// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #include "Luau/TypeVar.h" #include "Luau/BuiltinDefinitions.h" #include "Luau/Common.h" #include "Luau/DenseHash.h" #include "Luau/Error.h" #include "Luau/RecursionCounter.h" #include "Luau/StringUtils.h" #include "Luau/ToString.h" #include "Luau/TypeInfer.h" #include "Luau/TypePack.h" #include "Luau/VisitTypeVar.h" #include #include #include #include #include LUAU_FASTFLAG(DebugLuauFreezeArena) LUAU_FASTINTVARIABLE(LuauTypeMaximumStringifierLength, 500) LUAU_FASTINTVARIABLE(LuauTableTypeMaximumStringifierLength, 0) LUAU_FASTINT(LuauTypeInferRecursionLimit) LUAU_FASTFLAG(LuauLengthOnCompositeType) LUAU_FASTFLAGVARIABLE(LuauMetatableAreEqualRecursion, false) LUAU_FASTFLAGVARIABLE(LuauRefactorTypeVarQuestions, false) LUAU_FASTFLAG(LuauErrorRecoveryType) LUAU_FASTFLAG(LuauUnionTagMatchFix) LUAU_FASTFLAG(LuauDiscriminableUnions2) namespace Luau { std::optional> magicFunctionFormat( TypeChecker& typechecker, const ScopePtr& scope, const AstExprCall& expr, ExprResult exprResult); TypeId follow(TypeId t) { return follow(t, [](TypeId t) { return t; }); } TypeId follow(TypeId t, std::function mapper) { auto advance = [&mapper](TypeId ty) -> std::optional { if (auto btv = get>(mapper(ty))) return btv->boundTo; else if (auto ttv = get(mapper(ty))) return ttv->boundTo; else return std::nullopt; }; auto force = [&mapper](TypeId ty) { if (auto ltv = get_if(&mapper(ty)->ty)) { TypeId res = ltv->thunk(); if (get(res)) throw std::runtime_error("Lazy TypeVar cannot resolve to another Lazy TypeVar"); *asMutable(ty) = BoundTypeVar(res); } }; force(t); TypeId cycleTester = t; // Null once we've determined that there is no cycle if (auto a = advance(cycleTester)) cycleTester = *a; else return t; while (true) { force(t); auto a1 = advance(t); if (a1) t = *a1; else return t; if (nullptr != cycleTester) { auto a2 = advance(cycleTester); if (a2) { auto a3 = advance(*a2); if (a3) cycleTester = *a3; else cycleTester = nullptr; } else cycleTester = nullptr; if (t == cycleTester) throw std::runtime_error("Luau::follow detected a TypeVar cycle!!"); } } } std::vector flattenIntersection(TypeId ty) { if (!get(follow(ty))) return {ty}; std::unordered_set seen; std::deque queue{ty}; std::vector result; while (!queue.empty()) { TypeId current = follow(queue.front()); queue.pop_front(); if (seen.find(current) != seen.end()) continue; seen.insert(current); if (auto itv = get(current)) { for (TypeId ty : itv->parts) queue.push_back(ty); } else result.push_back(current); } return result; } bool isPrim(TypeId ty, PrimitiveTypeVar::Type primType) { auto p = get(follow(ty)); return p && p->type == primType; } bool isNil(TypeId ty) { return isPrim(ty, PrimitiveTypeVar::NilType); } bool isBoolean(TypeId ty) { if (FFlag::LuauRefactorTypeVarQuestions) { if (isPrim(ty, PrimitiveTypeVar::Boolean) || get(get(follow(ty)))) return true; if (auto utv = get(follow(ty))) return std::all_of(begin(utv), end(utv), isBoolean); return false; } else { return isPrim(ty, PrimitiveTypeVar::Boolean); } } bool isNumber(TypeId ty) { return isPrim(ty, PrimitiveTypeVar::Number); } bool isString(TypeId ty) { if (FFlag::LuauRefactorTypeVarQuestions) { if (isPrim(ty, PrimitiveTypeVar::String) || get(get(follow(ty)))) return true; if (auto utv = get(follow(ty))) return std::all_of(begin(utv), end(utv), isString); return false; } else { return isPrim(ty, PrimitiveTypeVar::String); } } bool isThread(TypeId ty) { return isPrim(ty, PrimitiveTypeVar::Thread); } bool isOptional(TypeId ty) { if (isNil(ty)) return true; if (FFlag::LuauRefactorTypeVarQuestions) { auto utv = get(follow(ty)); if (!utv) return false; return std::any_of(begin(utv), end(utv), isNil); } else { std::unordered_set seen; std::deque queue{ty}; while (!queue.empty()) { TypeId current = follow(queue.front()); queue.pop_front(); if (seen.count(current)) continue; seen.insert(current); if (isNil(current)) return true; if (auto u = get(current)) { for (TypeId option : u->options) { if (isNil(option)) return true; queue.push_back(option); } } } return false; } } bool isTableIntersection(TypeId ty) { if (!get(follow(ty))) return false; std::vector parts = flattenIntersection(ty); return std::all_of(parts.begin(), parts.end(), getTableType); } bool isOverloadedFunction(TypeId ty) { if (!get(follow(ty))) return false; auto isFunction = [](TypeId part) -> bool { return get(part); }; std::vector parts = flattenIntersection(ty); return std::all_of(parts.begin(), parts.end(), isFunction); } std::optional getMetatable(TypeId type) { if (const MetatableTypeVar* mtType = get(type)) return mtType->metatable; else if (const ClassTypeVar* classType = get(type)) return classType->metatable; else if (FFlag::LuauRefactorTypeVarQuestions) { if (isString(type)) { auto ptv = get(getSingletonTypes().stringType); LUAU_ASSERT(ptv && ptv->metatable); return ptv->metatable; } else return std::nullopt; } else { if (const PrimitiveTypeVar* primitiveType = get(type); primitiveType && primitiveType->metatable) { LUAU_ASSERT(primitiveType->type == PrimitiveTypeVar::String); return primitiveType->metatable; } else return std::nullopt; } } const TableTypeVar* getTableType(TypeId type) { if (FFlag::LuauUnionTagMatchFix) type = follow(type); if (const TableTypeVar* ttv = get(type)) return ttv; else if (const MetatableTypeVar* mtv = get(type)) return get(FFlag::LuauUnionTagMatchFix ? follow(mtv->table) : mtv->table); else return nullptr; } TableTypeVar* getMutableTableType(TypeId type) { return const_cast(getTableType(type)); } const std::string* getName(TypeId type) { type = follow(type); if (auto mtv = get(type)) { if (mtv->syntheticName) return &*mtv->syntheticName; type = FFlag::LuauUnionTagMatchFix ? follow(mtv->table) : mtv->table; } if (auto ttv = get(type)) { if (ttv->name) return &*ttv->name; if (ttv->syntheticName) return &*ttv->syntheticName; } return nullptr; } bool isSubset(const UnionTypeVar& super, const UnionTypeVar& sub) { std::unordered_set superTypes; for (TypeId id : super.options) superTypes.insert(id); for (TypeId id : sub.options) { if (superTypes.find(id) == superTypes.end()) return false; } return true; } // When typechecking an assignment `x = e`, we typecheck `x:T` and `e:U`, // then instantiate U if `isGeneric(U)` is true, and `maybeGeneric(T)` is false. bool isGeneric(TypeId ty) { ty = follow(ty); if (auto ftv = get(ty)) return ftv->generics.size() > 0 || ftv->genericPacks.size() > 0; else // TODO: recurse on type synonyms CLI-39914 // TODO: recurse on table types CLI-39914 return false; } bool maybeGeneric(TypeId ty) { ty = follow(ty); if (get(ty)) return true; else if (auto ttv = get(ty)) { // TODO: recurse on table types CLI-39914 (void)ttv; return true; } else return isGeneric(ty); } bool maybeSingleton(TypeId ty) { ty = follow(ty); if (get(ty)) return true; if (const UnionTypeVar* utv = get(ty)) for (TypeId option : utv) if (get(follow(option))) return true; return false; } bool hasLength(TypeId ty, DenseHashSet& seen, int* recursionCount) { LUAU_ASSERT(FFlag::LuauLengthOnCompositeType); RecursionLimiter _rl(recursionCount, FInt::LuauTypeInferRecursionLimit); ty = follow(ty); if (seen.contains(ty)) return true; bool isStr = FFlag::LuauDiscriminableUnions2 ? isString(ty) : isPrim(ty, PrimitiveTypeVar::String); if (isStr || get(ty) || get(ty) || get(ty)) return true; if (auto uty = get(ty)) { seen.insert(ty); for (TypeId part : uty->options) { if (!hasLength(part, seen, recursionCount)) return false; } return true; } if (auto ity = get(ty)) { seen.insert(ty); for (TypeId part : ity->parts) { if (hasLength(part, seen, recursionCount)) return true; } return false; } return false; } FunctionTypeVar::FunctionTypeVar(TypePackId argTypes, TypePackId retType, std::optional defn, bool hasSelf) : argTypes(argTypes) , retType(retType) , definition(std::move(defn)) , hasSelf(hasSelf) { } FunctionTypeVar::FunctionTypeVar(TypeLevel level, TypePackId argTypes, TypePackId retType, std::optional defn, bool hasSelf) : level(level) , argTypes(argTypes) , retType(retType) , definition(std::move(defn)) , hasSelf(hasSelf) { } FunctionTypeVar::FunctionTypeVar(std::vector generics, std::vector genericPacks, TypePackId argTypes, TypePackId retType, std::optional defn, bool hasSelf) : generics(generics) , genericPacks(genericPacks) , argTypes(argTypes) , retType(retType) , definition(std::move(defn)) , hasSelf(hasSelf) { } FunctionTypeVar::FunctionTypeVar(TypeLevel level, std::vector generics, std::vector genericPacks, TypePackId argTypes, TypePackId retType, std::optional defn, bool hasSelf) : level(level) , generics(generics) , genericPacks(genericPacks) , argTypes(argTypes) , retType(retType) , definition(std::move(defn)) , hasSelf(hasSelf) { } TableTypeVar::TableTypeVar(TableState state, TypeLevel level) : state(state) , level(level) { } TableTypeVar::TableTypeVar(const Props& props, const std::optional& indexer, TypeLevel level, TableState state) : props(props) , indexer(indexer) , state(state) , level(level) { } // Test TypeVars for equivalence // More complex than we'd like because TypeVars can self-reference. bool areSeen(SeenSet& seen, const void* lhs, const void* rhs) { if (lhs == rhs) return true; auto p = std::make_pair(const_cast(lhs), const_cast(rhs)); if (seen.find(p) != seen.end()) return true; seen.insert(p); return false; } bool areEqual(SeenSet& seen, const FunctionTypeVar& lhs, const FunctionTypeVar& rhs) { if (areSeen(seen, &lhs, &rhs)) return true; // TODO: check generics CLI-39915 if (!areEqual(seen, *lhs.argTypes, *rhs.argTypes)) return false; if (!areEqual(seen, *lhs.retType, *rhs.retType)) return false; return true; } bool areEqual(SeenSet& seen, const TableTypeVar& lhs, const TableTypeVar& rhs) { if (areSeen(seen, &lhs, &rhs)) return true; if (lhs.state != rhs.state) return false; if (lhs.props.size() != rhs.props.size()) return false; if (bool(lhs.indexer) != bool(rhs.indexer)) return false; if (lhs.indexer && rhs.indexer) { if (!areEqual(seen, *lhs.indexer->indexType, *rhs.indexer->indexType)) return false; if (!areEqual(seen, *lhs.indexer->indexResultType, *rhs.indexer->indexResultType)) return false; } auto l = lhs.props.begin(); auto r = rhs.props.begin(); while (l != lhs.props.end()) { if (l->first != r->first) return false; if (!areEqual(seen, *l->second.type, *r->second.type)) return false; ++l; ++r; } return true; } static bool areEqual(SeenSet& seen, const MetatableTypeVar& lhs, const MetatableTypeVar& rhs) { if (FFlag::LuauMetatableAreEqualRecursion && areSeen(seen, &lhs, &rhs)) return true; return areEqual(seen, *lhs.table, *rhs.table) && areEqual(seen, *lhs.metatable, *rhs.metatable); } bool areEqual(SeenSet& seen, const TypeVar& lhs, const TypeVar& rhs) { if (auto bound = get_if(&lhs.ty)) return areEqual(seen, *bound->boundTo, rhs); if (auto bound = get_if(&rhs.ty)) return areEqual(seen, lhs, *bound->boundTo); if (lhs.ty.index() != rhs.ty.index()) return false; { const FreeTypeVar* lf = get_if(&lhs.ty); const FreeTypeVar* rf = get_if(&rhs.ty); if (lf && rf) return lf->index == rf->index; } { const GenericTypeVar* lg = get_if(&lhs.ty); const GenericTypeVar* rg = get_if(&rhs.ty); if (lg && rg) return lg->index == rg->index; } { const PrimitiveTypeVar* lp = get_if(&lhs.ty); const PrimitiveTypeVar* rp = get_if(&rhs.ty); if (lp && rp) return lp->type == rp->type; } { const GenericTypeVar* lg = get_if(&lhs.ty); const GenericTypeVar* rg = get_if(&rhs.ty); if (lg && rg) return lg->index == rg->index; } { const ErrorTypeVar* le = get_if(&lhs.ty); const ErrorTypeVar* re = get_if(&rhs.ty); if (le && re) return le->index == re->index; } { const FunctionTypeVar* lf = get_if(&lhs.ty); const FunctionTypeVar* rf = get_if(&rhs.ty); if (lf && rf) return areEqual(seen, *lf, *rf); } { const TableTypeVar* lt = get_if(&lhs.ty); const TableTypeVar* rt = get_if(&rhs.ty); if (lt && rt) return areEqual(seen, *lt, *rt); } { const MetatableTypeVar* lmt = get_if(&lhs.ty); const MetatableTypeVar* rmt = get_if(&rhs.ty); if (lmt && rmt) return areEqual(seen, *lmt, *rmt); } if (get_if(&lhs.ty) && get_if(&rhs.ty)) return true; return false; } TypeVar* asMutable(TypeId ty) { return const_cast(ty); } bool TypeVar::operator==(const TypeVar& rhs) const { SeenSet seen; return areEqual(seen, *this, rhs); } bool TypeVar::operator!=(const TypeVar& rhs) const { SeenSet seen; return !areEqual(seen, *this, rhs); } TypeVar& TypeVar::operator=(const TypeVariant& rhs) { ty = rhs; return *this; } TypeVar& TypeVar::operator=(TypeVariant&& rhs) { ty = std::move(rhs); return *this; } TypeId makeFunction(TypeArena& arena, std::optional selfType, std::initializer_list generics, std::initializer_list genericPacks, std::initializer_list paramTypes, std::initializer_list paramNames, std::initializer_list retTypes); static TypeVar nilType_{PrimitiveTypeVar{PrimitiveTypeVar::NilType}, /*persistent*/ true}; static TypeVar numberType_{PrimitiveTypeVar{PrimitiveTypeVar::Number}, /*persistent*/ true}; static TypeVar stringType_{PrimitiveTypeVar{PrimitiveTypeVar::String}, /*persistent*/ true}; static TypeVar booleanType_{PrimitiveTypeVar{PrimitiveTypeVar::Boolean}, /*persistent*/ true}; static TypeVar threadType_{PrimitiveTypeVar{PrimitiveTypeVar::Thread}, /*persistent*/ true}; static TypeVar anyType_{AnyTypeVar{}}; static TypeVar errorType_{ErrorTypeVar{}}; static TypeVar optionalNumberType_{UnionTypeVar{{&numberType_, &nilType_}}}; static TypePackVar anyTypePack_{VariadicTypePack{&anyType_}, true}; static TypePackVar errorTypePack_{Unifiable::Error{}}; SingletonTypes::SingletonTypes() : nilType(&nilType_) , numberType(&numberType_) , stringType(&stringType_) , booleanType(&booleanType_) , threadType(&threadType_) , anyType(&anyType_) , optionalNumberType(&optionalNumberType_) , anyTypePack(&anyTypePack_) , arena(new TypeArena) { TypeId stringMetatable = makeStringMetatable(); stringType_.ty = PrimitiveTypeVar{PrimitiveTypeVar::String, stringMetatable}; persist(stringMetatable); debugFreezeArena = FFlag::DebugLuauFreezeArena; freeze(*arena); } SingletonTypes::~SingletonTypes() { // Destroy the arena with the same memory management flags it was created with bool prevFlag = FFlag::DebugLuauFreezeArena; FFlag::DebugLuauFreezeArena.value = debugFreezeArena; unfreeze(*arena); arena.reset(nullptr); FFlag::DebugLuauFreezeArena.value = prevFlag; } TypeId SingletonTypes::makeStringMetatable() { const TypeId optionalNumber = arena->addType(UnionTypeVar{{nilType, numberType}}); const TypeId optionalString = arena->addType(UnionTypeVar{{nilType, stringType}}); const TypeId optionalBoolean = arena->addType(UnionTypeVar{{nilType, &booleanType_}}); const TypePackId oneStringPack = arena->addTypePack({stringType}); const TypePackId anyTypePack = arena->addTypePack(TypePackVar{VariadicTypePack{anyType}, true}); FunctionTypeVar formatFTV{arena->addTypePack(TypePack{{stringType}, anyTypePack}), oneStringPack}; formatFTV.magicFunction = &magicFunctionFormat; const TypeId formatFn = arena->addType(formatFTV); const TypePackId emptyPack = arena->addTypePack({}); const TypePackId stringVariadicList = arena->addTypePack(TypePackVar{VariadicTypePack{stringType}}); const TypePackId numberVariadicList = arena->addTypePack(TypePackVar{VariadicTypePack{numberType}}); const TypeId stringToStringType = makeFunction(*arena, std::nullopt, {}, {}, {stringType}, {}, {stringType}); const TypeId replArgType = arena->addType( UnionTypeVar{{stringType, arena->addType(TableTypeVar({}, TableIndexer(stringType, stringType), TypeLevel{}, TableState::Generic)), makeFunction(*arena, std::nullopt, {}, {}, {stringType}, {}, {stringType})}}); const TypeId gsubFunc = makeFunction(*arena, stringType, {}, {}, {stringType, replArgType, optionalNumber}, {}, {stringType, numberType}); const TypeId gmatchFunc = makeFunction(*arena, stringType, {}, {}, {stringType}, {}, {arena->addType(FunctionTypeVar{emptyPack, stringVariadicList})}); TableTypeVar::Props stringLib = { {"byte", {arena->addType(FunctionTypeVar{arena->addTypePack({stringType, optionalNumber, optionalNumber}), numberVariadicList})}}, {"char", {arena->addType(FunctionTypeVar{arena->addTypePack(TypePack{{numberType}, numberVariadicList}), arena->addTypePack({stringType})})}}, {"find", {makeFunction(*arena, stringType, {}, {}, {stringType, optionalNumber, optionalBoolean}, {}, {optionalNumber, optionalNumber})}}, {"format", {formatFn}}, // FIXME {"gmatch", {gmatchFunc}}, {"gsub", {gsubFunc}}, {"len", {makeFunction(*arena, stringType, {}, {}, {}, {}, {numberType})}}, {"lower", {stringToStringType}}, {"match", {makeFunction(*arena, stringType, {}, {}, {stringType, optionalNumber}, {}, {optionalString})}}, {"rep", {makeFunction(*arena, stringType, {}, {}, {numberType}, {}, {stringType})}}, {"reverse", {stringToStringType}}, {"sub", {makeFunction(*arena, stringType, {}, {}, {numberType, optionalNumber}, {}, {stringType})}}, {"upper", {stringToStringType}}, {"split", {makeFunction(*arena, stringType, {}, {}, {optionalString}, {}, {arena->addType(TableTypeVar{{}, TableIndexer{numberType, stringType}, TypeLevel{}})})}}, {"pack", {arena->addType(FunctionTypeVar{ arena->addTypePack(TypePack{{stringType}, anyTypePack}), oneStringPack, })}}, {"packsize", {makeFunction(*arena, stringType, {}, {}, {}, {}, {numberType})}}, {"unpack", {arena->addType(FunctionTypeVar{ arena->addTypePack(TypePack{{stringType, stringType, optionalNumber}}), anyTypePack, })}}, }; assignPropDocumentationSymbols(stringLib, "@luau/global/string"); TypeId tableType = arena->addType(TableTypeVar{std::move(stringLib), std::nullopt, TypeLevel{}, TableState::Sealed}); if (TableTypeVar* ttv = getMutable(tableType)) ttv->name = "string"; return arena->addType(TableTypeVar{{{{"__index", {tableType}}}}, std::nullopt, TypeLevel{}, TableState::Sealed}); } TypeId SingletonTypes::errorRecoveryType() { return &errorType_; } TypePackId SingletonTypes::errorRecoveryTypePack() { return &errorTypePack_; } TypeId SingletonTypes::errorRecoveryType(TypeId guess) { if (FFlag::LuauErrorRecoveryType) return guess; else return &errorType_; } TypePackId SingletonTypes::errorRecoveryTypePack(TypePackId guess) { if (FFlag::LuauErrorRecoveryType) return guess; else return &errorTypePack_; } SingletonTypes& getSingletonTypes() { static SingletonTypes singletonTypes; return singletonTypes; } void persist(TypeId ty) { std::deque queue{ty}; while (!queue.empty()) { TypeId t = queue.front(); queue.pop_front(); if (t->persistent) continue; asMutable(t)->persistent = true; if (auto btv = get(t)) queue.push_back(btv->boundTo); else if (auto ftv = get(t)) { persist(ftv->argTypes); persist(ftv->retType); } else if (auto ttv = get(t)) { for (const auto& [_name, prop] : ttv->props) queue.push_back(prop.type); if (ttv->indexer) { queue.push_back(ttv->indexer->indexType); queue.push_back(ttv->indexer->indexResultType); } } else if (auto ctv = get(t)) { for (const auto& [_name, prop] : ctv->props) queue.push_back(prop.type); } else if (auto utv = get(t)) { for (TypeId opt : utv->options) queue.push_back(opt); } else if (auto itv = get(t)) { for (TypeId opt : itv->parts) queue.push_back(opt); } else if (auto mtv = get(t)) { queue.push_back(mtv->table); queue.push_back(mtv->metatable); } else if (get(t) || get(t) || get(t) || get(t) || get(t)) { } else { LUAU_ASSERT(!"TypeId is not supported in a persist call"); } } } void persist(TypePackId tp) { if (tp->persistent) return; asMutable(tp)->persistent = true; if (auto p = get(tp)) { for (TypeId ty : p->head) persist(ty); if (p->tail) persist(*p->tail); } else if (auto vtp = get(tp)) { persist(vtp->ty); } else if (get(tp)) { } else { LUAU_ASSERT(!"TypePackId is not supported in a persist call"); } } const TypeLevel* getLevel(TypeId ty) { ty = follow(ty); if (auto ftv = get(ty)) return &ftv->level; else if (auto ttv = get(ty)) return &ttv->level; else if (auto ftv = get(ty)) return &ftv->level; else return nullptr; } TypeLevel* getMutableLevel(TypeId ty) { return const_cast(getLevel(ty)); } const Property* lookupClassProp(const ClassTypeVar* cls, const Name& name) { while (cls) { auto it = cls->props.find(name); if (it != cls->props.end()) return &it->second; if (cls->parent) cls = get(*cls->parent); else return nullptr; LUAU_ASSERT(cls); } return nullptr; } bool isSubclass(const ClassTypeVar* cls, const ClassTypeVar* parent) { while (cls) { if (cls == parent) return true; else if (!cls->parent) return false; cls = get(*cls->parent); LUAU_ASSERT(cls); } return false; } UnionTypeVarIterator::UnionTypeVarIterator(const UnionTypeVar* utv) { LUAU_ASSERT(utv); if (!utv->options.empty()) stack.push_front({utv, 0}); seen.insert(utv); } UnionTypeVarIterator& UnionTypeVarIterator::operator++() { advance(); descend(); return *this; } UnionTypeVarIterator UnionTypeVarIterator::operator++(int) { UnionTypeVarIterator copy = *this; ++copy; return copy; } bool UnionTypeVarIterator::operator!=(const UnionTypeVarIterator& rhs) { return !(*this == rhs); } bool UnionTypeVarIterator::operator==(const UnionTypeVarIterator& rhs) { if (!stack.empty() && !rhs.stack.empty()) return stack.front() == rhs.stack.front(); return stack.empty() && rhs.stack.empty(); } const TypeId& UnionTypeVarIterator::operator*() { LUAU_ASSERT(!stack.empty()); descend(); auto [utv, currentIndex] = stack.front(); LUAU_ASSERT(utv); LUAU_ASSERT(currentIndex < utv->options.size()); const TypeId& ty = utv->options[currentIndex]; LUAU_ASSERT(!get(follow(ty))); return ty; } void UnionTypeVarIterator::advance() { while (!stack.empty()) { auto& [utv, currentIndex] = stack.front(); ++currentIndex; if (currentIndex >= utv->options.size()) stack.pop_front(); else break; } } void UnionTypeVarIterator::descend() { while (!stack.empty()) { auto [utv, currentIndex] = stack.front(); if (auto innerUnion = get(follow(utv->options[currentIndex]))) { // If we're about to descend into a cyclic UnionTypeVar, we should skip over this. // Ideally this should never happen, but alas it does from time to time. :( if (seen.find(innerUnion) != seen.end()) advance(); else { seen.insert(innerUnion); stack.push_front({innerUnion, 0}); } continue; } break; } } UnionTypeVarIterator begin(const UnionTypeVar* utv) { return UnionTypeVarIterator{utv}; } UnionTypeVarIterator end(const UnionTypeVar* utv) { return UnionTypeVarIterator{}; } static std::vector parseFormatString(TypeChecker& typechecker, const char* data, size_t size) { const char* options = "cdiouxXeEfgGqs"; std::vector result; for (size_t i = 0; i < size; ++i) { if (data[i] == '%') { i++; if (i < size && data[i] == '%') continue; // we just ignore all characters (including flags/precision) up until first alphabetic character while (i < size && !(data[i] > 0 && isalpha(data[i]))) i++; if (i == size) break; if (data[i] == 'q' || data[i] == 's') result.push_back(typechecker.stringType); else if (strchr(options, data[i])) result.push_back(typechecker.numberType); else result.push_back(typechecker.errorRecoveryType(typechecker.anyType)); } } return result; } std::optional> magicFunctionFormat( TypeChecker& typechecker, const ScopePtr& scope, const AstExprCall& expr, ExprResult exprResult) { auto [paramPack, _predicates] = exprResult; TypeArena& arena = typechecker.currentModule->internalTypes; AstExprConstantString* fmt = nullptr; if (auto index = expr.func->as(); index && expr.self) { if (auto group = index->expr->as()) fmt = group->expr->as(); else fmt = index->expr->as(); } if (!expr.self && expr.args.size > 0) fmt = expr.args.data[0]->as(); if (!fmt) return std::nullopt; std::vector expected = parseFormatString(typechecker, fmt->value.data, fmt->value.size); const auto& [params, tail] = flatten(paramPack); size_t paramOffset = 1; size_t dataOffset = expr.self ? 0 : 1; // unify the prefix one argument at a time for (size_t i = 0; i < expected.size() && i + paramOffset < params.size(); ++i) { Location location = expr.args.data[std::min(i + dataOffset, expr.args.size - 1)]->location; typechecker.unify(params[i + paramOffset], expected[i], location); } // if we know the argument count or if we have too many arguments for sure, we can issue an error size_t actualParamSize = params.size() - paramOffset; if (expected.size() != actualParamSize && (!tail || expected.size() < actualParamSize)) typechecker.reportError(TypeError{expr.location, CountMismatch{expected.size(), actualParamSize}}); return ExprResult{arena.addTypePack({typechecker.stringType})}; } std::vector filterMap(TypeId type, TypeIdPredicate predicate) { type = follow(type); if (auto utv = get(type)) { std::set options; for (TypeId option : utv) if (auto out = predicate(follow(option))) options.insert(*out); return std::vector(options.begin(), options.end()); } else if (auto out = predicate(type)) return {*out}; return {}; } static Tags* getTags(TypeId ty) { ty = follow(ty); if (auto ftv = getMutable(ty)) return &ftv->tags; else if (auto ttv = getMutable(ty)) return &ttv->tags; else if (auto ctv = getMutable(ty)) return &ctv->tags; return nullptr; } void attachTag(TypeId ty, const std::string& tagName) { if (auto tags = getTags(ty)) tags->push_back(tagName); else LUAU_ASSERT(!"This TypeId does not support tags"); } void attachTag(Property& prop, const std::string& tagName) { prop.tags.push_back(tagName); } // We would ideally not expose this because it could cause a footgun. // If the Base class has a tag and you ask if Derived has that tag, it would return false. // Unfortunately, there's already use cases that's hard to disentangle. For now, we expose it. bool hasTag(const Tags& tags, const std::string& tagName) { return std::find(tags.begin(), tags.end(), tagName) != tags.end(); } bool hasTag(TypeId ty, const std::string& tagName) { ty = follow(ty); // We special case classes because getTags only returns a pointer to one vector of tags. // But classes has multiple vector of tags, represented throughout the hierarchy. if (auto ctv = get(ty)) { while (ctv) { if (hasTag(ctv->tags, tagName)) return true; else if (!ctv->parent) return false; ctv = get(*ctv->parent); LUAU_ASSERT(ctv); } } else if (auto tags = getTags(ty)) return hasTag(*tags, tagName); return false; } bool hasTag(const Property& prop, const std::string& tagName) { return hasTag(prop.tags, tagName); } } // namespace Luau