{-# OPTIONS --rewriting #-} module Properties.Subtyping where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_) open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; src; tgt) open import Properties.Contradiction using (CONTRADICTION; ¬) open import Properties.DecSubtyping using (language-comp; dec-language; tgt-function-ok; function-ok-tgt; function-err-src; ¬function-err-src; src-¬function-err) open import Properties.Equality using (_≢_) open import Properties.Functions using (_∘_) open import Properties.Product using (_×_; _,_) -- ≮: is the complement of <: ¬≮:-impl-<: : ∀ {T U} → ¬(T ≮: U) → (T <: U) ¬≮:-impl-<: {T} {U} p t q with dec-language U t ¬≮:-impl-<: {T} {U} p t q | Left r = CONTRADICTION (p (witness t q r)) ¬≮:-impl-<: {T} {U} p t q | Right r = r <:-impl-¬≮: : ∀ {T U} → (T <: U) → ¬(T ≮: U) <:-impl-¬≮: p (witness t q r) = language-comp t r (p t q) -- reflexivity ≮:-refl : ∀ {T} → ¬(T ≮: T) ≮:-refl (witness t p q) = language-comp t q p <:-refl : ∀ {T} → (T <: T) <:-refl = ¬≮:-impl-<: ≮:-refl -- transititivity ≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U) ≮:-trans-≡ p refl = p ≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U) ≡-trans-≮: refl p = p ≮:-trans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U) ≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t) <:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U) <:-trans p q = ¬≮:-impl-<: (cond (<:-impl-¬≮: p) (<:-impl-¬≮: q) ∘ ≮:-trans) -- Properties of scalars skalar = number ∪ (string ∪ (nil ∪ boolean)) function-≮:-scalar : ∀ {S T U} → (Scalar U) → ((S ⇒ T) ≮: U) function-≮:-scalar s = witness function function (scalar-function s) scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T)) scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s) unknown-≮:-scalar : ∀ {U} → (Scalar U) → (unknown ≮: U) unknown-≮:-scalar s = witness (function-ok (scalar s)) unknown (scalar-function-ok s) scalar-≮:-never : ∀ {U} → (Scalar U) → (U ≮: never) scalar-≮:-never s = witness (scalar s) (scalar s) never scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U) scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p) skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t)) skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean))) skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s)) skalar-scalar number = left (scalar number) skalar-scalar boolean = right (right (right (scalar boolean))) skalar-scalar string = right (left (scalar string)) skalar-scalar nil = right (right (left (scalar nil))) tgt-never-≮: : ∀ {T U} → (tgt T ≮: U) → (T ≮: (skalar ∪ (never ⇒ U))) tgt-never-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q) never-tgt-≮: : ∀ {T U} → (T ≮: (skalar ∪ (never ⇒ U))) → (tgt T ≮: U) never-tgt-≮: (witness (scalar s) p (q₁ , q₂)) = CONTRADICTION (≮:-refl (witness (scalar s) (skalar-scalar s) q₁)) never-tgt-≮: (witness function p (q₁ , scalar-function ())) never-tgt-≮: (witness (function-ok t) p (q₁ , function-ok q₂)) = witness t (function-ok-tgt p) q₂ never-tgt-≮: (witness (function-err (scalar s)) p (q₁ , function-err (scalar ()))) src-¬scalar : ∀ {S T t} (s : Scalar S) → Language T (scalar s) → (¬Language (src T) t) src-¬scalar number (scalar number) = never src-¬scalar boolean (scalar boolean) = never src-¬scalar string (scalar string) = never src-¬scalar nil (scalar nil) = never src-¬scalar s (left p) = left (src-¬scalar s p) src-¬scalar s (right p) = right (src-¬scalar s p) src-¬scalar s (p₁ , p₂) = (src-¬scalar s p₁ , src-¬scalar s p₂) src-¬scalar s unknown = never src-unknown-≮: : ∀ {T U} → (T ≮: src U) → (U ≮: (T ⇒ unknown)) src-unknown-≮: (witness t p q) = witness (function-err t) (function-err-src q) (¬function-err-src p) unknown-src-≮: : ∀ {S T U} → (U ≮: S) → (T ≮: (U ⇒ unknown)) → (U ≮: src T) unknown-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p) unknown-src-≮: r (witness (function-ok (scalar s)) p (function-ok (scalar-scalar s () q))) unknown-src-≮: r (witness (function-ok (function-ok _)) p (function-ok (scalar-function-ok ()))) unknown-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p) -- Properties of unknown and never unknown-≮: : ∀ {T U} → (T ≮: U) → (unknown ≮: U) unknown-≮: (witness t p q) = witness t unknown q never-≮: : ∀ {T U} → (T ≮: U) → (T ≮: never) never-≮: (witness t p q) = witness t p never unknown-≮:-never : (unknown ≮: never) unknown-≮:-never = witness (scalar nil) unknown never function-≮:-never : ∀ {T U} → ((T ⇒ U) ≮: never) function-≮:-never = witness function function never -- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf) -- defines a "set-theoretic" model (sec 2.5) -- Unfortunately we don't quite have this property, due to uninhabited types, -- for example (never -> T) is equivalent to (never -> U) -- when types are interpreted as sets of syntactic values. _⊆_ : ∀ {A : Set} → (A → Set) → (A → Set) → Set (P ⊆ Q) = ∀ a → (P a) → (Q a) _⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set) (P ⊗ Q) (a , b) = (P a) × (Q b) Comp : ∀ {A : Set} → (A → Set) → (A → Set) Comp P a = ¬(P a) set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} → -- This is the "if" part of being a set-theoretic model (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) → (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , u) Qtu (S₂t , ¬T₂u) = q (t , u) Qtu (S₁t , ¬T₁u) where S₁t : Language S₁ t S₁t with dec-language S₁ t S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t) S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t) S₁t | Right r = r ¬T₁u : ¬(Language T₁ u) ¬T₁u T₁u with p (function-ok u) (function-ok T₁u) ¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} → -- We don't quite have that this is a set-theoretic model -- it's only true when Language T₁ and ¬Language T₂ t₂ are inhabited -- in particular it's not true when T₁ is never, or T₂ is unknown. ∀ s₂ t₂ → Language S₂ s₂ → ¬Language T₂ t₂ → -- This is the "only if" part of being a set-theoretic model (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) → (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t₂ p = r where Q : (Tree × Tree) → Set Q (t , u) = Either (¬Language S₁ t) (Language T₁ u) q : Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) q (t , u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t q (t , u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂) r function function = function r (function-err t) (function-err ¬S₁t) with dec-language S₂ t r (function-err t) (function-err ¬S₁t) | Left ¬S₂t = function-err ¬S₂t r (function-err t) (function-err ¬S₁t) | Right S₂t = CONTRADICTION (p Q q (t , t₂) (Left ¬S₁t) (S₂t , language-comp t₂ ¬T₂t₂)) r (function-ok t) (function-ok T₁t) with dec-language T₂ t r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t)) r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t -- A counterexample when the argument type is empty. set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Comp(Language number)) → Q ⊆ Comp((Language never) ⊗ Comp(Language string))) set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p) set-theoretic-counterexample-one Q q ((function-err t) , u) Qtu (scalar-function-err () , p) set-theoretic-counterexample-two : (never ⇒ number) ≮: (never ⇒ string) set-theoretic-counterexample-two = witness (function-ok (scalar number)) (function-ok (scalar number)) (function-ok (scalar-scalar number string (λ ()))) -- At some point we may deal with overloaded function resolution, which should fix this problem... -- The reason why this is connected to overloaded functions is that currently we have that the type of -- f(x) is (tgt T) where f:T. Really we should have the type depend on the type of x, that is use (tgt T U), -- where U is the type of x. In particular (tgt (S => T) (U & V)) should be the same as (tgt ((S&U) => T) V) -- and tgt(never => T) should be unknown. For example -- -- tgt((number => string) & (string => bool))(number) -- is tgt(number => string)(number) & tgt(string => bool)(number) -- is tgt(number => string)(number) & tgt(string => bool)(number&unknown) -- is tgt(number => string)(number) & tgt(string&number => bool)(unknown) -- is tgt(number => string)(number) & tgt(never => bool)(unknown) -- is string & unknown -- is string -- -- there's some discussion of this in the Gentle Introduction paper.