
Position Paper: Goals of the Luau Type System

ANDY FRIESEN, ALAN JEFFREY, and OTHER PEOPLE?, Roblox, USA

A position paper about goals of the Luau type system.

ACM Reference Format:
Andy Friesen, Alan Jeffrey, and Other People?. 2021. Position Paper: Goals of the Luau Type System. In . ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Roblox [7] platform allows anyone to create shared, immersive, 3D experiences. At the time of
writing, there are approximately eight million experiences available on Roblox, created by eight
million developers. Roblox creators are often young, for example there are over 200 Roblox kids’
coding camps in over 65 countries listed at [6].
The Luau programming language [5] is the scripting language used by developers of Roblox

experiences. Luau is derived from the Lua programming language [2], with additional capabilities,
including a type inference engine.

This paper will discuss some of the goals of the Luau type system, focusing on where the goals
are different from those of other type systems.

2 HUMAN ASPECTS
2.1 Heterogenous developer community
Quoting a 2020 report [4]:

• Adopt Me! now has over 10 billion plays and surpassed 1.6 million concurrent users in game
earlier this year.

• Piggy, launched in January 2020, has close to 5 billion visits in just over six months.
• There are now 345,000 developers on the platform who are monetizing their games.

This demonstrates how heterogenous the Roblox developer community is: developers of expe-
riences with plays measured in billions are on the same platform as children first learning to
code. Moreover, both of these groups are important, as the professional development studios bring
high-quality experiences to the platform, and the beginning creators contribute to the energetic
creative community.

2.2 Goal-driven learning
All developers are goal-driven, but this is especially true for learners. A learner will download
Roblox Studio (the IDE) with an experience in mind, often designing an obstacle course (an “obby”)
to play in with their friends.

The user experience of developing a Roblox experience is primarily a 3D interactive one, seen in
Fig. 1(a). The user designs and deploys 3D assets such as terrain, parts and joints, and provides them

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
HATRA ’21, October 2021, Chicago, IL
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

HATRA ’21, October 2021, Chicago, IL Andy Friesen, Alan Jeffrey, and Other People?

Fig. 1. Roblox Studio’s 3D environment editor (a), and script editor (b)

with physics attributes such as mass and orientation. The user can interact with the experience in
Studio, and deploy it to a Roblox server so anyone with the Roblox app can play it.

At some point during experience design, the user of Studio has a need which can’t be met by the
physics engine alone. “The stairs should light up when a player walks on them” or “a firework is
set off every few seconds.” At this point they will discover the script editor, seen in Fig. 1(b), and
the Luau programming language.
This onboarding experience is different from many initial exposures to programming, in that

by the time the user first opens the script editor, they have already built much of their creation,
and have a very specific concrete aim. It suggests a Luau goal for helping the majority of creators:
support learning how to perform specific tasks (for example through autocomplete suggestions and
documentation).

2.3 Type-driven development
Professional development studios are also goal-directed (though the goals may be more abstract,
such as “decrease user churn” or “improve frame rate”) but have needs that are less common in
learners:

• Code planning: code spends much of its development time in an incomplete state, with holes
that will be filled in later.

• Code refactoring: experiences evolve over time, and it easy for changes to break previously-
held invariants.

• Defect detection: code has errors, and detecting these at runtime (for example by crash
telemetry) can be expensive and recovery can be time-consuming.

Detecting defects ahead-of-time is a traditional goal of type systems, resulting in an array of
techniques for establishing safety results, surveyed for example in [3]. Supporting code planning
and refactoring are some of the goals of type-driven development [1] under the slogan “type, define,
refine”.
To help support the transition from novice to experienced developer, types are introduced

gradully, through API documentation and type discovery. Type inference provides many of the
benefits of type-driven development even to creators who are not explicitly providing types.

2

Position Paper: Goals of the Luau Type System HATRA ’21, October 2021, Chicago, IL

3 TYPES
3.1 Infallible types
Goal: support type-driven tools in all programs.

Programs spend much of their time under development in an incomplete state, even if the final
arifact is well-typed. Type-driven tools should support this, by providing type information for all
programs.

An analogy is infallible parsers, which perform error recovery and provide an AST for all input
texts.

Program analysis can still flag type errors, for example with red squiggly underlining. Formalizing
this, rather than a judgement Γ ⊢ 𝑀 : 𝑇 , for an input terms𝑀 , there is a judgement Γ ⊢ 𝑀 ⇒ 𝑀 ′ : 𝑇
where𝑀 ′ is an output term where some subterms are flagged𝑀 . For example the usual type rules
for field access becomes:

Γ ⊢ 𝑀 ⇒ 𝑀 ′ : 𝑇
Γ ⊢ 𝑀.ℓ ⇒ 𝑀 ′.ℓ : 𝑈

[𝑇 = {ℓ : 𝑈 } and (ℓ : 𝑈) ∈ (ℓ : 𝑈)]

but there is also a rule for unsuccesful field access:
Γ ⊢ 𝑀 ⇒ 𝑀 ′ : 𝑇

Γ ⊢ 𝑀.ℓ ⇒ 𝑀 ′.ℓ : 𝑈
[𝑇 = {ℓ : 𝑈 } implies ℓ ∉ ℓ]

In this type rule,𝑈 is unconstrained.
Some issues raised by infallible types:
• Which heuristics should be used to provide types for flagged programs? For example, could
one use minimal edit distance to correct for spelling mistakes in field names?

• How can we avoid cascading type errors, where a developer is faced with type errors that
are artifacts of the heuristics rather than genuine errors?

• How can the goals of an infallible type system be formalized?

3.2 Strict types
Goal: no false negatives

- Appropriate for experienced developers?
- Variants of “usual techniques” apply, e.g. progress becomes “if you get stuck, there must be red

squigglies”
- Related to blame analysis?

3.3 Nonstrict types
Goal: no false positives

- Appropriate for the majority of developers?
- Usual techniques do not apply, e.g. correctness becomes “code with red squigglies does not

return a result”
- Related to success types?
- Problems with mutation and avoiding whole-program analysis.

3.4 Mixing types
Goal: support mixed strict/nonstrict development

- Strictness is per-script, so programs are mixed
- Can the correctness criteria be combined?
- Can success types be combined with regular types?
- Same types, different red squigglies?

3

HATRA ’21, October 2021, Chicago, IL Andy Friesen, Alan Jeffrey, and Other People?

- Related: incorrectness logic vs correcness logic?

4 FUTUREWORK
Draw the damn owl

- Mixing types
- Other interactions between types and IDEs, e.g. typed holes.
- Formalizations of all of this?

REFERENCES
[1] Edwin Brady. 2017. Type-Driven Development with Idris. Manning.
[2] Lua.org and PUC-Rio. 2021. The Lua Programming Language. https://lua.org
[3] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.
[4] Roblox. 2020. Roblox Developers Expected to Earn Over $250 Million in 2020; Platform Now Has Over 150 Million

Monthly Active Users. https://corp.roblox.com/2020/07/roblox-developers-expected-earn-250-million-2020-platform-
now-150-million-monthly-active-users/

[5] Roblox. 2021. The Luau Programming Language. https://luau-lang.org
[6] Roblox. 2021. Roblox Education: All Educators. https://education.roblox.com/en-us/educators
[7] Roblox. 2021. What is Roblox. https://corp.roblox.com

4

https://lua.org
https://corp.roblox.com/2020/07/roblox-developers-expected-earn-250-million-2020-platform-now-150-million-monthly-active-users/
https://corp.roblox.com/2020/07/roblox-developers-expected-earn-250-million-2020-platform-now-150-million-monthly-active-users/
https://luau-lang.org
https://education.roblox.com/en-us/educators
https://corp.roblox.com

	Abstract
	1 Introduction
	2 Human Aspects
	2.1 Heterogenous developer community
	2.2 Goal-driven learning
	2.3 Type-driven development

	3 Types
	3.1 Infallible types
	3.2 Strict types
	3.3 Nonstrict types
	3.4 Mixing types

	4 Future work
	References

