")
{
ScopedFastFlag sff[] = {{FFlag::LuauSolverV2, false}};
CheckResult result = check(R"(
type T = {read [string]: number}
type U = {write [string]: boolean}
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK("read keyword is illegal here" == toString(result.errors[0]));
CHECK(Location{{1, 18}, {1, 22}} == result.errors[0].location);
CHECK("write keyword is illegal here" == toString(result.errors[1]));
CHECK(Location{{2, 18}, {2, 23}} == result.errors[1].location);
}
TEST_CASE_FIXTURE(Fixture, "table_writes_introduce_write_properties")
{
if (!FFlag::LuauSolverV2)
return;
ScopedFastFlag sff[] = {{FFlag::LuauSolverV2, true}};
CheckResult result = check(R"(
function oc(player, speaker)
local head = speaker.Character:FindFirstChild('Head')
speaker.Character = player[1].Character
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(
"<a, b...>({{ read Character: t1 }}, { Character: t1 }) -> () "
"where "
"t1 = { read FindFirstChild: (t1, string) -> (a, b...) }" == toString(requireType("oc"))
);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "tables_can_have_both_metatables_and_indexers")
{
CheckResult result = check(R"(
local a = {}
a[1] = 5
a[2] = 17
local t = {}
setmetatable(a, t)
local c = a[1]
print(a[1])
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("number" == toString(requireType("c")));
}
TEST_CASE_FIXTURE(Fixture, "refined_thing_can_be_an_array")
{
CheckResult result = check(R"(
function foo(x, y)
if x then
return x[1]
else
return y
end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("<a>({a}, a) -> a" == toString(requireType("foo")));
}
TEST_CASE_FIXTURE(Fixture, "parameter_was_set_an_indexer_and_bounded_by_string")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
function f(t)
local s: string = t
t[5] = 7
end
)");
LUAU_REQUIRE_ERROR_COUNT(3, result);
CHECK_EQ("Parameter 't' has been reduced to never. This function is not callable with any possible value.", toString(result.errors[0]));
CHECK_EQ("Parameter 't' is required to be a subtype of 'string' here.", toString(result.errors[1]));
CHECK_EQ("Parameter 't' is required to be a subtype of '{number}' here.", toString(result.errors[2]));
}
TEST_CASE_FIXTURE(Fixture, "parameter_was_set_an_indexer_and_bounded_by_another_parameter")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
function f(t1, t2)
t1[5] = 7 -- 't1 <: {number}
t2 = t1 -- 't1 <: 't2
t1[5] = 7 -- 't1 <: {number}
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
// FIXME CLI-114134. We need to simplify types more consistently.
CHECK_EQ("(unknown & {number} & {number}, unknown) -> ()", toString(requireType("f")));
}
TEST_CASE_FIXTURE(Fixture, "write_to_union_property_not_all_present")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
type Animal = {tag: "Cat", meow: boolean} | {tag: "Dog", woof: boolean}
function f(t: Animal)
t.tag = "Dog"
end
)");
// this should fail because `t` may be a `Cat` variant, and `"Dog"` is not a subtype of `"Cat"`.
LUAU_REQUIRE_ERRORS(result);
CannotAssignToNever* tm = get<CannotAssignToNever>(result.errors[0]);
REQUIRE(tm);
CHECK(builtinTypes->stringType == tm->rhsType);
CHECK(CannotAssignToNever::Reason::PropertyNarrowed == tm->reason);
REQUIRE(tm->cause.size() == 2);
CHECK("\"Cat\"" == toString(tm->cause[0]));
CHECK("\"Dog\"" == toString(tm->cause[1]));
}
TEST_CASE_FIXTURE(Fixture, "mymovie_read_write_tables_bug")
{
CheckResult result = check(R"(
type MockedResponseBody = string | (() -> MockedResponseBody)
type MockedResponse = { type: 'body', body: MockedResponseBody } | { type: 'error' }
local function mockedResponseToHttpResponse(mockedResponse: MockedResponse)
assert(mockedResponse.type == 'body', 'Mocked response is not a body')
if typeof(mockedResponse.body) == 'string' then
else
return mockedResponseToHttpResponse(mockedResponse)
end
end
)");
// we're primarily interested in knowing that this does not crash.
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "mymovie_read_write_tables_bug_2")
{
CheckResult result = check(R"(
type MockedResponse = { type: 'body' } | { type: 'error' }
local function mockedResponseToHttpResponse(mockedResponse: MockedResponse)
assert(mockedResponse.type == 'body', 'Mocked response is not a body')
if typeof(mockedResponse.body) == 'string' then
elseif typeof(mockedResponse.body) == 'table' then
else
return mockedResponseToHttpResponse(mockedResponse)
end
end
)");
// we're primarily interested in knowing that this does not crash.
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "instantiated_metatable_frozen_table_clone_mutation")
{
fileResolver.source["game/worker"] = R"(
type WorkerImpl<T..., R...> = {
destroy: (self: Worker<T..., R...>) -> boolean,
}
type WorkerProps = { id: number }
export type Worker<T..., R...> = typeof(setmetatable({} :: WorkerProps, {} :: WorkerImpl<T..., R...>))
return {}
)";
fileResolver.source["game/library"] = R"(
local Worker = require(game.worker)
export type Worker<T..., R...> = Worker.Worker<T..., R...>
return {}
)";
CheckResult result = frontend.check("game/library");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "setprop_on_a_mutating_local_in_both_loops_and_functions")
{
CheckResult result = check(R"(
local _ = 5
while (_) do
_._ = nil
function _()
_ = nil
end
end
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "cant_index_this")
{
CheckResult result = check(R"(
local a: number = 9
a[18] = "tomfoolery"
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
NotATable* notATable = get<NotATable>(result.errors[0]);
REQUIRE(notATable);
CHECK("number" == toString(notATable->ty));
}
TEST_CASE_FIXTURE(Fixture, "setindexer_multiple_tables_intersection")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
local function f(t: { [string]: number } & { [thread]: boolean }, x)
local k = "a"
t[k] = x
end
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK("({ [string]: number } & { [thread]: boolean }, never) -> ()" == toString(requireType("f")));
}
TEST_CASE_FIXTURE(Fixture, "insert_a_and_f_of_a_into_table_res_in_a_loop")
{
CheckResult result = check(R"(
local function f(t)
local res = {}
for k, a in t do
res[k] = f(a)
res[k] = a
end
end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(get<FunctionExitsWithoutReturning>(result.errors[0]));
}
else
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "ipairs_adds_an_unbounded_indexer")
{
CheckResult result = check(R"(
--!strict
local a = {}
ipairs(a)
)");
// The old solver erroneously leaves a free type dangling here. The new
// solver does better.
if (FFlag::LuauSolverV2)
CHECK("{unknown}" == toString(requireType("a"), {true}));
else
CHECK("{a}" == toString(requireType("a"), {true}));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "index_results_compare_to_nil")
{
CheckResult result = check(R"(
--!strict
function foo(tbl: {number})
if tbl[2] == nil then
print("foo")
end
if tbl[3] ~= nil then
print("bar")
end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "fuzzer_normalization_preserves_tbl_scopes")
{
CheckResult result = check(R"(
Module 'l0':
do end
Module 'l1':
local _ = {n0=nil,}
if if nil then _ then
if nil and (_)._ ~= (_)._ then
do end
while _ do
_ = _
do end
end
end
do end
end
local l0
while _ do
_ = nil
(_[_])._ %= `{# _}{bit32.extract(# _,1)}`
end
)");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "table_literal_inference_assert")
{
CheckResult result = check(R"(
local buttons = {
buttons = {};
}
buttons.Button = {
call = nil;
lightParts = nil;
litPropertyOverrides = nil;
model = nil;
pivot = nil;
unlitPropertyOverrides = nil;
}
buttons.Button.__index = buttons.Button
local lightFuncs: { (self: types.Button, lit: boolean) -> nil } = {
['\x00'] = function(self: types.Button, lit: boolean)
end;
}
)");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "metatable_table_assertion_crash")
{
CheckResult result = check(R"(
local NexusInstance = {}
function NexusInstance:__InitMetaMethods(): ()
local Metatable = {}
local OriginalIndexTable = getmetatable(self).__index
setmetatable(self, Metatable)
Metatable.__newindex = function(_, Index: string, Value: any): ()
--Return if the new and old values are the same.
if self[Index] == Value then
end
end
end
)");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "table::insert_should_not_report_errors_when_correct_overload_is_picked")
{
CheckResult result = check(R"(
type cs = { GetTagged : (cs, string) -> any}
local destroyQueue: {any} = {} -- pair of (time, coin)
local tick : () -> any
local CS : cs
local DESTROY_DELAY
local function SpawnCoin()
local spawns = CS:GetTagged('CoinSpawner')
local n : any
local StartPos = spawns[n].CFrame
local Coin = script.Coin:Clone()
Coin.CFrame = StartPos
Coin.Parent = workspace.Coins
table.insert(destroyQueue, {tick() + DESTROY_DELAY, Coin})
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "indexing_branching_table")
{
ScopedFastFlag sff{FFlag::LuauAcceptIndexingTableUnionsIntersections, true};
CheckResult result = check(R"(
local test = if true then { "meow", "woof" } else { 4, 81 }
local test2 = test[1]
)");
LUAU_REQUIRE_NO_ERRORS(result);
// unfortunate type duplication in the union
if (FFlag::LuauSolverV2)
CHECK("number | string | string" == toString(requireType("test2")));
else
CHECK("number | string" == toString(requireType("test2")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "indexing_branching_table2")
{
ScopedFastFlag sff{FFlag::LuauAcceptIndexingTableUnionsIntersections, true};
CheckResult result = check(R"(
local test = if true then {} else {}
local test2 = test[1]
)");
LUAU_REQUIRE_NO_ERRORS(result);
// unfortunate type duplication in the union
if (FFlag::LuauSolverV2)
CHECK("unknown | unknown" == toString(requireType("test2")));
else
CHECK("any" == toString(requireType("test2")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "length_of_array_is_number")
{
CheckResult result = check(R"(
local function TestFunc(ranges: {number}): number
if true then
ranges = {} :: {number}
end
local numRanges: number = #ranges
return numRanges
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_SUITE_END();