// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #include "Luau/Normalize.h" #include "Luau/ToString.h" #include #include "Luau/Clone.h" #include "Luau/Common.h" #include "Luau/TypeVar.h" #include "Luau/Unifier.h" #include "Luau/VisitTypeVar.h" LUAU_FASTFLAGVARIABLE(DebugLuauCopyBeforeNormalizing, false) LUAU_FASTFLAGVARIABLE(DebugLuauCheckNormalizeInvariant, false) // This could theoretically be 2000 on amd64, but x86 requires this. LUAU_FASTINTVARIABLE(LuauNormalizeIterationLimit, 1200); LUAU_FASTINTVARIABLE(LuauNormalizeCacheLimit, 100000); LUAU_FASTFLAGVARIABLE(LuauNormalizeCombineTableFix, false); LUAU_FASTFLAGVARIABLE(LuauTypeNormalization2, false); LUAU_FASTFLAGVARIABLE(LuauNegatedStringSingletons, false); LUAU_FASTFLAG(LuauUnknownAndNeverType) LUAU_FASTFLAG(DebugLuauDeferredConstraintResolution) LUAU_FASTFLAG(LuauOverloadedFunctionSubtypingPerf); namespace Luau { void TypeIds::insert(TypeId ty) { ty = follow(ty); auto [_, fresh] = types.insert(ty); if (fresh) { order.push_back(ty); hash ^= std::hash{}(ty); } } void TypeIds::clear() { order.clear(); types.clear(); hash = 0; } TypeIds::iterator TypeIds::begin() { return order.begin(); } TypeIds::iterator TypeIds::end() { return order.end(); } TypeIds::const_iterator TypeIds::begin() const { return order.begin(); } TypeIds::const_iterator TypeIds::end() const { return order.end(); } TypeIds::iterator TypeIds::erase(TypeIds::const_iterator it) { TypeId ty = *it; types.erase(ty); hash ^= std::hash{}(ty); return order.erase(it); } size_t TypeIds::size() const { return types.size(); } bool TypeIds::empty() const { return types.empty(); } size_t TypeIds::count(TypeId ty) const { ty = follow(ty); return types.count(ty); } void TypeIds::retain(const TypeIds& there) { for (auto it = begin(); it != end();) { if (there.count(*it)) it++; else it = erase(it); } } size_t TypeIds::getHash() const { return hash; } bool TypeIds::operator==(const TypeIds& there) const { return hash == there.hash && types == there.types; } NormalizedStringType::NormalizedStringType(bool isCofinite, std::optional> singletons) : isCofinite(isCofinite) , singletons(std::move(singletons)) { if (!FFlag::LuauNegatedStringSingletons) LUAU_ASSERT(!isCofinite); } void NormalizedStringType::resetToString() { if (FFlag::LuauNegatedStringSingletons) { isCofinite = true; singletons->clear(); } else singletons.reset(); } void NormalizedStringType::resetToNever() { if (FFlag::LuauNegatedStringSingletons) { isCofinite = false; singletons.emplace(); } else { if (singletons) singletons->clear(); else singletons.emplace(); } } bool NormalizedStringType::isNever() const { if (FFlag::LuauNegatedStringSingletons) return !isCofinite && singletons->empty(); else return singletons && singletons->empty(); } bool NormalizedStringType::isString() const { if (FFlag::LuauNegatedStringSingletons) return isCofinite && singletons->empty(); else return !singletons; } bool NormalizedStringType::isUnion() const { if (FFlag::LuauNegatedStringSingletons) return !isCofinite; else return singletons.has_value(); } bool NormalizedStringType::isIntersection() const { if (FFlag::LuauNegatedStringSingletons) return isCofinite; else return false; } bool NormalizedStringType::includes(const std::string& str) const { if (isString()) return true; else if (isUnion() && singletons->count(str)) return true; else if (isIntersection() && !singletons->count(str)) return true; else return false; } const NormalizedStringType NormalizedStringType::never{false, {{}}}; bool isSubtype(const NormalizedStringType& subStr, const NormalizedStringType& superStr) { if (subStr.isUnion() && superStr.isUnion()) { for (auto [name, ty] : *subStr.singletons) { if (!superStr.singletons->count(name)) return false; } } else if (subStr.isString() && superStr.isUnion()) return false; return true; } NormalizedType::NormalizedType(NotNull singletonTypes) : tops(singletonTypes->neverType) , booleans(singletonTypes->neverType) , errors(singletonTypes->neverType) , nils(singletonTypes->neverType) , numbers(singletonTypes->neverType) , strings{NormalizedStringType::never} , threads(singletonTypes->neverType) { } static bool isInhabited(const NormalizedType& norm) { return !get(norm.tops) || !get(norm.booleans) || !norm.classes.empty() || !get(norm.errors) || !get(norm.nils) || !get(norm.numbers) || !norm.strings.isNever() || !get(norm.threads) || norm.functions || !norm.tables.empty() || !norm.tyvars.empty(); } static int tyvarIndex(TypeId ty) { if (const GenericTypeVar* gtv = get(ty)) return gtv->index; else if (const FreeTypeVar* ftv = get(ty)) return ftv->index; else return 0; } #ifdef LUAU_ASSERTENABLED static bool isNormalizedTop(TypeId ty) { return get(ty) || get(ty) || get(ty); } static bool isNormalizedBoolean(TypeId ty) { if (get(ty)) return true; else if (const PrimitiveTypeVar* ptv = get(ty)) return ptv->type == PrimitiveTypeVar::Boolean; else if (const SingletonTypeVar* stv = get(ty)) return get(stv); else return false; } static bool isNormalizedError(TypeId ty) { if (get(ty) || get(ty)) return true; else return false; } static bool isNormalizedNil(TypeId ty) { if (get(ty)) return true; else if (const PrimitiveTypeVar* ptv = get(ty)) return ptv->type == PrimitiveTypeVar::NilType; else return false; } static bool isNormalizedNumber(TypeId ty) { if (get(ty)) return true; else if (const PrimitiveTypeVar* ptv = get(ty)) return ptv->type == PrimitiveTypeVar::Number; else return false; } static bool isNormalizedString(const NormalizedStringType& ty) { if (ty.isString()) return true; for (auto& [str, ty] : *ty.singletons) { if (const SingletonTypeVar* stv = get(ty)) { if (const StringSingleton* sstv = get(stv)) { if (sstv->value != str) return false; } else return false; } else return false; } return true; } static bool isNormalizedThread(TypeId ty) { if (get(ty)) return true; else if (const PrimitiveTypeVar* ptv = get(ty)) return ptv->type == PrimitiveTypeVar::Thread; else return false; } static bool areNormalizedFunctions(const NormalizedFunctionType& tys) { if (tys) for (TypeId ty : *tys) if (!get(ty) && !get(ty)) return false; return true; } static bool areNormalizedTables(const TypeIds& tys) { for (TypeId ty : tys) if (!get(ty) && !get(ty)) return false; return true; } static bool areNormalizedClasses(const TypeIds& tys) { for (TypeId ty : tys) if (!get(ty)) return false; return true; } static bool isPlainTyvar(TypeId ty) { return (get(ty) || get(ty)); } static bool isNormalizedTyvar(const NormalizedTyvars& tyvars) { for (auto& [tyvar, intersect] : tyvars) { if (!isPlainTyvar(tyvar)) return false; if (!isInhabited(*intersect)) return false; for (auto& [other, _] : intersect->tyvars) if (tyvarIndex(other) <= tyvarIndex(tyvar)) return false; } return true; } #endif // LUAU_ASSERTENABLED static void assertInvariant(const NormalizedType& norm) { #ifdef LUAU_ASSERTENABLED if (!FFlag::DebugLuauCheckNormalizeInvariant) return; LUAU_ASSERT(isNormalizedTop(norm.tops)); LUAU_ASSERT(isNormalizedBoolean(norm.booleans)); LUAU_ASSERT(areNormalizedClasses(norm.classes)); LUAU_ASSERT(isNormalizedError(norm.errors)); LUAU_ASSERT(isNormalizedNil(norm.nils)); LUAU_ASSERT(isNormalizedNumber(norm.numbers)); LUAU_ASSERT(isNormalizedString(norm.strings)); LUAU_ASSERT(isNormalizedThread(norm.threads)); LUAU_ASSERT(areNormalizedFunctions(norm.functions)); LUAU_ASSERT(areNormalizedTables(norm.tables)); LUAU_ASSERT(isNormalizedTyvar(norm.tyvars)); for (auto& [_, child] : norm.tyvars) assertInvariant(*child); #endif } Normalizer::Normalizer(TypeArena* arena, NotNull singletonTypes, NotNull sharedState) : arena(arena) , singletonTypes(singletonTypes) , sharedState(sharedState) { } const NormalizedType* Normalizer::normalize(TypeId ty) { if (!arena) sharedState->iceHandler->ice("Normalizing types outside a module"); auto found = cachedNormals.find(ty); if (found != cachedNormals.end()) return found->second.get(); NormalizedType norm{singletonTypes}; if (!unionNormalWithTy(norm, ty)) return nullptr; std::unique_ptr uniq = std::make_unique(std::move(norm)); const NormalizedType* result = uniq.get(); cachedNormals[ty] = std::move(uniq); return result; } void Normalizer::clearNormal(NormalizedType& norm) { norm.tops = singletonTypes->neverType; norm.booleans = singletonTypes->neverType; norm.classes.clear(); norm.errors = singletonTypes->neverType; norm.nils = singletonTypes->neverType; norm.numbers = singletonTypes->neverType; norm.strings.resetToNever(); norm.threads = singletonTypes->neverType; norm.tables.clear(); norm.functions = std::nullopt; norm.tyvars.clear(); } // ------- Cached TypeIds const TypeIds* Normalizer::cacheTypeIds(TypeIds tys) { auto found = cachedTypeIds.find(&tys); if (found != cachedTypeIds.end()) return found->first; std::unique_ptr uniq = std::make_unique(std::move(tys)); const TypeIds* result = uniq.get(); cachedTypeIds[result] = std::move(uniq); return result; } TypeId Normalizer::unionType(TypeId here, TypeId there) { here = follow(here); there = follow(there); if (here == there) return here; if (get(here) || get(there)) return there; if (get(there) || get(here)) return here; TypeIds tmps; if (const UnionTypeVar* utv = get(here)) { TypeIds heres; heres.insert(begin(utv), end(utv)); tmps.insert(heres.begin(), heres.end()); cachedUnions[cacheTypeIds(std::move(heres))] = here; } else tmps.insert(here); if (const UnionTypeVar* utv = get(there)) { TypeIds theres; theres.insert(begin(utv), end(utv)); tmps.insert(theres.begin(), theres.end()); cachedUnions[cacheTypeIds(std::move(theres))] = there; } else tmps.insert(there); auto cacheHit = cachedUnions.find(&tmps); if (cacheHit != cachedUnions.end()) return cacheHit->second; std::vector parts; parts.insert(parts.end(), tmps.begin(), tmps.end()); TypeId result = arena->addType(UnionTypeVar{std::move(parts)}); cachedUnions[cacheTypeIds(std::move(tmps))] = result; return result; } TypeId Normalizer::intersectionType(TypeId here, TypeId there) { here = follow(here); there = follow(there); if (here == there) return here; if (get(here) || get(there)) return here; if (get(there) || get(here)) return there; TypeIds tmps; if (const IntersectionTypeVar* utv = get(here)) { TypeIds heres; heres.insert(begin(utv), end(utv)); tmps.insert(heres.begin(), heres.end()); cachedIntersections[cacheTypeIds(std::move(heres))] = here; } else tmps.insert(here); if (const IntersectionTypeVar* utv = get(there)) { TypeIds theres; theres.insert(begin(utv), end(utv)); tmps.insert(theres.begin(), theres.end()); cachedIntersections[cacheTypeIds(std::move(theres))] = there; } else tmps.insert(there); if (tmps.size() == 1) return *tmps.begin(); auto cacheHit = cachedIntersections.find(&tmps); if (cacheHit != cachedIntersections.end()) return cacheHit->second; std::vector parts; parts.insert(parts.end(), tmps.begin(), tmps.end()); TypeId result = arena->addType(IntersectionTypeVar{std::move(parts)}); cachedIntersections[cacheTypeIds(std::move(tmps))] = result; return result; } void Normalizer::clearCaches() { cachedNormals.clear(); cachedIntersections.clear(); cachedUnions.clear(); cachedTypeIds.clear(); } // ------- Normalizing unions TypeId Normalizer::unionOfTops(TypeId here, TypeId there) { if (get(here) || get(there)) return there; else return here; } TypeId Normalizer::unionOfBools(TypeId here, TypeId there) { if (get(here)) return there; if (get(there)) return here; if (const BooleanSingleton* hbool = get(get(here))) if (const BooleanSingleton* tbool = get(get(there))) if (hbool->value == tbool->value) return here; return singletonTypes->booleanType; } void Normalizer::unionClassesWithClass(TypeIds& heres, TypeId there) { if (heres.count(there)) return; const ClassTypeVar* tctv = get(there); for (auto it = heres.begin(); it != heres.end();) { TypeId here = *it; const ClassTypeVar* hctv = get(here); if (isSubclass(tctv, hctv)) return; else if (isSubclass(hctv, tctv)) it = heres.erase(it); else it++; } heres.insert(there); } void Normalizer::unionClasses(TypeIds& heres, const TypeIds& theres) { for (TypeId there : theres) unionClassesWithClass(heres, there); } void Normalizer::unionStrings(NormalizedStringType& here, const NormalizedStringType& there) { if (FFlag::LuauNegatedStringSingletons) { if (there.isString()) here.resetToString(); else if (here.isUnion() && there.isUnion()) here.singletons->insert(there.singletons->begin(), there.singletons->end()); else if (here.isUnion() && there.isIntersection()) { here.isCofinite = true; for (const auto& pair : *there.singletons) { auto it = here.singletons->find(pair.first); if (it != end(*here.singletons)) here.singletons->erase(it); else here.singletons->insert(pair); } } else if (here.isIntersection() && there.isUnion()) { for (const auto& [name, ty] : *there.singletons) here.singletons->erase(name); } else if (here.isIntersection() && there.isIntersection()) { auto iter = begin(*here.singletons); auto endIter = end(*here.singletons); while (iter != endIter) { if (!there.singletons->count(iter->first)) { auto eraseIt = iter; ++iter; here.singletons->erase(eraseIt); } else ++iter; } } else LUAU_ASSERT(!"Unreachable"); } else { if (there.isString()) here.resetToString(); else if (here.isUnion()) here.singletons->insert(there.singletons->begin(), there.singletons->end()); } } std::optional Normalizer::unionOfTypePacks(TypePackId here, TypePackId there) { if (here == there) return here; std::vector head; std::optional tail; bool hereSubThere = true; bool thereSubHere = true; TypePackIterator ith = begin(here); TypePackIterator itt = begin(there); while (ith != end(here) && itt != end(there)) { TypeId hty = *ith; TypeId tty = *itt; TypeId ty = unionType(hty, tty); if (ty != hty) thereSubHere = false; if (ty != tty) hereSubThere = false; head.push_back(ty); ith++; itt++; } auto dealWithDifferentArities = [&](TypePackIterator& ith, TypePackIterator itt, TypePackId here, TypePackId there, bool& hereSubThere, bool& thereSubHere) { if (ith != end(here)) { TypeId tty = singletonTypes->nilType; if (std::optional ttail = itt.tail()) { if (const VariadicTypePack* tvtp = get(*ttail)) tty = tvtp->ty; else // Luau doesn't have unions of type pack variables return false; } else // Type packs of different arities are incomparable return false; while (ith != end(here)) { TypeId hty = *ith; TypeId ty = unionType(hty, tty); if (ty != hty) thereSubHere = false; if (ty != tty) hereSubThere = false; head.push_back(ty); ith++; } } return true; }; if (!dealWithDifferentArities(ith, itt, here, there, hereSubThere, thereSubHere)) return std::nullopt; if (!dealWithDifferentArities(itt, ith, there, here, thereSubHere, hereSubThere)) return std::nullopt; if (std::optional htail = ith.tail()) { if (std::optional ttail = itt.tail()) { if (*htail == *ttail) tail = htail; else if (const VariadicTypePack* hvtp = get(*htail)) { if (const VariadicTypePack* tvtp = get(*ttail)) { TypeId ty = unionType(hvtp->ty, tvtp->ty); if (ty != hvtp->ty) thereSubHere = false; if (ty != tvtp->ty) hereSubThere = false; bool hidden = hvtp->hidden & tvtp->hidden; tail = arena->addTypePack(VariadicTypePack{ty, hidden}); } else // Luau doesn't have unions of type pack variables return std::nullopt; } else // Luau doesn't have unions of type pack variables return std::nullopt; } else if (get(*htail)) { hereSubThere = false; tail = htail; } else // Luau doesn't have unions of type pack variables return std::nullopt; } else if (std::optional ttail = itt.tail()) { if (get(*ttail)) { thereSubHere = false; tail = htail; } else // Luau doesn't have unions of type pack variables return std::nullopt; } if (hereSubThere) return there; else if (thereSubHere) return here; if (!head.empty()) return arena->addTypePack(TypePack{head, tail}); else if (tail) return *tail; else // TODO: Add an emptyPack to singleton types return arena->addTypePack({}); } std::optional Normalizer::unionOfFunctions(TypeId here, TypeId there) { if (get(here)) return here; if (get(there)) return there; const FunctionTypeVar* hftv = get(here); LUAU_ASSERT(hftv); const FunctionTypeVar* tftv = get(there); LUAU_ASSERT(tftv); if (hftv->generics != tftv->generics) return std::nullopt; if (hftv->genericPacks != tftv->genericPacks) return std::nullopt; std::optional argTypes = intersectionOfTypePacks(hftv->argTypes, tftv->argTypes); if (!argTypes) return std::nullopt; std::optional retTypes = unionOfTypePacks(hftv->retTypes, tftv->retTypes); if (!retTypes) return std::nullopt; if (*argTypes == hftv->argTypes && *retTypes == hftv->retTypes) return here; if (*argTypes == tftv->argTypes && *retTypes == tftv->retTypes) return there; FunctionTypeVar result{*argTypes, *retTypes}; result.generics = hftv->generics; result.genericPacks = hftv->genericPacks; return arena->addType(std::move(result)); } void Normalizer::unionFunctions(NormalizedFunctionType& heres, const NormalizedFunctionType& theres) { if (!theres) return; TypeIds tmps; if (!heres) { tmps.insert(theres->begin(), theres->end()); heres = std::move(tmps); return; } for (TypeId here : *heres) for (TypeId there : *theres) { if (std::optional fun = unionOfFunctions(here, there)) tmps.insert(*fun); else tmps.insert(singletonTypes->errorRecoveryType(there)); } heres = std::move(tmps); } void Normalizer::unionFunctionsWithFunction(NormalizedFunctionType& heres, TypeId there) { if (!heres) { TypeIds tmps; tmps.insert(there); heres = std::move(tmps); return; } TypeIds tmps; for (TypeId here : *heres) { if (std::optional fun = unionOfFunctions(here, there)) tmps.insert(*fun); else tmps.insert(singletonTypes->errorRecoveryType(there)); } heres = std::move(tmps); } void Normalizer::unionTablesWithTable(TypeIds& heres, TypeId there) { // TODO: remove unions of tables where possible heres.insert(there); } void Normalizer::unionTables(TypeIds& heres, const TypeIds& theres) { for (TypeId there : theres) unionTablesWithTable(heres, there); } // So why `ignoreSmallerTyvars`? // // First up, what it does... Every tyvar has an index, and this parameter says to ignore // any tyvars in `there` if their index is less than or equal to the parameter. // The parameter is always greater than any tyvars mentioned in here, so the result is // a lower bound on any tyvars in `here.tyvars`. // // This is used to maintain in invariant, which is that in any tyvar `X&T`, any any tyvar // `Y&U` in `T`, the index of `X` is less than the index of `Y`. This is an implementation // of *ordered decision diagrams* (https://en.wikipedia.org/wiki/Binary_decision_diagram#Variable_ordering) // which are a compression technique used to save memory usage when representing boolean formulae. // // The idea is that if you have an out-of-order decision diagram // like `Z&(X|Y)`, to re-order it in this case to `(X&Z)|(Y&Z)`. // The hope is that by imposing a global order, there's a higher chance of sharing opportunities, // and hence reduced memory. // // And yes, this is essentially a SAT solver hidden inside a typechecker. // That's what you get for having a type system with generics, intersection and union types. bool Normalizer::unionNormals(NormalizedType& here, const NormalizedType& there, int ignoreSmallerTyvars) { TypeId tops = unionOfTops(here.tops, there.tops); if (!get(tops)) { clearNormal(here); here.tops = tops; return true; } for (auto it = there.tyvars.begin(); it != there.tyvars.end(); it++) { TypeId tyvar = it->first; const NormalizedType& inter = *it->second; int index = tyvarIndex(tyvar); if (index <= ignoreSmallerTyvars) continue; auto [emplaced, fresh] = here.tyvars.emplace(tyvar, std::make_unique(NormalizedType{singletonTypes})); if (fresh) if (!unionNormals(*emplaced->second, here, index)) return false; if (!unionNormals(*emplaced->second, inter, index)) return false; } here.booleans = unionOfBools(here.booleans, there.booleans); unionClasses(here.classes, there.classes); here.errors = (get(there.errors) ? here.errors : there.errors); here.nils = (get(there.nils) ? here.nils : there.nils); here.numbers = (get(there.numbers) ? here.numbers : there.numbers); unionStrings(here.strings, there.strings); here.threads = (get(there.threads) ? here.threads : there.threads); unionFunctions(here.functions, there.functions); unionTables(here.tables, there.tables); return true; } bool Normalizer::withinResourceLimits() { // If cache is too large, clear it if (FInt::LuauNormalizeCacheLimit > 0) { size_t cacheUsage = cachedNormals.size() + cachedIntersections.size() + cachedUnions.size() + cachedTypeIds.size(); if (cacheUsage > size_t(FInt::LuauNormalizeCacheLimit)) { clearCaches(); return false; } } // Check the recursion count if (sharedState->counters.recursionLimit > 0) if (sharedState->counters.recursionLimit < sharedState->counters.recursionCount) return false; return true; } // See above for an explaination of `ignoreSmallerTyvars`. bool Normalizer::unionNormalWithTy(NormalizedType& here, TypeId there, int ignoreSmallerTyvars) { RecursionCounter _rc(&sharedState->counters.recursionCount); if (!withinResourceLimits()) return false; there = follow(there); if (get(there) || get(there)) { TypeId tops = unionOfTops(here.tops, there); clearNormal(here); here.tops = tops; return true; } else if (get(there) || !get(here.tops)) return true; else if (const UnionTypeVar* utv = get(there)) { for (UnionTypeVarIterator it = begin(utv); it != end(utv); ++it) if (!unionNormalWithTy(here, *it)) return false; return true; } else if (const IntersectionTypeVar* itv = get(there)) { NormalizedType norm{singletonTypes}; norm.tops = singletonTypes->anyType; for (IntersectionTypeVarIterator it = begin(itv); it != end(itv); ++it) if (!intersectNormalWithTy(norm, *it)) return false; return unionNormals(here, norm); } else if (get(there) || get(there)) { if (tyvarIndex(there) <= ignoreSmallerTyvars) return true; NormalizedType inter{singletonTypes}; inter.tops = singletonTypes->unknownType; here.tyvars.insert_or_assign(there, std::make_unique(std::move(inter))); } else if (get(there)) unionFunctionsWithFunction(here.functions, there); else if (get(there) || get(there)) unionTablesWithTable(here.tables, there); else if (get(there)) unionClassesWithClass(here.classes, there); else if (get(there)) here.errors = there; else if (const PrimitiveTypeVar* ptv = get(there)) { if (ptv->type == PrimitiveTypeVar::Boolean) here.booleans = there; else if (ptv->type == PrimitiveTypeVar::NilType) here.nils = there; else if (ptv->type == PrimitiveTypeVar::Number) here.numbers = there; else if (ptv->type == PrimitiveTypeVar::String) here.strings.resetToString(); else if (ptv->type == PrimitiveTypeVar::Thread) here.threads = there; else LUAU_ASSERT(!"Unreachable"); } else if (const SingletonTypeVar* stv = get(there)) { if (get(stv)) here.booleans = unionOfBools(here.booleans, there); else if (const StringSingleton* sstv = get(stv)) { if (FFlag::LuauNegatedStringSingletons) { if (here.strings.isCofinite) { auto it = here.strings.singletons->find(sstv->value); if (it != here.strings.singletons->end()) here.strings.singletons->erase(it); } else here.strings.singletons->insert({sstv->value, there}); } else { if (here.strings.isUnion()) here.strings.singletons->insert({sstv->value, there}); } } else LUAU_ASSERT(!"Unreachable"); } else if (const NegationTypeVar* ntv = get(there)) { const NormalizedType* thereNormal = normalize(ntv->ty); NormalizedType tn = negateNormal(*thereNormal); if (!unionNormals(here, tn)) return false; } else LUAU_ASSERT(!"Unreachable"); for (auto& [tyvar, intersect] : here.tyvars) if (!unionNormalWithTy(*intersect, there, tyvarIndex(tyvar))) return false; assertInvariant(here); return true; } // ------- Negations NormalizedType Normalizer::negateNormal(const NormalizedType& here) { NormalizedType result{singletonTypes}; if (!get(here.tops)) { // The negation of unknown or any is never. Easy. return result; } if (!get(here.errors)) { // Negating an error yields the same error. result.errors = here.errors; return result; } if (get(here.booleans)) result.booleans = singletonTypes->booleanType; else if (get(here.booleans)) result.booleans = singletonTypes->neverType; else if (auto stv = get(here.booleans)) { auto boolean = get(stv); LUAU_ASSERT(boolean != nullptr); if (boolean->value) result.booleans = singletonTypes->falseType; else result.booleans = singletonTypes->trueType; } result.classes = negateAll(here.classes); result.nils = get(here.nils) ? singletonTypes->nilType : singletonTypes->neverType; result.numbers = get(here.numbers) ? singletonTypes->numberType : singletonTypes->neverType; result.strings = here.strings; result.strings.isCofinite = !result.strings.isCofinite; result.threads = get(here.threads) ? singletonTypes->threadType : singletonTypes->neverType; // TODO: negating tables // TODO: negating functions // TODO: negating tyvars? return result; } TypeIds Normalizer::negateAll(const TypeIds& theres) { TypeIds tys; for (TypeId there : theres) tys.insert(negate(there)); return tys; } TypeId Normalizer::negate(TypeId there) { there = follow(there); if (get(there)) return there; else if (get(there)) return singletonTypes->neverType; else if (get(there)) return singletonTypes->unknownType; else if (auto ntv = get(there)) return ntv->ty; // TODO: do we want to normalize this? else if (auto utv = get(there)) { std::vector parts; for (TypeId option : utv) parts.push_back(negate(option)); return arena->addType(IntersectionTypeVar{std::move(parts)}); } else if (auto itv = get(there)) { std::vector options; for (TypeId part : itv) options.push_back(negate(part)); return arena->addType(UnionTypeVar{std::move(options)}); } else return there; } void Normalizer::subtractPrimitive(NormalizedType& here, TypeId ty) { const PrimitiveTypeVar* ptv = get(follow(ty)); LUAU_ASSERT(ptv); switch (ptv->type) { case PrimitiveTypeVar::NilType: here.nils = singletonTypes->neverType; break; case PrimitiveTypeVar::Boolean: here.booleans = singletonTypes->neverType; break; case PrimitiveTypeVar::Number: here.numbers = singletonTypes->neverType; break; case PrimitiveTypeVar::String: here.strings.resetToNever(); break; case PrimitiveTypeVar::Thread: here.threads = singletonTypes->neverType; break; } } void Normalizer::subtractSingleton(NormalizedType& here, TypeId ty) { LUAU_ASSERT(FFlag::LuauNegatedStringSingletons); const SingletonTypeVar* stv = get(ty); LUAU_ASSERT(stv); if (const StringSingleton* ss = get(stv)) { if (here.strings.isCofinite) here.strings.singletons->insert({ss->value, ty}); else { auto it = here.strings.singletons->find(ss->value); if (it != here.strings.singletons->end()) here.strings.singletons->erase(it); } } else if (const BooleanSingleton* bs = get(stv)) { if (get(here.booleans)) { // Nothing } else if (get(here.booleans)) here.booleans = bs->value ? singletonTypes->falseType : singletonTypes->trueType; else if (auto hereSingleton = get(here.booleans)) { const BooleanSingleton* hereBooleanSingleton = get(hereSingleton); LUAU_ASSERT(hereBooleanSingleton); // Crucial subtlety: ty (and thus bs) are the value that is being // negated out. We therefore reduce to never when the values match, // rather than when they differ. if (bs->value == hereBooleanSingleton->value) here.booleans = singletonTypes->neverType; } else LUAU_ASSERT(!"Unreachable"); } else LUAU_ASSERT(!"Unreachable"); } // ------- Normalizing intersections TypeId Normalizer::intersectionOfTops(TypeId here, TypeId there) { if (get(here) || get(there)) return here; else return there; } TypeId Normalizer::intersectionOfBools(TypeId here, TypeId there) { if (get(here)) return here; if (get(there)) return there; if (const BooleanSingleton* hbool = get(get(here))) if (const BooleanSingleton* tbool = get(get(there))) return (hbool->value == tbool->value ? here : singletonTypes->neverType); else return here; else return there; } void Normalizer::intersectClasses(TypeIds& heres, const TypeIds& theres) { TypeIds tmp; for (auto it = heres.begin(); it != heres.end();) { const ClassTypeVar* hctv = get(*it); LUAU_ASSERT(hctv); bool keep = false; for (TypeId there : theres) { const ClassTypeVar* tctv = get(there); LUAU_ASSERT(tctv); if (isSubclass(hctv, tctv)) { keep = true; break; } else if (isSubclass(tctv, hctv)) { keep = false; tmp.insert(there); break; } } if (keep) it++; else it = heres.erase(it); } heres.insert(tmp.begin(), tmp.end()); } void Normalizer::intersectClassesWithClass(TypeIds& heres, TypeId there) { bool foundSuper = false; const ClassTypeVar* tctv = get(there); LUAU_ASSERT(tctv); for (auto it = heres.begin(); it != heres.end();) { const ClassTypeVar* hctv = get(*it); LUAU_ASSERT(hctv); if (isSubclass(hctv, tctv)) it++; else if (isSubclass(tctv, hctv)) { foundSuper = true; break; } else it = heres.erase(it); } if (foundSuper) { heres.clear(); heres.insert(there); } } void Normalizer::intersectStrings(NormalizedStringType& here, const NormalizedStringType& there) { if (there.isString()) return; if (here.isString()) here.resetToNever(); for (auto it = here.singletons->begin(); it != here.singletons->end();) { if (there.singletons->count(it->first)) it++; else it = here.singletons->erase(it); } } std::optional Normalizer::intersectionOfTypePacks(TypePackId here, TypePackId there) { if (here == there) return here; std::vector head; std::optional tail; bool hereSubThere = true; bool thereSubHere = true; TypePackIterator ith = begin(here); TypePackIterator itt = begin(there); while (ith != end(here) && itt != end(there)) { TypeId hty = *ith; TypeId tty = *itt; TypeId ty = intersectionType(hty, tty); if (ty != hty) hereSubThere = false; if (ty != tty) thereSubHere = false; head.push_back(ty); ith++; itt++; } auto dealWithDifferentArities = [&](TypePackIterator& ith, TypePackIterator itt, TypePackId here, TypePackId there, bool& hereSubThere, bool& thereSubHere) { if (ith != end(here)) { TypeId tty = singletonTypes->nilType; if (std::optional ttail = itt.tail()) { if (const VariadicTypePack* tvtp = get(*ttail)) tty = tvtp->ty; else // Luau doesn't have intersections of type pack variables return false; } else // Type packs of different arities are incomparable return false; while (ith != end(here)) { TypeId hty = *ith; TypeId ty = intersectionType(hty, tty); if (ty != hty) hereSubThere = false; if (ty != tty) thereSubHere = false; head.push_back(ty); ith++; } } return true; }; if (!dealWithDifferentArities(ith, itt, here, there, hereSubThere, thereSubHere)) return std::nullopt; if (!dealWithDifferentArities(itt, ith, there, here, thereSubHere, hereSubThere)) return std::nullopt; if (std::optional htail = ith.tail()) { if (std::optional ttail = itt.tail()) { if (*htail == *ttail) tail = htail; else if (const VariadicTypePack* hvtp = get(*htail)) { if (const VariadicTypePack* tvtp = get(*ttail)) { TypeId ty = intersectionType(hvtp->ty, tvtp->ty); if (ty != hvtp->ty) thereSubHere = false; if (ty != tvtp->ty) hereSubThere = false; bool hidden = hvtp->hidden & tvtp->hidden; tail = arena->addTypePack(VariadicTypePack{ty, hidden}); } else // Luau doesn't have unions of type pack variables return std::nullopt; } else // Luau doesn't have unions of type pack variables return std::nullopt; } else if (get(*htail)) hereSubThere = false; else // Luau doesn't have unions of type pack variables return std::nullopt; } else if (std::optional ttail = itt.tail()) { if (get(*ttail)) thereSubHere = false; else // Luau doesn't have unions of type pack variables return std::nullopt; } if (hereSubThere) return here; else if (thereSubHere) return there; if (!head.empty()) return arena->addTypePack(TypePack{head, tail}); else if (tail) return *tail; else // TODO: Add an emptyPack to singleton types return arena->addTypePack({}); } std::optional Normalizer::intersectionOfTables(TypeId here, TypeId there) { if (here == there) return here; RecursionCounter _rc(&sharedState->counters.recursionCount); if (sharedState->counters.recursionLimit > 0 && sharedState->counters.recursionLimit < sharedState->counters.recursionCount) return std::nullopt; TypeId htable = here; TypeId hmtable = nullptr; if (const MetatableTypeVar* hmtv = get(here)) { htable = hmtv->table; hmtable = hmtv->metatable; } TypeId ttable = there; TypeId tmtable = nullptr; if (const MetatableTypeVar* tmtv = get(there)) { ttable = tmtv->table; tmtable = tmtv->metatable; } const TableTypeVar* httv = get(htable); LUAU_ASSERT(httv); const TableTypeVar* tttv = get(ttable); LUAU_ASSERT(tttv); if (httv->state == TableState::Free || tttv->state == TableState::Free) return std::nullopt; if (httv->state == TableState::Generic || tttv->state == TableState::Generic) return std::nullopt; TableState state = httv->state; if (tttv->state == TableState::Unsealed) state = tttv->state; TypeLevel level = max(httv->level, tttv->level); TableTypeVar result{state, level}; bool hereSubThere = true; bool thereSubHere = true; for (const auto& [name, hprop] : httv->props) { Property prop = hprop; auto tfound = tttv->props.find(name); if (tfound == tttv->props.end()) thereSubHere = false; else { const auto& [_name, tprop] = *tfound; // TODO: variance issues here, which can't be fixed until we have read/write property types prop.type = intersectionType(hprop.type, tprop.type); hereSubThere &= (prop.type == hprop.type); thereSubHere &= (prop.type == tprop.type); } // TODO: string indexers result.props[name] = prop; } for (const auto& [name, tprop] : tttv->props) { if (httv->props.count(name) == 0) { result.props[name] = tprop; hereSubThere = false; } } if (httv->indexer && tttv->indexer) { // TODO: What should intersection of indexes be? TypeId index = unionType(httv->indexer->indexType, tttv->indexer->indexType); TypeId indexResult = intersectionType(httv->indexer->indexResultType, tttv->indexer->indexResultType); result.indexer = {index, indexResult}; hereSubThere &= (httv->indexer->indexType == index) && (httv->indexer->indexResultType == indexResult); thereSubHere &= (tttv->indexer->indexType == index) && (tttv->indexer->indexResultType == indexResult); } else if (httv->indexer) { result.indexer = httv->indexer; thereSubHere = false; } else if (tttv->indexer) { result.indexer = tttv->indexer; hereSubThere = false; } TypeId table; if (hereSubThere) table = htable; else if (thereSubHere) table = ttable; else table = arena->addType(std::move(result)); if (tmtable && hmtable) { // NOTE: this assumes metatables are ivariant if (std::optional mtable = intersectionOfTables(hmtable, tmtable)) { if (table == htable && *mtable == hmtable) return here; else if (table == ttable && *mtable == tmtable) return there; else return arena->addType(MetatableTypeVar{table, *mtable}); } else return std::nullopt; } else if (hmtable) { if (table == htable) return here; else return arena->addType(MetatableTypeVar{table, hmtable}); } else if (tmtable) { if (table == ttable) return there; else return arena->addType(MetatableTypeVar{table, tmtable}); } else return table; } void Normalizer::intersectTablesWithTable(TypeIds& heres, TypeId there) { TypeIds tmp; for (TypeId here : heres) if (std::optional inter = intersectionOfTables(here, there)) tmp.insert(*inter); heres.retain(tmp); heres.insert(tmp.begin(), tmp.end()); } void Normalizer::intersectTables(TypeIds& heres, const TypeIds& theres) { TypeIds tmp; for (TypeId here : heres) for (TypeId there : theres) if (std::optional inter = intersectionOfTables(here, there)) tmp.insert(*inter); heres.retain(tmp); heres.insert(tmp.begin(), tmp.end()); } std::optional Normalizer::intersectionOfFunctions(TypeId here, TypeId there) { const FunctionTypeVar* hftv = get(here); LUAU_ASSERT(hftv); const FunctionTypeVar* tftv = get(there); LUAU_ASSERT(tftv); if (hftv->generics != tftv->generics) return std::nullopt; if (hftv->genericPacks != tftv->genericPacks) return std::nullopt; TypePackId argTypes; TypePackId retTypes; if (hftv->retTypes == tftv->retTypes) { std::optional argTypesOpt = unionOfTypePacks(hftv->argTypes, tftv->argTypes); if (!argTypesOpt) return std::nullopt; argTypes = *argTypesOpt; retTypes = hftv->retTypes; } else if (FFlag::LuauOverloadedFunctionSubtypingPerf && hftv->argTypes == tftv->argTypes) { std::optional retTypesOpt = intersectionOfTypePacks(hftv->argTypes, tftv->argTypes); if (!retTypesOpt) return std::nullopt; argTypes = hftv->argTypes; retTypes = *retTypesOpt; } else return std::nullopt; if (argTypes == hftv->argTypes && retTypes == hftv->retTypes) return here; if (argTypes == tftv->argTypes && retTypes == tftv->retTypes) return there; FunctionTypeVar result{argTypes, retTypes}; result.generics = hftv->generics; result.genericPacks = hftv->genericPacks; return arena->addType(std::move(result)); } std::optional Normalizer::unionSaturatedFunctions(TypeId here, TypeId there) { // Deep breath... // // When we come to check overloaded functions for subtyping, // we have to compare (F1 & ... & FM) <: (G1 & ... G GN) // where each Fi or Gj is a function type. Now that intersection on the right is no // problem, since that's true if and only if (F1 & ... & FM) <: Gj for every j. // But the intersection on the left is annoying, since we might have // (F1 & ... & FM) <: G but no Fi <: G. For example // // ((number? -> number?) & (string? -> string?)) <: (nil -> nil) // // So in this case, what we do is define Apply for the result of applying // a function of type F to an argument of type T, and then F <: (T -> U) // if and only if Apply <: U. For example: // // if f : ((number? -> number?) & (string? -> string?)) // then f(nil) must be nil, so // Apply<((number? -> number?) & (string? -> string?)), nil> is nil // // So subtyping on overloaded functions "just" boils down to defining Apply. // // Now for non-overloaded functions, this is easy! // Apply<(R -> S), T> is S if T <: R, and an error type otherwise. // // But for overloaded functions it's not so simple. We'd like Apply // to just be Apply & ... & Apply but oh dear // // if f : ((number -> number) & (string -> string)) // and x : (number | string) // then f(x) : (number | string) // // so we want // // Apply<((number -> number) & (string -> string)), (number | string)> is (number | string) // // but // // Apply<(number -> number), (number | string)> is an error // Apply<(string -> string), (number | string)> is an error // // that is Apply should consider all possible combinations of overloads of F, // not just individual overloads. // // For this reason, when we're normalizing function types (in order to check subtyping // or perform overload resolution) we should first *union-saturate* them. An overloaded // function is union-saturated whenever: // // if (R -> S) is an overload of F // and (T -> U) is an overload of F // then ((R | T) -> (S | U)) is a subtype of an overload of F // // Any overloaded function can be normalized to a union-saturated one by adding enough extra overloads. // For example, union-saturating // // ((number -> number) & (string -> string)) // // is // // ((number -> number) & (string -> string) & ((number | string) -> (number | string))) // // For union-saturated overloaded functions, the "obvious" algorithm works: // // Apply is Apply & ... & Apply // // so we can define Apply, so we can perform overloaded function resolution // and check subtyping on overloaded function types, yay! // // This is yet another potential source of exponential blow-up, sigh, since // the union-saturation of a function with N overloads may have 2^N overloads // (one for every subset). In practice, that hopefully won't happen that often, // in particular we only union-saturate overloads with different return types, // and there are hopefully not very many cases of that. // // All of this is mechanically verified in Agda, at https://github.com/luau-lang/agda-typeck // // It is essentially the algorithm defined in https://pnwamk.github.io/sst-tutorial/ // except that we're precomputing the union-saturation rather than converting // to disjunctive normal form on the fly. // // This is all built on semantic subtyping: // // Covariance and Contravariance, Giuseppe Castagna, // Logical Methods in Computer Science 16(1), 2022 // https://arxiv.org/abs/1809.01427 // // A gentle introduction to semantic subtyping, Giuseppe Castagna and Alain Frisch, // Proc. Principles and practice of declarative programming 2005, pp 198–208 // https://doi.org/10.1145/1069774.1069793 const FunctionTypeVar* hftv = get(here); if (!hftv) return std::nullopt; const FunctionTypeVar* tftv = get(there); if (!tftv) return std::nullopt; if (hftv->generics != tftv->generics) return std::nullopt; if (hftv->genericPacks != tftv->genericPacks) return std::nullopt; std::optional argTypes = unionOfTypePacks(hftv->argTypes, tftv->argTypes); if (!argTypes) return std::nullopt; std::optional retTypes = unionOfTypePacks(hftv->retTypes, tftv->retTypes); if (!retTypes) return std::nullopt; FunctionTypeVar result{*argTypes, *retTypes}; result.generics = hftv->generics; result.genericPacks = hftv->genericPacks; return arena->addType(std::move(result)); } void Normalizer::intersectFunctionsWithFunction(NormalizedFunctionType& heres, TypeId there) { if (!heres) return; for (auto it = heres->begin(); it != heres->end();) { TypeId here = *it; if (get(here)) it++; else if (std::optional tmp = intersectionOfFunctions(here, there)) { heres->erase(it); heres->insert(*tmp); return; } else it++; } TypeIds tmps; for (TypeId here : *heres) { if (std::optional tmp = unionSaturatedFunctions(here, there)) tmps.insert(*tmp); } heres->insert(there); heres->insert(tmps.begin(), tmps.end()); } void Normalizer::intersectFunctions(NormalizedFunctionType& heres, const NormalizedFunctionType& theres) { if (!heres) return; else if (!theres) { heres = std::nullopt; return; } else { for (TypeId there : *theres) intersectFunctionsWithFunction(heres, there); } } bool Normalizer::intersectTyvarsWithTy(NormalizedTyvars& here, TypeId there) { for (auto it = here.begin(); it != here.end();) { NormalizedType& inter = *it->second; if (!intersectNormalWithTy(inter, there)) return false; if (isInhabited(inter)) ++it; else it = here.erase(it); } return true; } // See above for an explaination of `ignoreSmallerTyvars`. bool Normalizer::intersectNormals(NormalizedType& here, const NormalizedType& there, int ignoreSmallerTyvars) { if (!get(there.tops)) { here.tops = intersectionOfTops(here.tops, there.tops); return true; } else if (!get(here.tops)) { clearNormal(here); return unionNormals(here, there, ignoreSmallerTyvars); } here.booleans = intersectionOfBools(here.booleans, there.booleans); intersectClasses(here.classes, there.classes); here.errors = (get(there.errors) ? there.errors : here.errors); here.nils = (get(there.nils) ? there.nils : here.nils); here.numbers = (get(there.numbers) ? there.numbers : here.numbers); intersectStrings(here.strings, there.strings); here.threads = (get(there.threads) ? there.threads : here.threads); intersectFunctions(here.functions, there.functions); intersectTables(here.tables, there.tables); for (auto& [tyvar, inter] : there.tyvars) { int index = tyvarIndex(tyvar); if (ignoreSmallerTyvars < index) { auto [found, fresh] = here.tyvars.emplace(tyvar, std::make_unique(NormalizedType{singletonTypes})); if (fresh) { if (!unionNormals(*found->second, here, index)) return false; } } } for (auto it = here.tyvars.begin(); it != here.tyvars.end();) { TypeId tyvar = it->first; NormalizedType& inter = *it->second; int index = tyvarIndex(tyvar); LUAU_ASSERT(ignoreSmallerTyvars < index); auto found = there.tyvars.find(tyvar); if (found == there.tyvars.end()) { if (!intersectNormals(inter, there, index)) return false; } else { if (!intersectNormals(inter, *found->second, index)) return false; } if (isInhabited(inter)) it++; else it = here.tyvars.erase(it); } return true; } bool Normalizer::intersectNormalWithTy(NormalizedType& here, TypeId there) { RecursionCounter _rc(&sharedState->counters.recursionCount); if (!withinResourceLimits()) return false; there = follow(there); if (get(there) || get(there)) { here.tops = intersectionOfTops(here.tops, there); return true; } else if (!get(here.tops)) { clearNormal(here); return unionNormalWithTy(here, there); } else if (const UnionTypeVar* utv = get(there)) { NormalizedType norm{singletonTypes}; for (UnionTypeVarIterator it = begin(utv); it != end(utv); ++it) if (!unionNormalWithTy(norm, *it)) return false; return intersectNormals(here, norm); } else if (const IntersectionTypeVar* itv = get(there)) { for (IntersectionTypeVarIterator it = begin(itv); it != end(itv); ++it) if (!intersectNormalWithTy(here, *it)) return false; return true; } else if (get(there) || get(there)) { NormalizedType thereNorm{singletonTypes}; NormalizedType topNorm{singletonTypes}; topNorm.tops = singletonTypes->unknownType; thereNorm.tyvars.insert_or_assign(there, std::make_unique(std::move(topNorm))); return intersectNormals(here, thereNorm); } NormalizedTyvars tyvars = std::move(here.tyvars); if (const FunctionTypeVar* utv = get(there)) { NormalizedFunctionType functions = std::move(here.functions); clearNormal(here); intersectFunctionsWithFunction(functions, there); here.functions = std::move(functions); } else if (get(there) || get(there)) { TypeIds tables = std::move(here.tables); clearNormal(here); intersectTablesWithTable(tables, there); here.tables = std::move(tables); } else if (get(there)) { TypeIds classes = std::move(here.classes); clearNormal(here); intersectClassesWithClass(classes, there); here.classes = std::move(classes); } else if (get(there)) { TypeId errors = here.errors; clearNormal(here); here.errors = errors; } else if (const PrimitiveTypeVar* ptv = get(there)) { TypeId booleans = here.booleans; TypeId nils = here.nils; TypeId numbers = here.numbers; NormalizedStringType strings = std::move(here.strings); TypeId threads = here.threads; clearNormal(here); if (ptv->type == PrimitiveTypeVar::Boolean) here.booleans = booleans; else if (ptv->type == PrimitiveTypeVar::NilType) here.nils = nils; else if (ptv->type == PrimitiveTypeVar::Number) here.numbers = numbers; else if (ptv->type == PrimitiveTypeVar::String) here.strings = std::move(strings); else if (ptv->type == PrimitiveTypeVar::Thread) here.threads = threads; else LUAU_ASSERT(!"Unreachable"); } else if (const SingletonTypeVar* stv = get(there)) { TypeId booleans = here.booleans; NormalizedStringType strings = std::move(here.strings); clearNormal(here); if (get(stv)) here.booleans = intersectionOfBools(booleans, there); else if (const StringSingleton* sstv = get(stv)) { if (strings.includes(sstv->value)) here.strings.singletons->insert({sstv->value, there}); } else LUAU_ASSERT(!"Unreachable"); } else if (const NegationTypeVar* ntv = get(there); FFlag::LuauNegatedStringSingletons && ntv) { TypeId t = follow(ntv->ty); if (const PrimitiveTypeVar* ptv = get(t)) subtractPrimitive(here, ntv->ty); else if (const SingletonTypeVar* stv = get(t)) subtractSingleton(here, follow(ntv->ty)); else if (const UnionTypeVar* itv = get(t)) { for (TypeId part : itv->options) { const NormalizedType* normalPart = normalize(part); NormalizedType negated = negateNormal(*normalPart); intersectNormals(here, negated); } } else { // TODO negated unions, intersections, table, and function. // Report a TypeError for other types. LUAU_ASSERT(!"Unimplemented"); } } else LUAU_ASSERT(!"Unreachable"); if (!intersectTyvarsWithTy(tyvars, there)) return false; here.tyvars = std::move(tyvars); return true; } // -------- Convert back from a normalized type to a type TypeId Normalizer::typeFromNormal(const NormalizedType& norm) { assertInvariant(norm); if (!get(norm.tops)) return norm.tops; std::vector result; if (!get(norm.booleans)) result.push_back(norm.booleans); result.insert(result.end(), norm.classes.begin(), norm.classes.end()); if (!get(norm.errors)) result.push_back(norm.errors); if (norm.functions) { if (norm.functions->size() == 1) result.push_back(*norm.functions->begin()); else { std::vector parts; parts.insert(parts.end(), norm.functions->begin(), norm.functions->end()); result.push_back(arena->addType(IntersectionTypeVar{std::move(parts)})); } } if (!get(norm.nils)) result.push_back(norm.nils); if (!get(norm.numbers)) result.push_back(norm.numbers); if (norm.strings.isString()) result.push_back(singletonTypes->stringType); else if (norm.strings.isUnion()) { for (auto& [_, ty] : *norm.strings.singletons) result.push_back(ty); } else if (FFlag::LuauNegatedStringSingletons && norm.strings.isIntersection()) { std::vector parts; parts.push_back(singletonTypes->stringType); for (const auto& [name, ty] : *norm.strings.singletons) parts.push_back(arena->addType(NegationTypeVar{ty})); result.push_back(arena->addType(IntersectionTypeVar{std::move(parts)})); } if (!get(norm.threads)) result.push_back(singletonTypes->threadType); result.insert(result.end(), norm.tables.begin(), norm.tables.end()); for (auto& [tyvar, intersect] : norm.tyvars) { if (get(intersect->tops)) { TypeId ty = typeFromNormal(*intersect); result.push_back(arena->addType(IntersectionTypeVar{{tyvar, ty}})); } else result.push_back(tyvar); } if (result.size() == 0) return singletonTypes->neverType; else if (result.size() == 1) return result[0]; else return arena->addType(UnionTypeVar{std::move(result)}); } namespace { struct Replacer { TypeArena* arena; TypeId sourceType; TypeId replacedType; DenseHashMap newTypes; Replacer(TypeArena* arena, TypeId sourceType, TypeId replacedType) : arena(arena) , sourceType(sourceType) , replacedType(replacedType) , newTypes(nullptr) { } TypeId smartClone(TypeId t) { t = follow(t); TypeId* res = newTypes.find(t); if (res) return *res; TypeId result = shallowClone(t, *arena, TxnLog::empty()); newTypes[t] = result; newTypes[result] = result; return result; } }; } // anonymous namespace bool isSubtype(TypeId subTy, TypeId superTy, NotNull scope, NotNull singletonTypes, InternalErrorReporter& ice, bool anyIsTop) { UnifierSharedState sharedState{&ice}; TypeArena arena; Normalizer normalizer{&arena, singletonTypes, NotNull{&sharedState}}; Unifier u{NotNull{&normalizer}, Mode::Strict, scope, Location{}, Covariant}; u.anyIsTop = anyIsTop; u.tryUnify(subTy, superTy); const bool ok = u.errors.empty() && u.log.empty(); return ok; } bool isSubtype( TypePackId subPack, TypePackId superPack, NotNull scope, NotNull singletonTypes, InternalErrorReporter& ice, bool anyIsTop) { UnifierSharedState sharedState{&ice}; TypeArena arena; Normalizer normalizer{&arena, singletonTypes, NotNull{&sharedState}}; Unifier u{NotNull{&normalizer}, Mode::Strict, scope, Location{}, Covariant}; u.anyIsTop = anyIsTop; u.tryUnify(subPack, superPack); const bool ok = u.errors.empty() && u.log.empty(); return ok; } } // namespace Luau