// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #include "Luau/CodeGen.h" #include "Luau/Common.h" #include "Luau/CodeAllocator.h" #include "Luau/CodeBlockUnwind.h" #include "Luau/IrAnalysis.h" #include "Luau/IrBuilder.h" #include "Luau/IrDump.h" #include "Luau/IrUtils.h" #include "Luau/OptimizeConstProp.h" #include "Luau/OptimizeFinalX64.h" #include "Luau/UnwindBuilder.h" #include "Luau/UnwindBuilderDwarf2.h" #include "Luau/UnwindBuilderWin.h" #include "Luau/AssemblyBuilderA64.h" #include "Luau/AssemblyBuilderX64.h" #include "CustomExecUtils.h" #include "NativeState.h" #include "CodeGenA64.h" #include "EmitCommonA64.h" #include "IrLoweringA64.h" #include "CodeGenX64.h" #include "EmitCommonX64.h" #include "EmitInstructionX64.h" #include "IrLoweringX64.h" #include "lapi.h" #include #include #if defined(__x86_64__) || defined(_M_X64) #ifdef _MSC_VER #include // __cpuid #else #include // __cpuid #endif #endif LUAU_FASTFLAGVARIABLE(DebugCodegenNoOpt, false) namespace Luau { namespace CodeGen { static NativeProto* createNativeProto(Proto* proto, const IrBuilder& ir) { NativeProto* result = new NativeProto(); result->proto = proto; result->instTargets = new uintptr_t[proto->sizecode]; for (int i = 0; i < proto->sizecode; i++) { auto [irLocation, asmLocation] = ir.function.bcMapping[i]; result->instTargets[i] = irLocation == ~0u ? 0 : asmLocation; } return result; } template static void lowerImpl(AssemblyBuilder& build, IrLowering& lowering, IrFunction& function, int bytecodeid, AssemblyOptions options) { // While we will need a better block ordering in the future, right now we want to mostly preserve build order with fallbacks outlined std::vector sortedBlocks; sortedBlocks.reserve(function.blocks.size()); for (uint32_t i = 0; i < function.blocks.size(); i++) sortedBlocks.push_back(i); std::sort(sortedBlocks.begin(), sortedBlocks.end(), [&](uint32_t idxA, uint32_t idxB) { const IrBlock& a = function.blocks[idxA]; const IrBlock& b = function.blocks[idxB]; // Place fallback blocks at the end if ((a.kind == IrBlockKind::Fallback) != (b.kind == IrBlockKind::Fallback)) return (a.kind == IrBlockKind::Fallback) < (b.kind == IrBlockKind::Fallback); // Try to order by instruction order return a.start < b.start; }); DenseHashMap bcLocations{~0u}; // Create keys for IR assembly locations that original bytecode instruction are interested in for (const auto& [irLocation, asmLocation] : function.bcMapping) { if (irLocation != ~0u) bcLocations[irLocation] = 0; } DenseHashMap indexIrToBc{~0u}; bool outputEnabled = options.includeAssembly || options.includeIr; if (outputEnabled && options.annotator) { // Create reverse mapping from IR location to bytecode location for (size_t i = 0; i < function.bcMapping.size(); ++i) { uint32_t irLocation = function.bcMapping[i].irLocation; if (irLocation != ~0u) indexIrToBc[irLocation] = uint32_t(i); } } IrToStringContext ctx{build.text, function.blocks, function.constants, function.cfg}; // We use this to skip outlined fallback blocks from IR/asm text output size_t textSize = build.text.length(); uint32_t codeSize = build.getCodeSize(); bool seenFallback = false; IrBlock dummy; dummy.start = ~0u; for (size_t i = 0; i < sortedBlocks.size(); ++i) { uint32_t blockIndex = sortedBlocks[i]; IrBlock& block = function.blocks[blockIndex]; if (block.kind == IrBlockKind::Dead) continue; LUAU_ASSERT(block.start != ~0u); LUAU_ASSERT(block.finish != ~0u); // If we want to skip fallback code IR/asm, we'll record when those blocks start once we see them if (block.kind == IrBlockKind::Fallback && !seenFallback) { textSize = build.text.length(); codeSize = build.getCodeSize(); seenFallback = true; } if (options.includeIr) { build.logAppend("# "); toStringDetailed(ctx, block, blockIndex, /* includeUseInfo */ true); } build.setLabel(block.label); for (uint32_t index = block.start; index <= block.finish; index++) { LUAU_ASSERT(index < function.instructions.size()); // If IR instruction is the first one for the original bytecode, we can annotate it with source code text if (outputEnabled && options.annotator) { if (uint32_t* bcIndex = indexIrToBc.find(index)) options.annotator(options.annotatorContext, build.text, bytecodeid, *bcIndex); } // If bytecode needs the location of this instruction for jumps, record it if (uint32_t* bcLocation = bcLocations.find(index)) { Label label = (index == block.start) ? block.label : build.setLabel(); *bcLocation = build.getLabelOffset(label); } IrInst& inst = function.instructions[index]; // Skip pseudo instructions, but make sure they are not used at this stage // This also prevents them from getting into text output when that's enabled if (isPseudo(inst.cmd)) { LUAU_ASSERT(inst.useCount == 0); continue; } if (options.includeIr) { build.logAppend("# "); toStringDetailed(ctx, inst, index, /* includeUseInfo */ true); } IrBlock& next = i + 1 < sortedBlocks.size() ? function.blocks[sortedBlocks[i + 1]] : dummy; lowering.lowerInst(inst, index, next); } if (options.includeIr) build.logAppend("#\n"); } if (outputEnabled && !options.includeOutlinedCode && seenFallback) { build.text.resize(textSize); if (options.includeAssembly) build.logAppend("; skipping %u bytes of outlined code\n", unsigned((build.getCodeSize() - codeSize) * sizeof(build.code[0]))); } // Copy assembly locations of IR instructions that are mapped to bytecode instructions for (auto& [irLocation, asmLocation] : function.bcMapping) { if (irLocation != ~0u) asmLocation = bcLocations[irLocation]; } } [[maybe_unused]] static void lowerIr( X64::AssemblyBuilderX64& build, IrBuilder& ir, NativeState& data, ModuleHelpers& helpers, Proto* proto, AssemblyOptions options) { constexpr uint32_t kFunctionAlignment = 32; optimizeMemoryOperandsX64(ir.function); build.align(kFunctionAlignment, X64::AlignmentDataX64::Ud2); X64::IrLoweringX64 lowering(build, helpers, data, ir.function); lowerImpl(build, lowering, ir.function, proto->bytecodeid, options); } [[maybe_unused]] static void lowerIr( A64::AssemblyBuilderA64& build, IrBuilder& ir, NativeState& data, ModuleHelpers& helpers, Proto* proto, AssemblyOptions options) { if (A64::IrLoweringA64::canLower(ir.function)) { A64::IrLoweringA64 lowering(build, helpers, data, proto, ir.function); lowerImpl(build, lowering, ir.function, proto->bytecodeid, options); } else { // TODO: This is only needed while we don't support all IR opcodes // When we can't translate some parts of the function, we instead encode a dummy assembly sequence that hands off control to VM // In the future we could return nullptr from assembleFunction and handle it because there may be other reasons for why we refuse to assemble. Label start = build.setLabel(); build.mov(A64::x0, 1); // finish function in VM build.ldr(A64::x1, A64::mem(A64::rNativeContext, offsetof(NativeContext, gateExit))); build.br(A64::x1); for (int i = 0; i < proto->sizecode; i++) ir.function.bcMapping[i].asmLocation = build.getLabelOffset(start); } } template static NativeProto* assembleFunction(AssemblyBuilder& build, NativeState& data, ModuleHelpers& helpers, Proto* proto, AssemblyOptions options) { if (options.includeAssembly || options.includeIr) { if (proto->debugname) build.logAppend("; function %s(", getstr(proto->debugname)); else build.logAppend("; function("); for (int i = 0; i < proto->numparams; i++) { LocVar* var = proto->locvars ? &proto->locvars[proto->sizelocvars - proto->numparams + i] : nullptr; if (var && var->varname) build.logAppend("%s%s", i == 0 ? "" : ", ", getstr(var->varname)); else build.logAppend("%s$arg%d", i == 0 ? "" : ", ", i); } if (proto->numparams != 0 && proto->is_vararg) build.logAppend(", ...)"); else build.logAppend(")"); if (proto->linedefined >= 0) build.logAppend(" line %d\n", proto->linedefined); else build.logAppend("\n"); } IrBuilder ir; ir.buildFunctionIr(proto); computeCfgInfo(ir.function); if (!FFlag::DebugCodegenNoOpt) { constPropInBlockChains(ir); } lowerIr(build, ir, data, helpers, proto, options); if (build.logText) build.logAppend("\n"); return createNativeProto(proto, ir); } static void destroyNativeProto(NativeProto* nativeProto) { delete[] nativeProto->instTargets; delete nativeProto; } static void onCloseState(lua_State* L) { destroyNativeState(L); } static void onDestroyFunction(lua_State* L, Proto* proto) { NativeProto* nativeProto = getProtoExecData(proto); LUAU_ASSERT(nativeProto->proto == proto); setProtoExecData(proto, nullptr); destroyNativeProto(nativeProto); } static int onEnter(lua_State* L, Proto* proto) { if (L->singlestep) return 1; NativeState* data = getNativeState(L); if (!L->ci->savedpc) L->ci->savedpc = proto->code; // We will jump into native code through a gateway bool (*gate)(lua_State*, Proto*, uintptr_t, NativeContext*) = (bool (*)(lua_State*, Proto*, uintptr_t, NativeContext*))data->context.gateEntry; NativeProto* nativeProto = getProtoExecData(proto); uintptr_t target = nativeProto->instTargets[L->ci->savedpc - proto->code]; // Returns 1 to finish the function in the VM return gate(L, proto, target, &data->context); } static void onSetBreakpoint(lua_State* L, Proto* proto, int instruction) { if (!getProtoExecData(proto)) return; LUAU_ASSERT(!"native breakpoints are not implemented"); } bool isSupported() { #if !LUA_CUSTOM_EXECUTION return false; #elif defined(__x86_64__) || defined(_M_X64) if (LUA_EXTRA_SIZE != 1) return false; if (sizeof(TValue) != 16) return false; if (sizeof(LuaNode) != 32) return false; int cpuinfo[4] = {}; #ifdef _MSC_VER __cpuid(cpuinfo, 1); #else __cpuid(1, cpuinfo[0], cpuinfo[1], cpuinfo[2], cpuinfo[3]); #endif // We require AVX1 support for VEX encoded XMM operations // We also requre SSE4.1 support for ROUNDSD but the AVX check below covers it // https://en.wikipedia.org/wiki/CPUID#EAX=1:_Processor_Info_and_Feature_Bits if ((cpuinfo[2] & (1 << 28)) == 0) return false; return true; #elif defined(__aarch64__) // TODO: A64 codegen does not generate correct unwind info at the moment so it requires longjmp instead of C++ exceptions return bool(LUA_USE_LONGJMP); #else return false; #endif } void create(lua_State* L) { LUAU_ASSERT(isSupported()); NativeState& data = *createNativeState(L); #if defined(_WIN32) data.unwindBuilder = std::make_unique(); #else data.unwindBuilder = std::make_unique(); #endif data.codeAllocator.context = data.unwindBuilder.get(); data.codeAllocator.createBlockUnwindInfo = createBlockUnwindInfo; data.codeAllocator.destroyBlockUnwindInfo = destroyBlockUnwindInfo; initFallbackTable(data); initHelperFunctions(data); #if defined(__x86_64__) || defined(_M_X64) if (!X64::initEntryFunction(data)) { destroyNativeState(L); return; } #elif defined(__aarch64__) if (!A64::initEntryFunction(data)) { destroyNativeState(L); return; } #endif lua_ExecutionCallbacks* ecb = getExecutionCallbacks(L); ecb->close = onCloseState; ecb->destroy = onDestroyFunction; ecb->enter = onEnter; ecb->setbreakpoint = onSetBreakpoint; } static void gatherFunctions(std::vector& results, Proto* proto) { if (results.size() <= size_t(proto->bytecodeid)) results.resize(proto->bytecodeid + 1); // Skip protos that we've already compiled in this run: this happens because at -O2, inlined functions get their protos reused if (results[proto->bytecodeid]) return; results[proto->bytecodeid] = proto; for (int i = 0; i < proto->sizep; i++) gatherFunctions(results, proto->p[i]); } void compile(lua_State* L, int idx) { LUAU_ASSERT(lua_isLfunction(L, idx)); const TValue* func = luaA_toobject(L, idx); // If initialization has failed, do not compile any functions if (!getNativeState(L)) return; #if defined(__aarch64__) A64::AssemblyBuilderA64 build(/* logText= */ false); #else X64::AssemblyBuilderX64 build(/* logText= */ false); #endif NativeState* data = getNativeState(L); std::vector protos; gatherFunctions(protos, clvalue(func)->l.p); ModuleHelpers helpers; #if defined(__aarch64__) A64::assembleHelpers(build, helpers); #else X64::assembleHelpers(build, helpers); #endif std::vector results; results.reserve(protos.size()); // Skip protos that have been compiled during previous invocations of CodeGen::compile for (Proto* p : protos) if (p && getProtoExecData(p) == nullptr) results.push_back(assembleFunction(build, *data, helpers, p, {})); build.finalize(); uint8_t* nativeData = nullptr; size_t sizeNativeData = 0; uint8_t* codeStart = nullptr; if (!data->codeAllocator.allocate(build.data.data(), int(build.data.size()), reinterpret_cast(build.code.data()), int(build.code.size() * sizeof(build.code[0])), nativeData, sizeNativeData, codeStart)) { for (NativeProto* result : results) destroyNativeProto(result); return; } // Relocate instruction offsets for (NativeProto* result : results) { for (int i = 0; i < result->proto->sizecode; i++) result->instTargets[i] += uintptr_t(codeStart); LUAU_ASSERT(result->proto->sizecode); result->entryTarget = result->instTargets[0]; } // Link native proto objects to Proto; the memory is now managed by VM and will be freed via onDestroyFunction for (NativeProto* result : results) setProtoExecData(result->proto, result); } std::string getAssembly(lua_State* L, int idx, AssemblyOptions options) { LUAU_ASSERT(lua_isLfunction(L, idx)); const TValue* func = luaA_toobject(L, idx); #if defined(__aarch64__) A64::AssemblyBuilderA64 build(/* logText= */ options.includeAssembly); #else X64::AssemblyBuilderX64 build(/* logText= */ options.includeAssembly); #endif NativeState data; initFallbackTable(data); std::vector protos; gatherFunctions(protos, clvalue(func)->l.p); ModuleHelpers helpers; #if defined(__aarch64__) A64::assembleHelpers(build, helpers); #else X64::assembleHelpers(build, helpers); #endif for (Proto* p : protos) if (p) { NativeProto* nativeProto = assembleFunction(build, data, helpers, p, options); destroyNativeProto(nativeProto); } build.finalize(); if (options.outputBinary) return std::string(reinterpret_cast(build.code.data()), reinterpret_cast(build.code.data() + build.code.size())) + std::string(build.data.begin(), build.data.end()); else return build.text; } } // namespace CodeGen } // namespace Luau