// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #pragma once #include "Luau/AssemblyBuilderX64.h" #include "EmitCommon.h" #include "lobject.h" #include "ltm.h" // MS x64 ABI reminder: // Arguments: rcx, rdx, r8, r9 ('overlapped' with xmm0-xmm3) // Return: rax, xmm0 // Nonvolatile: r12-r15, rdi, rsi, rbx, rbp // SIMD: only xmm6-xmm15 are non-volatile, all ymm upper parts are volatile // AMD64 ABI reminder: // Arguments: rdi, rsi, rdx, rcx, r8, r9 (xmm0-xmm7) // Return: rax, rdx, xmm0, xmm1 // Nonvolatile: r12-r15, rbx, rbp // SIMD: all volatile namespace Luau { namespace CodeGen { enum class IrCondition : uint8_t; struct NativeState; struct IrOp; namespace X64 { struct IrRegAllocX64; constexpr uint32_t kFunctionAlignment = 32; // Data that is very common to access is placed in non-volatile registers constexpr RegisterX64 rState = r15; // lua_State* L constexpr RegisterX64 rBase = r14; // StkId base constexpr RegisterX64 rNativeContext = r13; // NativeContext* context constexpr RegisterX64 rConstants = r12; // TValue* k constexpr unsigned kExtraLocals = 3; // Number of 8 byte slots available for specialized local variables specified below constexpr unsigned kSpillSlots = 13; // Number of 8 byte slots available for register allocator to spill data into static_assert((kExtraLocals + kSpillSlots) * 8 % 16 == 0, "locals have to preserve 16 byte alignment"); constexpr uint8_t kWindowsFirstNonVolXmmReg = 6; constexpr uint8_t kWindowsUsableXmmRegs = 10; // Some xmm regs are non-volatile, we have to balance how many we want to use/preserve constexpr uint8_t kSystemVUsableXmmRegs = 16; // All xmm regs are volatile inline uint8_t getXmmRegisterCount(ABIX64 abi) { return abi == ABIX64::SystemV ? kSystemVUsableXmmRegs : kWindowsUsableXmmRegs; } // Native code is as stackless as the interpreter, so we can place some data on the stack once and have it accessible at any point // Stack is separated into sections for different data. See CodeGenX64.cpp for layout overview constexpr unsigned kStackAlign = 8; // Bytes we need to align the stack for non-vol xmm register storage constexpr unsigned kStackLocalStorage = 8 * kExtraLocals; constexpr unsigned kStackSpillStorage = 8 * kSpillSlots; constexpr unsigned kStackExtraArgumentStorage = 2 * 8; // Bytes for 5th and 6th function call arguments used under Windows ABI constexpr unsigned kStackRegHomeStorage = 4 * 8; // Register 'home' locations that can be used by callees under Windows ABI inline unsigned getNonVolXmmStorageSize(ABIX64 abi, uint8_t xmmRegCount) { if (abi == ABIX64::SystemV) return 0; // First 6 are volatile if (xmmRegCount <= kWindowsFirstNonVolXmmReg) return 0; CODEGEN_ASSERT(xmmRegCount <= 16); return (xmmRegCount - kWindowsFirstNonVolXmmReg) * 16; } // Useful offsets to specific parts constexpr unsigned kStackOffsetToLocals = kStackExtraArgumentStorage + kStackRegHomeStorage; constexpr unsigned kStackOffsetToSpillSlots = kStackOffsetToLocals + kStackLocalStorage; inline unsigned getFullStackSize(ABIX64 abi, uint8_t xmmRegCount) { return kStackOffsetToSpillSlots + kStackSpillStorage + getNonVolXmmStorageSize(abi, xmmRegCount) + kStackAlign; } constexpr OperandX64 sClosure = qword[rsp + kStackOffsetToLocals + 0]; // Closure* cl constexpr OperandX64 sCode = qword[rsp + kStackOffsetToLocals + 8]; // Instruction* code constexpr OperandX64 sTemporarySlot = addr[rsp + kStackOffsetToLocals + 16]; constexpr OperandX64 sSpillArea = addr[rsp + kStackOffsetToSpillSlots]; inline OperandX64 luauReg(int ri) { return xmmword[rBase + ri * sizeof(TValue)]; } inline OperandX64 luauRegAddress(int ri) { return addr[rBase + ri * sizeof(TValue)]; } inline OperandX64 luauRegValue(int ri) { return qword[rBase + ri * sizeof(TValue) + offsetof(TValue, value)]; } inline OperandX64 luauRegTag(int ri) { return dword[rBase + ri * sizeof(TValue) + offsetof(TValue, tt)]; } inline OperandX64 luauRegExtra(int ri) { return dword[rBase + ri * sizeof(TValue) + offsetof(TValue, extra)]; } inline OperandX64 luauRegValueInt(int ri) { return dword[rBase + ri * sizeof(TValue) + offsetof(TValue, value)]; } inline OperandX64 luauRegValueVector(int ri, int index) { return dword[rBase + ri * sizeof(TValue) + offsetof(TValue, value) + (sizeof(float) * index)]; } inline OperandX64 luauConstant(int ki) { return xmmword[rConstants + ki * sizeof(TValue)]; } inline OperandX64 luauConstantAddress(int ki) { return addr[rConstants + ki * sizeof(TValue)]; } inline OperandX64 luauConstantTag(int ki) { return dword[rConstants + ki * sizeof(TValue) + offsetof(TValue, tt)]; } inline OperandX64 luauConstantValue(int ki) { return qword[rConstants + ki * sizeof(TValue) + offsetof(TValue, value)]; } inline OperandX64 luauNodeKeyValue(RegisterX64 node) { return qword[node + offsetof(LuaNode, key) + offsetof(TKey, value)]; } // Note: tag has dirty upper bits inline OperandX64 luauNodeKeyTag(RegisterX64 node) { return dword[node + offsetof(LuaNode, key) + kOffsetOfTKeyTagNext]; } inline void setLuauReg(AssemblyBuilderX64& build, RegisterX64 tmp, int ri, OperandX64 op) { CODEGEN_ASSERT(op.cat == CategoryX64::mem); build.vmovups(tmp, op); build.vmovups(luauReg(ri), tmp); } inline void jumpIfTagIs(AssemblyBuilderX64& build, int ri, lua_Type tag, Label& label) { build.cmp(luauRegTag(ri), tag); build.jcc(ConditionX64::Equal, label); } inline void jumpIfTagIsNot(AssemblyBuilderX64& build, int ri, lua_Type tag, Label& label) { build.cmp(luauRegTag(ri), tag); build.jcc(ConditionX64::NotEqual, label); } // Note: fallthrough label should be placed after this condition inline void jumpIfFalsy(AssemblyBuilderX64& build, int ri, Label& target, Label& fallthrough) { jumpIfTagIs(build, ri, LUA_TNIL, target); // false if nil jumpIfTagIsNot(build, ri, LUA_TBOOLEAN, fallthrough); // true if not nil or boolean build.cmp(luauRegValueInt(ri), 0); build.jcc(ConditionX64::Equal, target); // true if boolean value is 'true' } // Note: fallthrough label should be placed after this condition inline void jumpIfTruthy(AssemblyBuilderX64& build, int ri, Label& target, Label& fallthrough) { jumpIfTagIs(build, ri, LUA_TNIL, fallthrough); // false if nil jumpIfTagIsNot(build, ri, LUA_TBOOLEAN, target); // true if not nil or boolean build.cmp(luauRegValueInt(ri), 0); build.jcc(ConditionX64::NotEqual, target); // true if boolean value is 'true' } void jumpOnNumberCmp(AssemblyBuilderX64& build, RegisterX64 tmp, OperandX64 lhs, OperandX64 rhs, IrCondition cond, Label& label); ConditionX64 getConditionInt(IrCondition cond); void getTableNodeAtCachedSlot(AssemblyBuilderX64& build, RegisterX64 tmp, RegisterX64 node, RegisterX64 table, int pcpos); void convertNumberToIndexOrJump(AssemblyBuilderX64& build, RegisterX64 tmp, RegisterX64 numd, RegisterX64 numi, Label& label); void callArithHelper(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, OperandX64 b, OperandX64 c, TMS tm); void callLengthHelper(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, int rb); void callGetTable(IrRegAllocX64& regs, AssemblyBuilderX64& build, int rb, OperandX64 c, int ra); void callSetTable(IrRegAllocX64& regs, AssemblyBuilderX64& build, int rb, OperandX64 c, int ra); void checkObjectBarrierConditions(AssemblyBuilderX64& build, RegisterX64 tmp, RegisterX64 object, IrOp ra, int ratag, Label& skip); void callBarrierObject(IrRegAllocX64& regs, AssemblyBuilderX64& build, RegisterX64 object, IrOp objectOp, IrOp ra, int ratag); void callBarrierTableFast(IrRegAllocX64& regs, AssemblyBuilderX64& build, RegisterX64 table, IrOp tableOp); void callStepGc(IrRegAllocX64& regs, AssemblyBuilderX64& build); void emitClearNativeFlag(AssemblyBuilderX64& build); void emitExit(AssemblyBuilderX64& build, bool continueInVm); void emitUpdateBase(AssemblyBuilderX64& build); void emitInterrupt(AssemblyBuilderX64& build); void emitFallback(IrRegAllocX64& regs, AssemblyBuilderX64& build, int offset, int pcpos); void emitUpdatePcForExit(AssemblyBuilderX64& build); void emitReturn(AssemblyBuilderX64& build, ModuleHelpers& helpers); } // namespace X64 } // namespace CodeGen } // namespace Luau